Seminar on Orthogonal Polynomials and Approximation Theory

Participantes

 

Objectivos

voltar ao início

Introdução dos interessados na Teoria dos Polinómios Ortogonais e Aplicações, bem como incentivar o debate de problemas nesta área.
Temas de trabalho

voltar ao início

  • Teoria Geral dos Polinómios Ortogonais

  • Teoria das Equações em Diferenças. Teorema de Poincaré e Aplicações

  • Problema de Momentos

  • Teoria do Potencial

  • Teoria Analítica dos Números

Teses de mestrado

voltar ao início

Autor: Mário António Grande Abrantes
Titulo: Polinómios Ortogonais de Uma e Duas Variáveis
Defesa: Coimbra, Julho de 2001
Autor: Maria das Neves Vieiro Rebocho
Titulo: Teoria de Momentos e Polinómios Ortogonais
Defesa: Coimbra, Julho de 2001
Autor: Ana Isabel Gonçalves Mendes
Titulo: Geração Semi-Clássica de Famílias de Polinómios Ortogonais
Defesa: Coimbra, Março de 2002
Autor: Ana Margarida Santos
Titulo: Polinómios Ortogonais Matriciais: Caso Clássico
Defesa: Aveiro, Julho de 2002
Autor: Anabela Monteiro Paiva
Titulo: Polinómios Ortogonais Tipo Pollaczek
Defesa: Coimbra, Dezembro de 2002
Autor: Elisabete Sousa Almeida
Titulo: Uma Abordagem à Teoria de Funções
Defesa: Coimbra, Junho de 2004
Autor: Victor Luís Pereira de Sousa
Titulo: Problemas de Riemann-Hilbert na Teoria dos Polinómios Ortogonais
Defesa: Aveiro, Junho de 2004
Autor: Alexandra Nascimento
Titulo: Teoria Analítica dos Números
Defesa: Coimbra, Setembro de 2005
Trabalhos de investigação

voltar ao início

Autores: A. Branquinho, A. Foulquié Moreno and F. Marcellán
Titulo: Asymptotic behavior of Sobolev type orthogonal polynomials on a recti able Jordan Curve or Arc
Referência: Constructive Approximation, 18 (2002) 161-182
Autores: A. Aptekarev, A. Branquinho and W. Van Assche
Titulo: Classical multiple orthogonal polynomials
Referência: Trans. Amer. Math. Soc. vol. 335, N. 10, pp. 3887-3914
Autores: A. Aptekarev and A. Branquinho
Titulo: Padé approximants and complex high order Toda lattices
Referência: Journal of Computation and Applied Mathematics 2004
Autores: A. Branquinho, J. Bustamante, A. Foulquié Moreno and G. López
Titulo: Normal indices in Nikishin Systems
Referência: Journal of Approximation Theory 2004
Autores: A. Branquinho, A. Foulquié Moreno, F. Marcellán, and K. Pan
Titulo: Coherent Pairs in Jordan Arcs and Curves
Referência: submitted
Projectos de Doutoramento em curso

voltar ao início

Tema de Trabalho: Famílias de Polinómios Ortogonais
Destinatário: Ana Isabel Gonçalves Mendes
Directores: Francisco Marcellán e Amílcar Branquinho
Resumo:
O objectivo principal do plano de trabalho é o de analisar alguns métodos construtivos para sucessões de polinómios ortogonais, relativamente a uma funções de Stieltjes ou a uma funcional linear contínua.
Num sentido amplo podemos dizer que o nosso principal interesse centra-se no estudo das famílias de polinómios ortogonais semi-clássicas e de Laguerre-Hahn.
Vamos começar por estabelecer processos de geração de famílias de polinómios ortogonais e posteriormente analisar a estabilidade destas famílias relativamente a modificações, na função de Stieltjes associada, e nos coeficientes da relação de recorrência a três termos que estas famílias verificam.
Tema de Trabalho: Propriedades analíticas de sistemas de polinómios ortogonais relativamente a formas diferenciais
Destinatário: Maria das Neves Vieiro Rebocho
Director: Amílcar Branquinho
Resumo:
O objectivo principal do plano de trabalho é o estudo das propriedades analíticas de sistemas de polinómios ortogonais gerados por relações de ortogonalidade não usuais, que surgem em diversas aplicações da análise, do cálculo numérico, da física teórica, das equações diferenciais e da teoria da aproximação.
Num sentido amplo podemos dizer que o nosso foco de interesse são os sistemas de polinómios, ortogonais relativamente a uma forma diferencial. Estes sistemas incluem como casos particulares os chamados de tipo Sobolev, os de ortogonalidade incompleta e os de ortogonalidade múltipla.
Por um lado pretendemos estabelecer os fundamentos de uma teoria geral de tais sistemas e por outro, aproveitando as características específicas de alguns subsistemas destes produtos, avançar no estudo analítico dos mesmos.
Tema de Trabalho: Ortogonalidade Múltipla
Destinatário: Luis Manuel da Silva Cotrim
Director: Amílcar Branquinho
Resumo:
O objectivo principal do plano de doutoramento é o estudo de funções especiais, dando particular atenção, ao estudo de sucessões de polinómios ortogonais múltiplos de variável discreta e contínua.
Tema de Trabalho: Polinómios Ortogonais Tipo Askey-Wilson
Destinatário: Anabela Monteiro Paiva
Director: Guillermo López e Amílcar Branquinho
Resumo:
O objectivo principal deste plano de doutoramento é o estudo de problemas inversos diferenciais na teoria dos polinómios ortogonais, i.e. obter a medida associada a uma dada sucessão de polinómios ortogonais, que verificam um determinado operador diferencial e/ou em diferenças.
Projectos internacionais

voltar ao início

Titulo: Rational approximation of analytic functions and its applications to the spectral theory of difference operators, non-linear dynamical systems, special functions, and number theory
Referência: INTAS-00-272
Titulo: Orthogonal Polynomials and Special Functions
Referência: 29242-IC-1-2001-PT-ERASMUS-IP-13
Titulo: Network on Constructive Complex Approximation (NeCCA)
ReferênciaINTAS Research Network
Cursos de pós-graduação

voltar ao início

Alexander Aptekarev

Two Courses on Orthogonal Polynomials and Special Functions

Title: Scalar and Matrix Riemann Problem approach to the asymptotics of polynomials orthogonal with respect to a complex weight.

Abstract

 1. Cauchy integral theorem and solution of the jump problem.
 2. Short introduction to Riemann surfaces, meromorphic differentials.
 3. Cauchy Integral theorem on the Riemann surfaces and solution of Boumdary Value Problems.
 4. Scalar Riemann problem approach of J.Nuttall to the asymptotics of complex orthogonal polynomials.
 5. Matrix Riemann problem approach of P.Deift to the asymptotics of complex orthogonal polynomials.
Guillermo López

Two Courses on Orthogonal Polynomials and Special Functions

Title: Potential Theory
Abstract
The course will cover the main properties of the logaritmic potential up to the proof of the existence of the equilibrium measure. Applications of this theory to aymptotics of orthogonal polynomials and convergence of interpolatory processes in rational approximation will be seen.
Francisco Marcellán

6th European Intensive Course on Complex Analysis

Title: Orthogonal Rational Functions
Abstract
We will present the state of the art in the subject which constitutes a new and interesting subject of research with many applications in Linear Prediction, network synthesis and control theory:
 1. The fundamental spaces  
 2. Kernel functions, recurrence and second kind functions
 3. Para-orthogonality and Quadrature Density of rational functions
 4. Convergence
 5. The boundary case  
  6. Applications
Francisco Marcellán

7th European Intensive Course on Complex Analysis

Title: Operator theory and moment problems
Abstract

The aim of this course is to introduce the state-of-the art of moment problems from the perspective of the theory of finite difference operators in the scalar and in the matrix case, respectively. One the advantages of this approach is that the Nevanlinna functions appear as elements of a transfer matrix and the Padé approximants are the resolvents of a finite matrix approximation to a infinite Jacobi matrix.

Francisco Marcellán

8th European Intensive Course on Complex Analysis

Title: Approximation theory and weighted Sobolev spaces
Abstract
 1. Basic results concerning weights.
 2. Weighted Sobolev spaces. Isoperimetric inequalities. Sobolev type inequalities.
 3. Potentials and capacities. Meyer's Theory for Lp capacities. Some examples: Bessel,  Riesz and Haussdorff capacities.
 4. Applications of Potential Theory to Sobolev spaces. Poincaré type inequalities.
 5. Polynomial Approximation in Sobolev spaces.
Guillermo López

8th European Intensive Course on Complex Analysis

Title: Geometric theory of functions of a complex variable
Abstract
The course aims to cover basic questions related with the theory of univalent conformal mappings of simply connected and multiply connected domains, conformal mapping of multiply connected domains onto a disk (generalization of Riemann's Mapping Theorem), applications of conformal mappings  to the study of interior and boundary properties of analytic functions, and general questions of geometric nature dealing with analytic functions.
Walter Van Assche

9th European Intensive Course on Complex Analysis

Title: Hermite-Padé Approximation and Multiple Orthogonal Polynomials
Abstract

Hermite-Padé approximation is simultaneous rational approximation of a vector (f1,, fr) of  r  functions with interpolation conditions at a given point in the complex plane. In this course the following aspects will be covered:

  • Padé approximation of a function. Relation with orthogonal polynomials.
  • Hermite-Padé approximation of  r  functions. Type I approximation and type II approximation.
  • Orthogonality conditions for Hermite-Padé approximation: multiple orthogonal polynomials.
  • Special systems: Angelesco system, algebraic Chebyshev systems (AT systems), Nikishin systems.
  • Examples of multiple orthogonal polynomials.
  • Analytic properties of Hermite-Padé approximation for Angelesco systems and Nikishin systems.
  • Riemann-Hilbert approach for the asymptotic analysis of Hermite-Padé approximation.
  • Application: simultaneous Gauss quadrature.
  • Applications in number theory: transcendence of  e, irrationality of  ζ(3).
Walter Van Assche

10th European Intensive Course on Complex Analysis

Title: Riemann-Hilbert problem for Orthogonal Polynomials
Abstract

A Riemann-Hilbert problem consists of finding an analytic function in the complex plane minus a collection of oriented contours, for which the boundary values on the contours (from both sides of the contours) are given. Typically the solution will involve the Cauchy transform of a function w on the contours, where w describes the boundary values on the contours. The basic idea of the Riemann-Hilbert approach to orthogonal polynomials is to characterize orthogonal polynomials corresponding to a weight function w on the real line via a boundary value problem for matrix valued analytic functions. This Riemann-Hilbert problem was first formulated by Fokas, Its and Kitaev in 1992 and we will formulate the appropriate Riemann-Hilbert problem for orthogonal polynomials on ]-,+[, [0,+[ and [-1,1]. We show that this Riemann-Hilbert problem enables us to find the three-term recurrence relation and the differential equation for Hermite polynomials, Laguerre polynomials, and Jacobi polynomials. One of the main advantages of this Riemann-Hilbert approach is that it allows to obtain strong uniform asymptotics which is valid in the whole complex plane. The idea is to transform the initial Riemann-Hilbert problem in a few steps to another equivalent Riemann-Hilbert problem on a deformed set of contours with simpler jumps on the contours. This technique is called the steepest descent method for Riemann-Hilbert problems and was developed by Deift and Zhou in 1993. If time permits we will show how it works to obtain the strong asymptotics for Laguerre polynomials. 

Andrei Martínez Finkelshtein

10th European Intensive Course on Complex Analysis

Title: Potential Theory
Abstract

The course will cover the main properties of the logarithmic potential up to the proof of the existence of the equilibrium measure. Applications.

Escolas e Congressos

voltar ao início

Summer School on Orthogonal Polynomials and Spcial Functions: Recent Trends in Computation and Applications, Madrid, July 2004
10 Intensive Course on Complex Analysis
7 Workshop on Complex Analysis
Summer School on Orthogonal Polynomials and Special Functions:Approximation and Iteration, Coimbra, July 2003
9th Intensive Course on Complex Analysis, Coimbra, March 2003
6 Workshop on Complex Analysis, Aveiro, March 2003
8th Intensive Course on Complex Analysis, Coimbra, March 2002
5 Workshop  on Complex Analysis, Coimbra, March 2002
Rational Approximation and its Applications, Coimbra, February 2002
Two Courses on Complex Analysis, Coimbra, July 2001
Computational Methods and Function Theory 2001, Aveiro, June 2001
7th Intensive Course on Complex Analysis, Coimbra, March  2001
4 Workshop  on Complex Analysis, Coimbra, March 2001
6th Intensive Course on Complex Analysis, Coimbra, March 2000
Reunião Ibérica de Polinómios Ortogonais, Coimbra, November 1999
Amílcar Branquinho

ajplb@mat.uc.pt