DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA

Álgebra Linear e Geometria Analítica I

Licenciatura em Matemática

Folha 3

Ano lectivo 2005/2006

- 27. Seja A uma matriz quadrada. Mostre que A não é invertível se
 - (a) tiver uma linha ou uma coluna nula;
 - (b) tiver uma linha (ou uma coluna) que é múltipla de outra.
- 28. Mostre que as seguintes matrizes quadradas são invertíveis.

(a)
$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{bmatrix}, \quad \text{(b)} \begin{bmatrix} 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{bmatrix}, \quad \text{(c)} \begin{bmatrix} 0 & 0 & \cdots & n \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 2 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{bmatrix}.$$

- 29. Prove que, se A comuta com B e esta é invertível, então A também comuta com B^{-1} .
- 30. Seja A uma matriz quadrada qualquer. Suponhamos que existe um número natural k tal que $A^k=0$ (matriz nula). Mostre que, então I-A é invertível tendo-se

$$(I-A)^{-1} = I + A + A^2 + \dots + A^{k-1}$$

- 31. Usando o exercício anterior, calcule $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} .$
- 32. Demonstre que a transposição de matrizes goza das seguintes propriedades:
 - (a) $(A^T)^T = A;$
 - (b) $(A+B)^T = A^T + B^T$;
 - (c) $(\alpha A)^T = \alpha A^T$, sendo α um escalar;
 - (d) $(AB)^T = B^T A^T$;
 - (e) $(A^k)^T = (A^T)^k$, sendo k um número natural;
 - (f) Se A for invertível, A^T também é, tendo-se $(A^T)^{-1} = (A^{-1})^T$.
- 33. Seja $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ uma matriz particionada em blocos. Mostre que

$$M^T = \left[\begin{array}{cc} A^T & C^T \\ B^T & D^T \end{array} \right].$$

- 34. Sejam $A \in B$ duas matrizes quadradas de ordem $n \in S$ uma matriz do tipo $n \times m$. Mostre que
 - (a) $A + A^T$ é simétrica (que sucede a $A A^T$?);
 - (b) $S^T S$ e $S S^T$ são simétricas;
 - (c) se A é simétrica então S^TAS é simétrica;
 - (d) se A e B forem simétricas então AB é simétrica se e só se A e B comutam;
 - (e) se A for simétrica e invertível então A^{-1} é também simétrica.
- 35. Seja x um vector-coluna.
 - (a) Verifique que o produto $x^T x$ é um número (ou matriz 1×1).
 - (b) Mostre que, se os elementos de x forem reais, então $x^Tx \ge 0$ e é 0 se e só se x = 0.
 - (c) Dê exemplos de vectores-coluna $x \neq 0$ com elementos complexos para os quais $x^Tx = 0$ e também exemplos em que $x^Tx < 0$.
 - (d) Mostre que se A for uma matriz real então $A^TA=0\Longrightarrow A=A^T=0.$
- 36. Uma matriz quadrada diz-se <u>ortogonal</u> se for invertível e a sua inversa coincidir com a sua transposta. Verifique que as seguintes matrizes reais são ortogonais:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad e \qquad \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \quad (\theta \in \mathbb{R}).$$

- 37. Prove que:
 - (a) O produto de duas matrizes ortogonais é ainda uma matriz ortogonal.
 - (b) A inversa de uma matriz ortogonal é ainda uma matriz ortogonal.
- 38. Escreva todas as matrizes de permutação 3×3 , incluindo P = I, e para cada uma identifique a sua inversa (que também é uma matriz de permutação).
- 39. Seja A uma matriz $n \times n$ e designemos por $v_1, v_2, ..., v_n$ as suas colunas.
 - (a) Prove que A é ortogonal se e só se, para i, j = 1, 2, ..., n, se tem $v_i^T v_j = \delta_{ij}$.
 - (b) Mostre que toda a matriz de permutação é ortogonal.
- 40. Uma matriz quadrada A diz-se <u>involutória</u> ou uma involução se $A^2 = I$. Mostre que cada uma das seguintes propriedades de uma matriz quadrada é consequência das outras duas: simétrica, ortogonal, involutória.
- 41. Determine os valores de α para os quais o sistema $\begin{cases} \alpha x + y = 1 \\ x + \alpha y = 1 \end{cases}.$
 - (a) não tem solução; (b) tem uma solução; (c) tem uma infinidade de soluções.