Next TOC Index
Date: Fri, 24 May 1996 13:27:17 LISBOA


Reply-To: sem@cc.fc.ul.pt
Originator: sem@cc.fc.ul.pt
Sender: sem@cc.fc.ul.pt
Precedence: bulk
From: jaimecs@mat.uc.pt
To: sem@cc.fc.ul.pt
Subject: historia da spm
X-Comment:  Educacao em Matematica



Esta' disponivel no  endereco

http://www.mat.uc.pt/~jaimecs/indexhspm.html

a versao electronica (WWW) do texto
"Para a Historia da Sociedade Portuguesa de
Matematica" que contem a conferencia proferida pelo
Prof. Doutor Jose' Morgado no encontro
comemorativo dos 50 anos
da Sociedade Portuguesa de Matematica,
que decorreu em Lisboa de
12 a 14 de Dezembro de
1994. A conferencia foi editada como o n(o) 4
da coleccao "Textos de
Historia e Metodologia da
Matematica" do Departamento de Matematica da
Universidade de Coimbra.




+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Jaime Carvalho e Silva
Departamento de Matematica
Universidade de Coimbra
Apartado 3008
3000 Coimbra
PORTUGAL
Phone(office): 351-39-7003199   (pbx):351-39-7003150         Fax: 351-39-32568
E-mail:jaimecs@mat.uc.pt
WWW home page:   http://www.mat.uc.pt/~jaimecs/
Portugal Cultural:  http://www.di.uminho.pt/WWWcontrib/cultura.html
----------
 A notre epoque pour l'ame de chaque theorie mathematique se battent le
demon de l'algebre abstraite et l'ange de la geometrie - H. Weyl
----------

Next Previous TOC Index
Date: Fri, 31 May 1996 12:47:06 LISBOA


Reply-To: sem@cc.fc.ul.pt
Originator: sem@cc.fc.ul.pt
Sender: sem@cc.fc.ul.pt
Precedence: bulk
From: jaimecs@mat.uc.pt
To: sem@cc.fc.ul.pt
Subject: Questions from Oberwolfach
X-Comment:  Educacao em Matematica


Documento encontrado no "sitio" da
pessoa abaixo indicada (onde alias ha' mais textos
de interesse).
Para reflexao e discussao.
Jaime


------

Questions from the Oberwolfach conference on
New Trends in the Teaching and Learning of
Mathematics,
27 November through 1 December, 1995

The following research, curricular, and pedagogical questions
arose in response to the presentations given at this
conference. They represent some of the important issues and
problems that the participants jointly agree should be
studied. The list is far from complete and should not be
interpreted as an attempt to put forth a research program or
agenda. Neither is it claimed that these questions are
original or of equal importance. We only hope that they will
serve to stimulate workers in the field to obtain new results
and to improve the learning of mathematics by students
throughout the world.

    1.What are appropriate methodologies for answering
curricular and pedagogical questions?

    2.Are learning theories transferable across cultural and
subject matter boundaries? Can they be applied to
different topics and different groups of students in
different countries?

    3.What are the different learning styles for mathematics
that are prevalent among post-secondary students? How
do these learning styles relate to various theories of
learning? How immutable is the learning style of an
individual student?

    4.What are the differences between how mathematics is
learned by experts and by novices of different kinds?

    5.What do faculty and students mean by the word
"understanding"? What is meant by "clarity"? What is
the relationship between clarity and precision in the minds
of students and faculty?

    6.Do the tools of technology change students'
understanding of mathematics, and if so how? For
example: some people argue that learning geometry with a
software package does not promote the same
understanding of geometry as learning in a paper and pencil
environment. How can we transform this claim into a
research question and what methodology can be
developed to investigate this question?

    7.What are the student conceptions of the different
notions of equality and approximate equality? How are
these conceptions affected by technology?

    8.What are the difficulties that students have with
formal mathematical language such as the use of "for
all," "there exists," two-level quantifiers, and negation,
and with the relationship of formal mathematical
language to everyday language?

    9.In what ways is the concept of a solution to a
differential equation difficult? What is the nature of
that difficulty? In particular, what is the nature of the
difficulties in understandingNsymbolically,
graphically, and visuallyNwhat it means to be a solution to
     a differential equation or initial value problem?

   10.What pedagogical strategies can be effective in helping
students understand the systematic development of
mathematical theories?

   11.How can we most effectively teach students to use
definitions as a mathematician does, and in particular
to turn a definition into "an operative form"?

   12.What is the relationship between time spent on
mathematics outside of class and the level of student
understanding? What pedagogical strategies are most effective
in improving the quantity and quality of the time
students spend on mathematics?

   13.What course designs and pedagogical strategies are most
effective in taking into account the wide range of
abilities and backgrounds of the students?

   14.What are the pedagogical advantages and disadvantages
of the different ways in which technology can be used?
Among these are visualization, the use of built-in
mathematical tools, and programming.

   15.How does class size affect learning? How is this
affected by technology and cooperative learning? What
group sizes in cooperative learning best support learning?

   16.What are the advantages and disadvantages of using
applications from both inside and outside mathematics
and of using history? Do they improve the students' retention
of the mathematics and/or the retention of the
students in mathematics? What is their effect on
understanding, and the appreciation of mathematics both for
its internal beauty and its usefulness?

   17.What form or forms of proof are appropriate in
different contexts for student learning and how should they
be dealt with pedagogically?

   18.What algebra is appropriate as preparation for
post-secondary work? How is the answer affected by subject?
How is it affected by technology?


David Bressoud
Urs Kirchgraber
Ed Packel
Bill Barker
Ed Dubinsky
Werner Hartmann
Lisa Hefendehl-Hebeker
Wolfgang Henn
Reinhard Hoelzl
Deborah Hughes Hallett
Hans Niels Jahnke
Dan Kennedy
Heinz Klemenz
Colette Laborde
Hans-Christian Reichel
V. Frederick Rickey
Werner Schmidt
Inge Schwank
David Smith
Anita Solow
John Stillwell
David Tall
Bernd Wollring
------

http://www.math.macalstr.edu/~bressoud/

David Marius Bressoud

       DeWitt Wallace Professor of Mathematics
       Chair of the Department of Mathematics and Computer Science
       Ph.D., Temple University


------

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Jaime Carvalho e Silva
Departamento de Matematica
Universidade de Coimbra
Apartado 3008
3000 Coimbra
PORTUGAL
Phone(office): 351-39-7003199   (pbx):351-39-7003150         Fax: 351-39-32568
E-mail:jaimecs@mat.uc.pt
WWW home page:   http://www.mat.uc.pt/~jaimecs/
Portugal Cultural:  http://www.di.uminho.pt/WWWcontrib/cultura.html
----------
 A notre epoque pour l'ame de chaque theorie mathematique se battent le
demon de l'algebre abstraite et l'ange de la geometrie - H. Weyl
----------

Next Previous TOC Index
Date: Fri, 31 May 1996 16:32:43 LISBOA


Reply-To: sem@cc.fc.ul.pt
Originator: sem@cc.fc.ul.pt
Sender: sem@cc.fc.ul.pt
Precedence: bulk
From: jaimecs@mat.uc.pt
To: sem@cc.fc.ul.pt
Subject: Comissao de Acompanhamento do Programa de Matematica
X-Comment:  Educacao em Matematica




O Departamento do Ensino Secundario constituiu uma Comissao de
Acompanhamento do Programa de Matematica do Ensino Secundario
para apoiar a leccionacao do
programa ainda em vigor e preparar o lancamento do programa ajustado
que decorrera' no ano lectivo de 1997/98, atraves, nomeadamente, de:
- elaboracao de documentos-proposta para as areas criticas do Ensino da
Matematica,
- elaboracao de brochuras/materiais de apoio ao programa,
- realizacao de sessoes de formacao de delegados do 1o grupo.

Essa Comissao de Acompanhamento tera um "pivot central" para o qual
foram convidados os elementos que anteriormente constituiram a Equipa
Tecnica que preparou o Ajustamento (que aceitaram) e ainda
representantes da SPM, APM, SPE, SEM-SPCE assim como do IIE-Instituto de
Inovacao Educacional.

A primeira reuniao plenaria desta Comissao decorrera dia 12 de Junho
e o seu mandato prolonga-se ate' Dezembro de 1997.

Nesse sentido a Comissao solicita a todos os interessados que,
individualmente ou em grupo, lhe facam chegar sugestoes sobre
melhoria das Orientacoes de Gestao, assim como sugestoes de qual o
melhor modo de preparar a leccionacao do Ajustamento do Programa de
Matematica a entrar em vigor em Setembro de 1997, e ainda quais as
medidas de fundo necessarias para a disciplina de Matematica a
contemplar nos "documentos-proposta para as areas criticas do ensino da
matematica".

Informacoes actualizadas estarao disponiveis em:
http://www.mat.uc.pt/~jaimecs/indexem2ca.html




O "pivot central" da Comissao de Acompanhamento

Arselio Martins (Esc.Sec. Jose Estevao, Aveiro)
adam@ua.pt

Graziela Fonseca (Esc. Sec. Filipa de Vilhena, Porto)
rfon@grupo.bfe.pt

Jaime Carvalho e Silva (Departamento de Matematica,
Universidade de Coimba)
jaimecs@mat.uc.pt

Previous TOC Index
Date: Fri, 31 May 1996 21:08:38 LISBOA


Reply-To: sem@cc.fc.ul.pt
Originator: sem@cc.fc.ul.pt
Sender: sem@cc.fc.ul.pt
Precedence: bulk
From: jaimecs@mat.uc.pt
To: sem@cc.fc.ul.pt
Subject: Arquivo da lista SEM
X-Comment:  Educacao em Matematica


Encontra-se disponivel no endereco

http://www.mat.uc.pt/~jaimecs/arqsem/index.html

um arquivo completo da lista SEM, ordenado
por meses e titulos de mensagens,
para mais facil consulta.

Jaime Carvalho e Silva

Previous TOC Index


HTML file created by digester 2.0

Digester developed by: André C. van der Ham

Send bug reports, questions, etc. to: A.C.vanderHam@ET.TUDelft.NL