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Definition of IG
Vanishing ideals over graphs

I G is a simple graph without isolated vertices.

I VG = {1, 2, . . . , n}.
I K a finite field of cardinality q.

I K [tij | {i , j} ∈ EG ] = K [EG ].

I Let IG be the ideal generated by the polynomials

f hom. and f (tij 7→ uiuj) = 0, ∀u1,...,un∈K∗

[Renteŕıa, Simis, Villarreal, 2011]



Example [Using Macaulay2]

Generators of IG

f (tij 7→ uiuj) = 0, ∀u1,...,un∈K∗

IG has the following
minimal generating set:
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56 − tq−1
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I t13t25 − t12t35, t14t35 − t13t45, t14t25 − t12t45

I ta12t
b
25 − ta13t

b
35, ta12t

b
25 − ta14t

b
45 with a + b ≡ 0 (mod q − 1)

I ta12t
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13t

c
14 − ta25t
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35t

c
45, with a + b + c ≡ 0 (mod q − 1).

(Can assume 0 ≤ a, b, c ≤ q − 2.)



Binomials in IG
Caracterization of binomials

Notation:

Given α = (α{i ,j} | {i ,j}∈EG),
α{i ,j} ∈ N, denote:

tα =
∏

t
α{i ,j}
ij ·
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Lemma
Given α, β multi-indices, such that tα − tβ is homogeneous,

tα − tβ ∈ IG ⇐⇒
∑

i∈NG (v)

α{v ,i} ≡
∑

i∈NG (v)

β{v ,i} mod q−1, ∀v∈VG

[N., Vaz Pinto, 2014]



Properties of IG
in [Renteŕıa, Simis, Villarreal, 2011]

I IG is a radical, binomial, graded ideal of K [EG ].

I Denoting s = |EG | = dimK [EG ],

{
tq−1
ij − tq−1

12 |{i ,j}∈EG\{1,2}
}
⊂ IG

dimK [EG ]/IG = dimK [EG ]− (s − 1) = 1.



Hilbert Function
Index of Regularity

I Recall:

Hilbert function: ϕ(n) = dim (K [EG ]/IG )n , n ≥ 0.

dimR = d ⇐⇒ the Hilbert function of R is
polynomial of degree d − 1.

I Since dimK [EG ]/IG = 1 the Hilbert function of K [EG ]/IG ,
becomes constant for n ≥ r , for some r (index regularity).

I For the earlier example taking, say, q = 5:

ϕ(n) = (1, 7, 25, 65, 116, 170, 216, 240, 252, 256, 256, . . .)



Regularity of a graph
Main goal

I Define the regularity of a graph as:

regG = index of regularity of K [EG ]/IG

I Question:

Can we relate regG with a invariant of G?



Regularity of a graph
Some initial results

I reg Ka,b = (max {a, b} − 1)(q − 2)
[González, Renteŕıa, 2008]

I reg C2k = (k − 1)(q − 2)
[N., Vaz Pinto, Villarreal, 2015]

I G = tree or C2k+1, regG = (s − 1)(q − 2);
[Sarmiento, Vaz Pinto, Villarreal, 2011]



Computing the regularity
Artinian Reduction

I Let tk` ∈ EG . Then dimK [EG ]/(IG , tk`) = 0 and the
Hilbert Function of this quotient is zero iff n ≥ r + 1.

In the earlier example,

ϕ(n) = (1, 6, 18, 40, 51, 54, 46, 24, 12, 4, 0, ...)

n=10

I Hence regG ≥ d ⇐⇒ (IG , tk`)d 6= K [EG ]d

regG ≤ d ⇐⇒ (IG , tk`)d+1 = K [EG ]d+1



Worked Example
regG ≥ 3(q − 2)
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I Proof:

◦ Consider tα = tq−2

12 tq−2

13 tq−2

14 .

◦ Suppose that tα ∈ (IG , t56).

Then: ∃ tβ, s. t:

• t56 | tβ ⇐⇒ β{5,6} > 0,

• tα − tβ ∈ IG ,

• tα − tβ is homogeneous.

◦ Then β{1,2}+ β{2,5} ≥ q − 2,
β{1,3}+ β{3,5} ≥ q − 2,
β{1,4}+ β{4,5} ≥ q − 2,

β{5,6} > 0

 =⇒ deg tβ > 3(q − 2). �



A general result
Edge set decompositions

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH2.
[Macchia, N., Vaz Pinto, Villarreal]

Proof:
◦ Fix some tk` ∈ EH1 ∩ EH2 .

◦ Let tα ∈ K [EG ] be of degree regH1 + regH2 + 1.

◦ Write tα = tβtγ with tβ ∈ K [EH1 ] and tγ ∈ K [EH2 ].

◦ W.l.o.g. deg(tβ) ≥ regH1 + 1.

◦ Then tβ ∈ (IH1 , tk`) ⊂ (IG , tk`).

◦ Hence tα = tβtγ ∈ (IG , tk`). �



Worked Example
regG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.
[Macchia, N., Vaz Pinto, Villarreal]

H1

C1 H2

C2

1

2

6
3 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �



Worked Example
regG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.
[Macchia, N., Vaz Pinto, Villarreal]

H1C1

H2

C2

1

2

6
3 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �



Worked Example
regG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.
[Macchia, N., Vaz Pinto, Villarreal]

H1

C1

H2

C2

1

2

6
3 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �



Worked Example
regG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.
[Macchia, N., Vaz Pinto, Villarreal]

H1C1 H2

C2

1

2

6
3 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �



Worked Example
regG ≤ 3(q − 2)

I Lemma: If H1,H2 are subgraphs of G s.t. EG = EH1 ∪ EH2

and EH1 ∩ EH2 6= ∅ then regG ≤ regH1 + regH1.
[Macchia, N., Vaz Pinto, Villarreal]

H1C1 H2

C2

1

2

6
3 5

4

I regG ≤ regH1 + regH2 ≤ regC1 + regC2 + (q − 2).

I Hence regG ≤ 3(q − 2). �



2-connected graphs
Block decomposition

I Recall: A graph is 2-(vertex)-connected if |VG | ≥ 3 and,
for every v ∈ VG , the graph VG − v is connected.

I Any graph decomposes into a set of subgraphs (blocks)
consisting of either isolated vertices; single edges or
maximal 2-connected subgraphs.

I Theorem: If G is bipartite and H1, . . . ,Hm are its blocks:

regG =
∑

regHi + (m − 1)(q − 2).
[N., Vaz Pinto, Villarreal, 2014]

Proof: Key idea IG ←→ IH1 + · · ·+ IHm . �



Ear decompositions
Whitney’s theorem

I [Whitney’s theorem] G is 2-connected iff it is endowed
with an (open) ear decomposition starting from any cycle.
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Ear decompositions
Nesting ears

I Definition: A nested ear decomposition of a graph
G = P0 ∪ P1 ∪ · · · ∪ Pr is an ear decomposition of G
such that:

1 ∀ i>0, the endpoints of Pi belong to Pj , for some j < i .

2 If two paths are nested in Pj , their endpoints determine
open intervals in Pj which are either nested or disjoint.

[Eppstein, 1992]



Ear decompositions
Nesting ears



Regularity
bipartite nested open-ear decompositions

Theorem (N.)

Let G be a bipartite graph endowed with a nested ear
decomposition P0, . . . ,Pr starting from a vertex P0. Let ε
denote the number of even length paths in P1, . . . ,Pr . Then,

regG = n+ε−3
2

(q − 2).

Corollary

In a nested ear decomposition of a bipartite graph, starting
from a vertex, the number of even length ears is constant.



Within the proof
Bipartite ear modifications

I If v1, v2 ∈ VG are two degree 2 adjacent vertices then the
smoothing of v1 and v2 produces a graph H such that

regH = regG − (q − 2).

G H



Within the proof
Vertex identification

I Proposition: If H is obtained from G by identifying two
nonadjacent vertices, then regG ≥ regH .
[Macchia, N., Vaz Pinto, Villarreal]

G H
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