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The nonparametric density estimation problem

The Parzen-Rosenblatt kernel density estimator

Cross-validation and plug-in methods for bandwidth selection

Combining cross-validation and plug-in methods

(based on a recent joint work with J.E. Chacén, Universidad de

Extremadura, Spain)

This is in order to obtain a data-based bandwidth selector that
presents an overall good performance for a large set of underlying

densities.
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Nonparametric density estimation
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Combining PI&CV
References

forall —oco < a < b < +00.

O We want to estimate f based on the previous observations.

O The goal in nonparametric density estimation is to estimate f
making only minimal assumptions about f.
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O Exploring data is one of the goals of nonparametric density

estimation.
O Hidalgo Stamp Data: thickness of 485 postage stamps that were

printed over a long time in Mexico during the 19th century.
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O The idea is to gain insights into the number of different types of
papers that were used to print the postage stamps.
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O In this talk, we will restrict our attention to another well known
density estimator introduced by Rosenblatt (1956) and Parzen
(1962): the kernel density estimator.

0 The motivation given by Rosenblatt (1956) for this density
estimator is based on the fact

f(x) = F'(x)

where the cumulative distribution function F' can be estimated by
the empirical distribution function given by

with

1 n
Fy(z) =~ > oo (X0),
1=1

Ia(y) = {

ifyc A
if y ¢ A.
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Kernel density estimation

Menpe ek O If his a small positive number we could expect that
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> estimator o o
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Data-based 2h
bandwidth selectors
CV bandwidth N F.(x+h)— F,(x —h)
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Estimating ¢, 2h
Multistage PI 1 n 1
bandwidth L = _[ (X)
Combining PI&CV TN E 2% Jx—h,x+h]\ <X
Combining PI&CV =1
References 1 n X
X — 1
- KO
nh Z h ’

where
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O The Parzen-Rosenblatt kernel estimator is obtained by replacing

Ky by a general symmetric density function K:

where:

— h = h,,, the bandwidth or smoothing parameter, is a sequence
of strictly positive real numbers converging to zero as n tends

to infinity;

— K, the kernel, is a bounded and symmetric density function.

O Contrary to the histogram estimator, the Parzen-Rosenblatt
estimator gives regular estimates for f if we take for K a regular

density function.
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Kernel density estimation

dNeOnns?fyranl?ﬁ:iaiaon O The choice of the bandwidth is a crucial issue for kernel density
Kernel density estimation.

[> estimator

The role of h . . .

Data-based 0 Kernel density estimates for the Hidalgo Stamp Data (n=485):
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K(x) = (27)_1/26_“72/2
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The role played by h

Nonparametric O For the mean integrated square error

density estimation

K | densit
MISE(f; n, h) / (@) — f(2)}2dz,
> The role of h

Data-based we have

bandwidth selectors
CV bandwidth

PI bandwidth MISE( f;n, h)

Estimating v,

pandwiden = / Var fy,(z) dz + / (Efy(2) — f(z)}?da

Combining PI&CV

Combining PI&CV h4
References /K2 du _l_ Z UzK(U)du / f//(x)Zd:C

O If h is too small we obtain an estimator with a small bias but with
a large variability.

O If A is too large we obtain an estimator with a large bias but with a
small variability.
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0 Choosing the bandwidth corresponds to balancing bias and

variance.
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undersmoothing
small h
small bias but large variability
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0 Choosing the bandwidth corresponds to balancing bias and

variance.
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large h
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0 The main challenge
smoothing to do.

0.4

0.3

0.2

0.1

0.0

in smoothing is to determine how much

n = 1000 and h = 0.36

almost right

[0 The choice of the kernel is not so relevant to the estimator

behaviour.
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O Under general conditions on the kernel and on the underlying
density function, for each n € N there exists an optimal bandwidth
havitse = haise(n; f) in the sense that

MISE(f; n, hMISE) < MISE(f; n, h), for all h > 0.
O But hppsg depends on the unknown density f ...

O We are interested in methods for choosing h that are based on the
observations X1,..., X,

h=hX1,..., Xn),

and satisfy
h(X1,...,Xn) =~ haise,

for a large classe of densities.
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Cross-validation bandwidth selection

Nonparametric O For each h > 0, we start by considering an unbiased estimator of
density estimation MISE(f, n’ h) . R(f), given by

Kernel density
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Data-based R(K) 1 1

bandwidth selectors CV(h) — + Z(%K}L * Kh — 2Kh)(XZ — X]))
> CV bandwidth nh n(n — 1) vy

Pl bandwidth

f,,sﬁ'l::’tzgf o and we take for h the value hcy the minimises CV (h).

oy IS (Rudemo, 1982; Bowman, 1984)

Combining PI&CV
References

Under some regularity conditions on f and K we have

hev 1=0, (n—1/10) .
hvise

(Hall, 1983; Hall & Marron, 1987)
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Plug-in bandwidth selection

Nonparametric 0 The plug-in method is based on a simple idea that goes back to
density estimation WOOdrOOfe (1970)

Kernel density
estimator

Lhe role of 1 0 We start with an asymptotic approximation hg for the optimal

bandwidth selectors : .
CV bandwidth bandwidth hMISE'

> Pl bandwidth - —1/5 _—1/5
Estimating - ho o Clel n

Multistage Pl
bandwidth where

Combining PI&CV Cx = R(K)1/5 (f u2K(u)du) —2/5

Combining PI&CV
References a nd

i = [ 1@ @)da, T=0.2.4,...
O The plug-in bandwidth selector is obtained by replacing the

unknown quantities in hg by consistent estimators:

7 7—1/5 _—1/5
hpr = ciib, OnY
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O A class of kernel estimators of 1, was introduced by Hall and
Marron (1987a, 1991) and Jones and Sheather (1991):

1 <,
dnlo) = 5 UK - X)),
i,j=1

where g is a new bandwidth and U is a bounded, symmetric and
r-times differentiable kernel.

O For U = ¢, the bandwidth that minimises the asymptotic mean
square error of 1,.(g) is given by

N\ /(r+3) .
gor = (2|¢(T)(O)H¢r+2\ 1) n 1/ (r+3),

O In the case of the estimation of )4, this bandwidth depends
(again) on the unknown quantity ¢!
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O In order to estimate 14 we have then the following schema:

to estimate we consider we need
4 U4(Go.4) — g
Ve V6 (d0.6) — g
g Us(Go.g) — Y10
Vat2(e—1) Yaro1)(Goarae—1) —  Yato
where Lr43)
Gor = (260 Oldria| 1) T O,
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0 The usual strategy to stop this cyclic process, is to use a
parametric estimator of 14,9 based on some parametric reference
distribution family.

O The standard choice for the reference distribution family is the
normal or Gaussian family:

flz) = (2mo) Y22/ (207,

O In this case, 1¥449¢ is estimated by

PR, = ¢(4+20(0)(262)~(6+20/2,

where ¢ denotes any scale estimate.
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NR
2pél—i—%

D

9o,4+2(¢—1)
90,4-+2(¢—2)

90,44+2(£—3)

Jo.4

NN TN TN

1;4+2(e—1)
1&4+2(£—2)

@24+2(£—3)

0 For a fixed £ € {1,2,...} the /-stage estimator of 14 is:

~ gy
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0 Depending on the number £ € {1,2,...} of considered pilot stages
of estimation we get different estimators 14y of 4.

O The associated /-stage plug-in bandwidth selector for the kernel
density estimator is given by

hPIe = CK¢_1/5 —1/5

If f has bounded derivatives up to order 4 + 2/ then

hp1s _
L 1=0 o ’
hnvisk p ()

with « =2/7 for { =1 and a« = 5/14 for all ¢ > 2.
(CT, 2003)

PhD Program UC|UP February 18, 2011 — 20



Two-stage plug-in bandwidth selector

Nonparametric
density estimation

Kernel density
estimator

The role of h
Data-based
bandwidth selectors

CV bandwidth
Pl bandwidth

Estimating v,

Multistage Pl
> bandwidth

Combining PI&CV
Combining PI&CV
References

0 For the standard choice ¢ = 2 we have:

NR

doe
/
Goa

Vo

Py |~ Py

0 The associated two-stage plug-in bandwidth selector is given by

hp12 = ck

7—1/5_-1/5
42 N
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Finite sample behaviour
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Finite sample behaviour
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From a finite-sample point of view the performance of iLPLg
strongly depends on the considered number of stages.

For strongly skewed or asymmetric multimodal densities the
standard choice ¢ = 2 gives poor results.

The natural question that arises from the previous considerations
IS:

How can we choose the number of pilot stages £7
This is an old question posed by Park and Marron (1992).

In order to answer this question, the idea developed by Chacén and
CT (2008) was to combine plug-in and cross-validation methods.
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0 We started by fixing minimum and a maximum number of pilot
stages

L and L

and by choosing a stage £ among the set of possible pilot stages

< ={L,L+1,...,L}

O This is equivalent to select one of the bandwidths

7 7—=1/5 —1/5
hPI,E = CK¢47£/ n / ,é c Z.

O Recall that each one of these bandwidths has good asymptotic
properties.
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Combining plug-in and cross-validation procedures

Nonparametric. O In order to select one of the previous multistage plug-in

density estimation ] . ] ] ] ]
Kernel density bandwidths we consider a weighted version of the cross-validation
estimator

The role of A criterion function given by

Data-based

bandwidth selectors R(K)

CV bandwidth ’y -1

PI bandwidth CV,(h) = s + ] E ("= Ky * K — 2K,)(X; — Xj),
Estimating ¢, n n(n o ) 7,75

Multistage Pl J

bandwidth

Combining PI1&CV for some 0 < v < 1 that needs to be fixed by the user.

> Combining PI&CV

References

O Finally, we take the bandwidth

7 _ —1/5_—1/5
hPI,E = CK%)@ n

where ) )
¢ = argmin,c xCV,(hp1s).
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If f has bounded derivatives up to order 4 + 2L and

o] > [Uaise(op)|, forall £=1,2,....L, (1)

then

AN

hPIé
L 1=0 —Q
hmise p ()

with « =2/7 for L=1and o =5/14 for L. > 2.
(Chacén & CT, 2008)

0 Condition (1) is not very restrictive due to the smoothness of the

normal distribution.

O This result justifies the recommendation of using L = 2.
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Proof:

O From the definite-positivity property of the class of gaussian based
kernels used in the multistage estimation process one can prove

that

where

QL,Z — {iLPI L

< ;LPI_

==

<..

< hprri1 < hPI,L} :

O The conclusion follows easily from the asymptotic behaviour of
hPIL and hpIL, since for a sample in QLL we have

A

hPI,Z

hMISE

— 1<

A

h

PL4(L)

hMISE

—1<

A

hp1,L

hMISE

— 1.
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0 The boxplots show that a larger value for L is recommended

especially for hard-to-estimate densities.

The new bandwidth szug is quite robust against the choice of L

whenever a sufficiently large value is taken for L.

We decide to take . = 30.

Regarding the choice of v, small values of v are more appropriate
for easy-to-estimate densities, whereas large values of v are more
appropriate for hard-to-estimate densities.

In order to find a compromise between these two situations we
decide to take v = 0.6.

We expect to obtain a new data-based bandwidth selector that
presents a good overall performance for a wide range of density
features.
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Kernel density estimate for the Hidalgo Stamp Data
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O From this plot we can identify seven modes ... seven different

types of paper were used (probably).
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