Reply-To: sem@cc.fc.ul.pt Originator: sem@cc.fc.ul.pt Sender: sem@cc.fc.ul.pt Precedence: bulkFrom: jaimecs@mat.uc.pt
X-Comment: Educacao em Matematica Esta' disponivel no endereco http://www.mat.uc.pt/~jaimecs/indexhspm.html a versao electronica (WWW) do texto "Para a Historia da Sociedade Portuguesa de Matematica" que contem a conferencia proferida pelo Prof. Doutor Jose' Morgado no encontro comemorativo dos 50 anos da Sociedade Portuguesa de Matematica, que decorreu em Lisboa de 12 a 14 de Dezembro de 1994. A conferencia foi editada como o n(o) 4 da coleccao "Textos de Historia e Metodologia da Matematica" do Departamento de Matematica da Universidade de Coimbra. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Jaime Carvalho e Silva Departamento de Matematica Universidade de Coimbra Apartado 3008 3000 Coimbra PORTUGAL Phone(office): 351-39-7003199 (pbx):351-39-7003150 Fax: 351-39-32568 E-mail:jaimecs@mat.uc.pt WWW home page: http://www.mat.uc.pt/~jaimecs/ Portugal Cultural: http://www.di.uminho.pt/WWWcontrib/cultura.html ---------- A notre epoque pour l'ame de chaque theorie mathematique se battent le demon de l'algebre abstraite et l'ange de la geometrie - H. Weyl ----------
Reply-To: sem@cc.fc.ul.pt Originator: sem@cc.fc.ul.pt Sender: sem@cc.fc.ul.pt Precedence: bulkFrom: jaimecs@mat.uc.pt
X-Comment: Educacao em Matematica Documento encontrado no "sitio" da pessoa abaixo indicada (onde alias ha' mais textos de interesse). Para reflexao e discussao. Jaime ------ Questions from the Oberwolfach conference on New Trends in the Teaching and Learning of Mathematics, 27 November through 1 December, 1995 The following research, curricular, and pedagogical questions arose in response to the presentations given at this conference. They represent some of the important issues and problems that the participants jointly agree should be studied. The list is far from complete and should not be interpreted as an attempt to put forth a research program or agenda. Neither is it claimed that these questions are original or of equal importance. We only hope that they will serve to stimulate workers in the field to obtain new results and to improve the learning of mathematics by students throughout the world. 1.What are appropriate methodologies for answering curricular and pedagogical questions? 2.Are learning theories transferable across cultural and subject matter boundaries? Can they be applied to different topics and different groups of students in different countries? 3.What are the different learning styles for mathematics that are prevalent among post-secondary students? How do these learning styles relate to various theories of learning? How immutable is the learning style of an individual student? 4.What are the differences between how mathematics is learned by experts and by novices of different kinds? 5.What do faculty and students mean by the word "understanding"? What is meant by "clarity"? What is the relationship between clarity and precision in the minds of students and faculty? 6.Do the tools of technology change students' understanding of mathematics, and if so how? For example: some people argue that learning geometry with a software package does not promote the same understanding of geometry as learning in a paper and pencil environment. How can we transform this claim into a research question and what methodology can be developed to investigate this question? 7.What are the student conceptions of the different notions of equality and approximate equality? How are these conceptions affected by technology? 8.What are the difficulties that students have with formal mathematical language such as the use of "for all," "there exists," two-level quantifiers, and negation, and with the relationship of formal mathematical language to everyday language? 9.In what ways is the concept of a solution to a differential equation difficult? What is the nature of that difficulty? In particular, what is the nature of the difficulties in understandingNsymbolically, graphically, and visuallyNwhat it means to be a solution to a differential equation or initial value problem? 10.What pedagogical strategies can be effective in helping students understand the systematic development of mathematical theories? 11.How can we most effectively teach students to use definitions as a mathematician does, and in particular to turn a definition into "an operative form"? 12.What is the relationship between time spent on mathematics outside of class and the level of student understanding? What pedagogical strategies are most effective in improving the quantity and quality of the time students spend on mathematics? 13.What course designs and pedagogical strategies are most effective in taking into account the wide range of abilities and backgrounds of the students? 14.What are the pedagogical advantages and disadvantages of the different ways in which technology can be used? Among these are visualization, the use of built-in mathematical tools, and programming. 15.How does class size affect learning? How is this affected by technology and cooperative learning? What group sizes in cooperative learning best support learning? 16.What are the advantages and disadvantages of using applications from both inside and outside mathematics and of using history? Do they improve the students' retention of the mathematics and/or the retention of the students in mathematics? What is their effect on understanding, and the appreciation of mathematics both for its internal beauty and its usefulness? 17.What form or forms of proof are appropriate in different contexts for student learning and how should they be dealt with pedagogically? 18.What algebra is appropriate as preparation for post-secondary work? How is the answer affected by subject? How is it affected by technology? David Bressoud Urs Kirchgraber Ed Packel Bill Barker Ed Dubinsky Werner Hartmann Lisa Hefendehl-Hebeker Wolfgang Henn Reinhard Hoelzl Deborah Hughes Hallett Hans Niels Jahnke Dan Kennedy Heinz Klemenz Colette Laborde Hans-Christian Reichel V. Frederick Rickey Werner Schmidt Inge Schwank David Smith Anita Solow John Stillwell David Tall Bernd Wollring ------ http://www.math.macalstr.edu/~bressoud/ David Marius Bressoud DeWitt Wallace Professor of Mathematics Chair of the Department of Mathematics and Computer Science Ph.D., Temple University ------ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Jaime Carvalho e Silva Departamento de Matematica Universidade de Coimbra Apartado 3008 3000 Coimbra PORTUGAL Phone(office): 351-39-7003199 (pbx):351-39-7003150 Fax: 351-39-32568 E-mail:jaimecs@mat.uc.pt WWW home page: http://www.mat.uc.pt/~jaimecs/ Portugal Cultural: http://www.di.uminho.pt/WWWcontrib/cultura.html ---------- A notre epoque pour l'ame de chaque theorie mathematique se battent le demon de l'algebre abstraite et l'ange de la geometrie - H. Weyl ----------
Reply-To: sem@cc.fc.ul.pt Originator: sem@cc.fc.ul.pt Sender: sem@cc.fc.ul.pt Precedence: bulkFrom: jaimecs@mat.uc.pt
X-Comment: Educacao em Matematica O Departamento do Ensino Secundario constituiu uma Comissao de Acompanhamento do Programa de Matematica do Ensino Secundario para apoiar a leccionacao do programa ainda em vigor e preparar o lancamento do programa ajustado que decorrera' no ano lectivo de 1997/98, atraves, nomeadamente, de: - elaboracao de documentos-proposta para as areas criticas do Ensino da Matematica, - elaboracao de brochuras/materiais de apoio ao programa, - realizacao de sessoes de formacao de delegados do 1o grupo. Essa Comissao de Acompanhamento tera um "pivot central" para o qual foram convidados os elementos que anteriormente constituiram a Equipa Tecnica que preparou o Ajustamento (que aceitaram) e ainda representantes da SPM, APM, SPE, SEM-SPCE assim como do IIE-Instituto de Inovacao Educacional. A primeira reuniao plenaria desta Comissao decorrera dia 12 de Junho e o seu mandato prolonga-se ate' Dezembro de 1997. Nesse sentido a Comissao solicita a todos os interessados que, individualmente ou em grupo, lhe facam chegar sugestoes sobre melhoria das Orientacoes de Gestao, assim como sugestoes de qual o melhor modo de preparar a leccionacao do Ajustamento do Programa de Matematica a entrar em vigor em Setembro de 1997, e ainda quais as medidas de fundo necessarias para a disciplina de Matematica a contemplar nos "documentos-proposta para as areas criticas do ensino da matematica". Informacoes actualizadas estarao disponiveis em: http://www.mat.uc.pt/~jaimecs/indexem2ca.html O "pivot central" da Comissao de Acompanhamento Arselio Martins (Esc.Sec. Jose Estevao, Aveiro) adam@ua.pt Graziela Fonseca (Esc. Sec. Filipa de Vilhena, Porto) rfon@grupo.bfe.pt Jaime Carvalho e Silva (Departamento de Matematica, Universidade de Coimba) jaimecs@mat.uc.pt
Reply-To: sem@cc.fc.ul.pt Originator: sem@cc.fc.ul.pt Sender: sem@cc.fc.ul.pt Precedence: bulkFrom: jaimecs@mat.uc.pt
X-Comment: Educacao em Matematica Encontra-se disponivel no endereco http://www.mat.uc.pt/~jaimecs/arqsem/index.html um arquivo completo da lista SEM, ordenado por meses e titulos de mensagens, para mais facil consulta. Jaime Carvalho e Silva
HTML file created by digester 2.0
Digester developed by: André C. van der Ham
Send bug reports, questions, etc. to: A.C.vanderHam@ET.TUDelft.NL