Matemática Numérica II

Ano Lectivo 2006/07

Trabalho 3

Data de recepção: 18/10/2006 Data de entrega: 02/11/2006

- 1. (a) Suponha que pretende aproximar uma matriz Hessiana $\nabla^2 f(x)$, $n \times n$, podendo calcular o gradiente ∇f em pontos à sua escolha. Como aproximaria a matriz Hessiana? Qual a ordem de precisão? Tem garantia de que a aproximação calculada constituiria uma matriz simétrica? E se não, como poderia calcular uma aproximação simétrica?
 - (b) Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(x_1, x_2) = x_1^4 + (x_1 + x_2)^2 + (e^{x_2} - 1)^2.$$

Tente verificar a ordem de precisão da aproximação referida no ponto $\begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}}$.

2. Considere a fórmula do ponto médio

$$I_0(f) = (b-a)f\left(\frac{a+b}{2}\right).$$

(a) Prove que se $f \in C^2[a,b]$ então o erro da fórmula do ponto médio pode ser expresso na forma

$$E_0(f) = \frac{h^3}{3}f''(\xi)$$
 com $\xi \in (a, b)$.

Sugestão: utilize um raciocínio semelhante ao aplicado na análise do erro da fórmula de Simpson.

- (b) Qual é a ordem de precisão da fórmula do ponto médio? E o seu grau de exactidão?
- 3. Considere $w_n(x) = (x x_0)(x x_1) \cdots (x x_n)$. Mostre que $I_n(w_n^2) = 0$ e que $\int_a^b w_n(x)^2 dx > 0$. Retire, daqui, a conclusão de que 2n + 1 é o grau máximo que uma fórmula de quadratura interpolatória pode atingir.

4. Seja $a \le x_0 < x_1 < \dots < x_n \le b$ uma partição do intervalo [a, b]. Prove que existem números reais $\gamma_0, \gamma_1, \dots, \gamma_n$ tais que

$$\sum_{j=0}^{n} \gamma_j p(x_j) = \int_a^b p(x) dx$$

para todo o polinómio $p \in \mathbb{P}_n$. Sugestão:

- (a) Mostre que a tese é válida para os polinómios $1, x, x^2, \dots, x^n$, utilizando o que sabe sobre a matriz de Vandermonde.
- (b) Mostre que a tese é válida para qualquer polinómio $p \in \mathbb{P}_n$ recorrendo à alínea anterior.
- 5. Copie, da página da disciplina para a sua área de trabalho, as m-files disponíveis para integração numérica de uma função real de duas variáveis reais.
 - (a) Explique, detalhadamente, as instruções da função integrar_2D, identificando as fórmulas de quadratura e a forma como estão a ser aplicadas.
 - (b) Implemente uma nova versão de integrar_2D "trocando" as fórmulas de quadratura.
 - (c) Teste ambas as versões para os exemplos incluídos em funcao.m.