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Abstract

In the current Information Society the organisation of the information is key to ensure the infor-
mation safekeeping and retrieval. It is of utmost importance that each and every user can find the
information he/she is looking for, presented in such a way that best fit his/her needs. Geometry is
no exception, the servers of geometric information should be easily and successfully searchable.
By classifying the information contained in the servers of geometric information accordingly to
several taxonomies, it will be possible to begin applying filters to the users’ queries, adjusting
them to the perceived user’s needs. Having that in mind, the introduction of an adaptive filtering
mechanisms into servers of geometric information is considered.

Different taxonomies for different goals are presented. For educational purposes, a classi-
fication like Common Core Standards should be considered, but other considerations like the
complexity of the construction, the provability, by a geometry automatic theorem prover, of a
given conjecture and the readability of the resulting proof, should be taken into account. For
research in automated deduction purposes, other issues must be considered, e.g. efficiency and
applicability of the available automated provers.

To validate the usefulness of these taxonomies it will be used, as a case study, their applica-
tion to a server of geometric information. In particular, Thousands of Geometric problems for
geometric Theorem Provers will be considered. TGTP is a Web-based repository of geometric
problems being developed to support the testing and evaluation of geometric automated theorem
proving systems. Using this system it will be analyse how the taxonomies could help to tailor
the search for information adapted to each and every geometer.

1The Version of Record of this manuscript has been published and is available in Journal of Symbolic Computation,
Volume 97, March–April 2020, Pages 31-55. https://doi.org/10.1016/j.jsc.2018.12.004
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1. Introduction

In the area of geometry there are now a large number of computational tools that can be used
to perform many different tasks, dynamic geometry systems (DGS), computer algebra systems
(CAS), geometry automatic theorem provers (GATP), among others (Quaresma, 2017). All these
tools are clients of geometric information—information that can be found on repositories of
geometric knowledge such as: Intergeo;2 TGTP;3 GeoGebra Materials,4 among others.

It can be claimed that the usefulness of such servers of geometric information, is directly
related with the possibility of an easy retrieval of the information a given user is looking for.
Therefore the information should be organised in such a way that it will be possible the design
of filters adjusted to the user’s preferences.

The organisation of information through the taxonomy concept allows to allocate, retrieve
and communicate information within a system in a logical way, that is, in classes, subclasses, sub-
subclasses, and so on. Each of these levels aggregate information about the existing documents
in the repository. An advantage of this form of access is the user’s guarantee of best selection of
searched term, since the classes contain mutually exclusive topics.

Different taxonomies would answer to different users’ needs. The problems in the servers
must be classified in such a way that, in response to a client query, only the problems in the
user’s level and/or interest and/or language are returned.

If the organisation of a large field of knowledge like mathematics are to be considered, tax-
onomies like Mathematics Subject Classification (MSC)5 can be found. In this paper the much
narrower scope of constructive geometry is addressed, i.e. geometric constructions made by dy-
namic geometry systems and geometric problems, eventually with an associated construction,
manipulated by geometric automated theorem provers.

The term “geometric problem” is here used in a general way, it is used in relation to the case
study, i.e. taxonomies for TGTP. There was and there is an important debate on the distinction
between problems and theorems, some scholars consider that they should be distinguished, others
consider that problems can be reduced to theorems, others consider that theorems can be reduced
to problems. This debate is very old and continues today: see for example Morrow (1992);
Heath (1908); Martin (1998); Hartshorne (2000); Sidoli (2018). However, this paper is a case
study about taxonomies for TGTP, therefore theorems, their proofs, construction problems and
their solutions are considered from a single and uniform taxonomic point of view.

For researchers in geometric automated theorem proving it will be interesting to look for:
conjectures not yet proved by GATPs; theorems with readable proofs; theorems proved effi-
ciently; etc. (Chou et al., 1996a,b; Janičić et al., 2012; Jiang and Zhang, 2012; Stojanović et al.,
2011; Wang and Su, 2015).
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pierluigi.graziani@uniurb.it (Pierluigi Graziani), nmsbaeta@gmail.com (Nuno Baeta)

2Interoperable Interactive Geometry for Europe: http://i2geo.net/
3Thousand of Geometric problems for geometric Theorem Provers: http://hilbert.mat.uc.pt/TGTP/
4GeoGebra Materials: https://www.geogebra.org/materials/
5http://msc2010.org/, the MSC2020 revision is under way
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If a taxonomy based on those criteria would please the researchers in automatic geometric
reasoning, it might not be completely suitable for the educational community. When design-
ing filters for educational purposes, education levels (International Standard Classification of
Education (UNESCO, 2012)), levels of geometry reasoning (Usiskin, 1982) and also personal
preferences must be considered. Adding to other approaches, a new approach to geometrogra-
phy (Lemoine, 1902; Mackay, 1893; Pinheiro, 1974), is considered, taking into account a very
interesting point of view on geometrical constructions classification. Applying geometrography’s
principles to the dynamic geometry systems, it is possible to (re)define the concepts of coefficient
of simplicity and a new coefficient of freedom to measure the complexity and dynamics of a DGS
construction.

With reference to the paper’s case study, Thousands of Geometric problems for geomet-
ric Theorem Provers (TGTP) is a Web-based repository of geometric problems with integrated
GATPs. It is being developed to support the testing and evaluation of geometric automated the-
orem proving systems (Quaresma, 2011). The list of problems in TGTP can be explored with
some powerful textual and geometric search mechanisms (Haralambous and Quaresma, 2018),
but, if adapting the search to each user’s needs is pursued, it is necessary to introduce a clas-
sification for each TGTP problem, stating their characteristics, in face of one or more intended
users’ expectations.

Originally TGTP was aimed to the geometric automatic theorem provers community, as said
above to support the testing and evaluation of geometric automated theorem proving systems, so
its expected audience is mostly researchers whose background is mathematics and/or computer
science and whose research focus is automatic reasoning, formalisation of mathematics, artificial
intelligence, among others. The interest in proofs and proving in mathematics education and
the application of GATPs in mathematics education (Janičić and Quaresma, 2007; Hanna and
de Villiers, 2012; Quaresma and Santos, 2016) opens a new community of potential users of
TGTP (Quaresma et al., 2018a).

The classification of each TGTP problem at a given educational level, should be possible and
not very difficult. The classification accordingly to a level of geometry reasoning would be more
difficult. Nevertheless such classifications are useful in any educational environment, e.g. when
linking with educational platforms like the Web Geometry Laboratory (WGL) (Quaresma et al.,
2018b; Santos et al., 2018).

The current search mechanisms in TGTP allow its users to search for a given specific prob-
lem, or set of problems, e.g. look for Ceva’s theorem, look for all problems with the word
“circumcircle” in its description, look for problems containing some given geometric configu-
ration (Quaresma, 2011; Haralambous and Quaresma, 2018). The introduction of taxonomies
in TGTP can add a filtering step that, together with the text and geometric search mechanisms,
will allow to tailor TGTP’s usefulness to each user’s needs. For example, a secondary school
teacher preparing a class about circumcenter centre would choose filters: CCS classes, CO.A.1
and C.A.3; construction complexity, simple; proofs in education, verification: good, filtering the
TGTP database, or any other geometry knowledge repository, in such a way that a good set of
examples could be browsed and choose as teaching materials.

An interesting development of this research is the application of the taxonomies presented
in this paper, to proof assistant area. We do not consider this application here, however we give
some suggestions about it (see Section 2.2).

Overview of the paper.. The paper is organised as follows: first, in §2, taxonomies for GATP
research and taxonomies for education will be discussed. In §3, the application of taxonomies to
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TGTP will be analysed providing some examples, also a new approach to Geometrography will
be presented. In §4, conclusions are drawn and future work will be discussed.

2. Taxonomies

Taxonomies are a crucial components for any application of information retrieval, natural
language processing and knowledge management. The design of an hierarchical faceted meta-
data system, allow users to browse the information accordingly to multiple categories simulta-
neously (Hearst, 2009). Designing such a faceted system to geometry will allow geometers to
browse through the repositories of geometric knowledge in a more fulfilling way. For example
an automatic deduction researcher will look for provability, for the methods used, for the read-
ability of the proof produced and for efficiency measures. An educator will look for a given
class of geometric problems, for the construction complexity and for the validation of geometric
conjectures, among others.

Mathematics Subject Classification. Using the Mathematics Subject Classification (MSC) the
following classes can be considered:

Geometry generic classes

51M05 Euclidean geometries (general) and generalisations

51N10 Affine analytic geometry

51N15 Projective analytic geometry

51N20 Euclidean analytic geometry

51N25 Analytic geometry with other transformation groups

68U05 Computer graphics; computational geometry

70G55 Algebraic geometry methods

GATP geometric automated theorem proving

03B35 Mechanisation of proofs and logical operations

68T15 Theorem proving (deduction, resolution, etc.)

70G55 Algebraic geometry methods

94B27 Geometric methods (including applications of algebraic geometry)

97G70 Analytic geometry. Vector algebra

97E50 Reasoning and proving in the mathematics classroom

Education generic and deductive reasoning in education

97-XX Mathematics education

97E50 Reasoning and proving in the mathematics classroom

97Uxx Educational material and media, educational technology

68Q32 Computational learning theory

68T05 Learning and adaptive systems
4



68T35 Languages and software systems (knowledge-based systems, expert systems, etc.)

97U50 Computer assisted instruction; e-learning

Although this classification is too coarse to allow a fine grade classification adaptable to the
users needs, it is nevertheless useful as a way to add a level of meta information to the geometric
elements in the repositories of geometric information.

2.1. Taxonomies for GATP Research
For more than half a century, mechanical theorem proving in geometry is an active research

topic (Chou et al., 1994; Chou and Gao, 2001; Jiang and Zhang, 2012). This research has
led to three types of GATPs: synthetic, semi-synthetic and algebraic. Synthetic GATPs have
proven to be impractical for non-trivial geometry theorems (Gelernter, 1995; Coelho and Pereira,
1986). As for the semi-synthetic ones, such as the area method and the full-angle method devel-
oped by Chou, Gao and Zhang, they are capable of proving many theorems, providing readable
proofs (Chou et al., 1996a,b; Janičić et al., 2012). Algebraic methods, such as the Wu’s method
and the Gröbner method, have been used to prove many theorems, some of them non-trivial,
within seconds, but generate very hard to read proofs (Chou et al., 1994).

It is then clear that producing fast, short and readable proofs remains a challenge to re-
searchers in the field of automated theorem proving (Boutry et al., 2014; Chou et al., 1994, 2000;
Jiang and Zhang, 2012; Pąk, 2015; Stojanović et al., 2011; Wang and Su, 2015). As such, a tax-
onomy for GATP research must deal with the following classes: GATP provability, readability
and efficiency.

GATP Provability. Given a conjecture and n GATPs, if the conjecture is successfully proved by
p of those GATPs, the ratio p/n provides a simple method to measure this criteria.

Apart this numerical criteria one might consider a classification of the geometric conjec-
tures accordingly to the different methods. If synthetic methods are to be considered, relying in
heuristics, most of the implementations are only able to solve a certain kind of problems. Also
the algebraic methods and the semi-synthetic methods have their limitations, defining classes of
problems they can solve (Chou and Gao, 2001).

Readability. As far as the authors of this paper know, there are two proposals to measure the
readability of a proof.

Chou et al. (1994, p.442) proposed a way to measure how difficult a formal proof is (using
the area method). To measure this criteria the triple (time, maxt, lems) is used, where:

• time is the time needed to complete the proof;

• maxt is the number of terms of the maximal polynomial6 occurring in the proof;

• lems is the number of elimination lemmas used to eliminate points from geometry quanti-
ties. In other words, lems is the number of deduction steps in the proof.

Using this criteria and analysing all the proofs done by the GATP they have implemented,
they reach to the following thresholds7 of proof readability.

6The polynomial of highest degree, as clear by the examples presented in the paper by Chou et al. 1994.
7Accordingly to their data: 66.9% of the proofs has maxt ≤ 5, 42.6% has lems ≤ 10 and 73.2% has lems ≤ 20.
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• According to Chou et al. (1994, p.442) a formal proof, done using the area method, is
considered readable if one of the following conditions holds:

– the maximal term in the proof is less than or equal to 5;

– the number of deduction steps of the proof is less than or equal to 10;

– the maximal term in the proof is less than or equal to 10 and the deduction step is
less than or equal to 20.

• The de Bruijn factor (de Bruijn, 1994; Wiedijk, 2000), the quotient of the size of corre-
sponding informal proof and the size of the formal proof, could also be used as a measure
of readability. Using this quotient a proof can be considered readable if the value is less
than or equal to 2 (the formal proof is at most twice as larger then a given informal proof).

In both cases it is somehow assumed, readability by experts, i.e. a given geometer, expert
in the language of the prover that produced the proof. If non-experts, from the geometer not
familiarised with the prover, to the complete novice on the area of the automatic deduction, are
to be considered the need of synthetic proofs with natural language descriptions is felt. There are
some recent approaches to this, there are even visual approaches, where the formal proof can also
followed by a correspondent visual manipulation (Stojanović et al., 2011; Ye et al., 2010a,b).

The question here is how to classify the problems against this new criteria. The following
schema may be considered:

1. no readable proof;
2. non-synthetic proof (i.e. a proof without a correspondent geometric description, e.g. alge-

braic methods);
3. semi-synthetic proof with a corresponding prover’s language rendering;
4. (semi-)synthetic proof with a corresponding natural language rendering;
5. (semi-)synthetic proof with a corresponding natural language and visual rendering;

The Chou’s conditions allows to define a threshold for area method semi-synthetic proofs.
Along this lines it is possible to define coefficients of readability for other semi-synthetic methods
(levels 3, 4 and 5 ). The de Bruijn factor can be used in all levels, but it will be more meaningful
on levels above 3.

Efficiency. The amount of time needed to complete a proof should be considered, by itself, a
way to measure the difficulty of a formal proof.

The space complexity is less important, because the physical constraints are nowadays less
important and because the time spent waiting for the proof, or for the validation of a geometric
property, is the important factor for the user.

2.2. Taxonomies in Education

Defining taxonomies in an education setting depends on many factors, the type of geometry
being considered, in secondary schools most of the times will be Euclidean geometry, studied in
a synthetic way (without coordinates) and analytically (with coordinates), the axiomatic system
used, the type of computational tools being used, the educational level and also the development
of the geometric ideas of the students depending on their behaviour, their level of geometric
knowledge and personal preferences.
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An interesting taxonomy to be considered in education is the USA initiative, Common Core
Standards8 (CCS) (McCallum, 2015; Rivera, 2013; Wu, 2012). According to it, the classes of
geometry9 are: congruence (CO); similarity, right triangles, and trigonometry (SRT); circles (C);
expressing geometric properties with equations (GPE); geometric measurement and dimension
(GMD) and modelling with geometry (MG). Each class has its own subclasses, defined by de-
grees of difficulty, for example, in the class of congruence, it has the subclass, lower degree
of difficulty, with the sub-subclasses: experiment with transformations in the plane; understand
congruence in terms of rigid motions; prove geometric theorems, and the subclass, higher degree
of difficulty, with the sub-subclass: make geometric constructions.

The major classes (abbreviations, in capital letters) are divided in subclasses with two levels,
the first one designated by a capital letter and the second by a number. Below the different
class/subclass/sub-subclass used to classify the examples presented in section 3.1.

C.A.3 Circles / Understand and apply theorems about circles / Construct the inscribed and cir-
cumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed
in a circle.

CO.A.1 Congruence / Experiment with transformations in the plane / Know precise definitions
of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined
notions of point, line, distance along a line, and distance around a circular arc.

CO.A.4 Congruence / Experiment with transformations in the plane / Develop definitions of ro-
tations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel
lines, and line segments.

CO.C.10 Congruence / Prove geometric theorems / Prove theorems about triangles. Theorems
include: measures of interior angles of a triangle sum to 180◦; base angles of isosceles
triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel
to the third side and half the length; the medians of a triangle meet at a point.

CO.D.12 Congruence / Make geometric constructions / Make formal geometric constructions
with a variety of tools and methods (compass and straight edge, string, reflective devices,
paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle;
bisecting a segment; bisecting an angle; constructing perpendicular lines, including the
perpendicular bisector of a line segment; and constructing a line parallel to a given line
through a point not on the line.

SRT.B.4 Similarity, right triangles, and trigonometry / Prove theorems involving similarity /

Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle
divides the other two proportionally, and conversely; the Pythagorean Theorem proved
using triangle similarity.

SRT.B.5 Similarity, right triangles, and trigonometry / Prove theorems involving similarity / Use
congruence and similarity criteria for triangles to solve problems and to prove relationships
in geometric figures.

8http://www.corestandards.org/Math/. The CCS was launched in 2009 and it is an effort of the National
Governors Association and Council of Chief State School Officers.

9http://www.corestandards.org/Math/Content/HSG/
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Geometrography. Another approach that can be useful in this context is given by the geometrog-
raphy approach (Lemoine, 1902; Mackay, 1893; Pinheiro, 1974). Geometrography, “alias the art
of geometric constructions,” aims at providing a tool: to designate every geometric construction
by a symbol that manifests its simplicity and exactitude; to teach the simplest way to execute
an assigned construction; to discuss a known solution to a problem and eventually replacing it
with a better solution; to compare different solutions for a problem, by deciding which is the
most exact and the simplest solution from the point of view of geometrography (Loria, 1908). In
this perspective, geometrography offers a very interesting point of view on geometrical problems
and their taxonomies in education. In Lemoine’s geometrography two coefficients are defined to
measure the relative difficulty to perform some geometric constructions. The approach is applied
to ruler and compass geometry, i.e. geometric constructions made with the help of a ruler and a
compass only. Considering the modifications proposed by Mackay (1893) the following Ruler
and Compass constructions10 and the corresponding coefficients can be considered.

To place the edge of the ruler in coincidence with one point . . . . . . . . . . . . . . . . . . . . . . . . R1

To place the edge of the ruler in coincidence with two points . . . . . . . . . . . . . . . . . . . . . . 2R1

To draw a straight line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R2

To put one point of the compasses on a determinate point . . . . . . . . . . . . . . . . . . . . . . . . . . C1

To put one point of the compasses on two determinate points . . . . . . . . . . . . . . . . . . . . . . 2C1

To describe a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2

Then a given construction is measured against the number of those elementary steps. For
example, for the construction of a triangle, given its three vertices A, B and C, Mackay (1893)
estimate 4R1 + 3R2: to put the ruler in contact with A and B is 2R1; to draw AB is R2; with the
ruler in contact with B to put it also in contact with C is R1; to draw BC is R2; repeat that for C
and A is R1 and finally to draw CA is R2. In all, 4R1 + 3R2.

For a given construction expressed by the equation:

l1R1 + l2R2 + m1C1 + m2C2

where li and m j are coefficients denoting the number of times any particular operation is per-
formed. The number (l1 + l2 +m1 +m2) is called the coefficient of simplicity of the construction, it
denotes the total number of operations. The number (l1+m1) is called the coefficient of exactitude
of the construction, it denotes the number of preparatory operations on which the exactitude of
the construction depends (Mackay, 1893; Merikoski and Tossavainen, 2010).

Some variants of Lemoine’s geometrography can be defined, e.g. by adding rules for other
idealised tools/operations (e.g. carpenter’s square, graduated rulers, etc.), or by adding a value
for the change of the instrument/operation, or by considering different values for different oper-
ations (Grüttner, 1912; Loria, 1908).

Extrapolating (modernising) geometrography, considering the “tools” of dynamic geometry
systems, the coefficient of exactitude loose its meaning, the construction will be executed by

10Lemoine (1902) considers the following basic operations: L1. Place the ruler through a given point; L2. draw a line;
C1. place one leg of the compass on a given point; C2. place one leg of the compass on an indeterminate point of a given
line; C3. draw a circle.
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the DGS, so exact (minus floating point representation considerations), but the coefficient of
simplicity of the constructions can still be useful, it can be used to classify the constructions
by levels of simplicity and, in this way, adding another level of meta-information. Also a new
dimension can be added, the coefficient of freedom, given by the degree of freedom a given
geometric object has, e.g. “a point in a line” has one degree of freedom, a point in the plane has
two degrees of freedom. This new coefficient will give a value for the dynamism of the geometric
construction.

The need of a classification for the complexity of construction is felt in educational settings.
For example in the Euclidea11 and Geometriagon12 platforms the constructions contained in the
respective repositories are classified by levels of difficulty.

Euclidea count actions with tools (L), e.g. build a line, a perpendicular line, etc. and also
count movements (E), such as a construction was made using a ruler and a compass. Defining
costs, (L, E), for each tool. Geometriagon defines the difficulty level, 1 ≤ n ≤ 5, awarded by
the proposer and other users. Both system would benefit from the adoption of a geometrography
approach.

In the following the geometrography approach to the classification of the geometric con-
struction made using the Geometry Constructions LaTeX Converter (GCLC)13 (Janičić, 2006) is
presented (GCLC provides three of the four GATPs embedded in TGTP).

Geometrography in GCLC. Apart the rendering of geometric constructions GCLC also incorpo-
rate GATPs based on the area method, Wu’s method and Gröbner Basis method, all those tools
use the GCL formal language (Janičić, 2010).

Considering the operations: define a point, anywhere in the plane, D and define a given
object, using other objects, C, the following values for the GCLC basic constructions are ob-
tained:14

point – fix a point in the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D

line – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

circle – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

intersec – uses two lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

intersec – uses four points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4C

intersec2 – uses a circle and a circle or line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

midpoint – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

med – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

bis – uses three points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3C

11https://www.euclidea.xyz/, also available as an application for smartphones.
12http://polarprof-001-site1.htempurl.com/geometriagon/
13http://poincare.matf.bg.ac.rs/~janicic/gclc/
14A similar approach based on the DGS GeoGebra was presented at the conference CADGME2018, Vanda

Santos, Nuno Baeta and Pedro Quaresma, Geometrography in GeoGebra, http://www.uc.pt/en/congressos/
cadgme2018/ficheiros/CADGME-2018_paper_34
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perp – uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

foot – uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

parallel – uses a point and a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

onsegment – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

online – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

oncircle – uses two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2C

The degrees of freedom are measured against the point definitions. The point definition, de-
fine a point with two degrees of freedom, the onsegment, online and oncircle constructions,
define points with one degree of freedom.

A script that analyse any GCLC construction was implemented, giving its coefficients of
simplicity (cs) and freedom (c f ).

This research also open an interesting application, a geometrography approach regarding
proofs and proof assistants, considering for example a combination of dynamic geometry soft-
ware with proof assistants. An interesting case study could be, for example, GeoCoq (Pham and
Bertot, 2012), a combination of GeoGebra and Coq. This will be object of future research.

GATPs in Education. There are complex problems, which a secondary school student will find
difficult to prove, that can be automatically proved. For example, the Geometry Expert pro-
gram15 (Chou et al., 1994), proved automatically about 400 problems extracted from a typical
geometry secondary school book (Altshiller-Court, 2007). Chou et al. (1994, p.453) also pro-
posed a classification of level of difficulty of geometrical theorems in terms of various types
of geometric constructions involved: collinearity; parallelism; proportionality; perpendicularity;
circle; angle, in ascending order of difficulty.

In Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Educa-
tion (Lin et al., 2009a,b) many articles exploring the use of proofs in a learning environment can
be found. In (Hanna, 2000; Hanna and Sidoli, 2007; de Villiers, 1990) Michael de Villiers and
Gila Hanna gave a list of the usefulness of proofs and proving in a learning environment. For the
purpose of problems classification the following two points emerge:

• verification (concerned with the truth of a statement);

• explanation (providing insight into why it is true);

Considering the formal validation of properties of geometric constructions the time needed
to get an answer should be used as a classification criteria.

Many of the current DGSs have already the capability of a formal validation of properties:
Cinderella16 (Richter-Gebert and Kortenkamp, 1999) contains a randomised theorem checker;
GCLC, Java Geometry Expert (JGEX)17 and GeoGebra18 (version 5) (Hohenwarter, 2002) have

15http://www.cs.wichita.edu/~ye/examples.html
16https://cinderella.de
17http://www.cs.wichita.edu/~ye/
18https://www.geogebra.org/
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a number of automated theorem provers incorporated in them, thus opening the possibility to
give a formal answer to a given validation question (Botana et al., 2015; Janičić and Quaresma,
2007; Ye et al., 2011).

Extrapolating from the concept of “wait-time”19—periods of silence that followed teacher
questions and students’ completed responses (Rowe, 1972)—or more precisely the category of
periods of silence “Post-Teacher Question Wait-Time” (Stahl, 1994), the following classes of
“GATP validation time” could be defined, in terms of time, t, taken by the GATP to answer:

• good: t ≤ 1.5s;

• fair: 1.5s < t ≤ 3s;

• poor: t > 3s.

The use of formal proofs in an educational setting is a more complex issue. As stated
in (Hanna and de Villiers, 2012; Quaresma and Santos, 2016), formal statements have an im-
portant role in the area of education. GATPs implementing the Wu’s method, the Gröbner bases
method, the area method or full-angle method, are capable of producing proofs and are very effi-
cient, but the proofs produced are far from the level of non-expert readable proofs (Botana et al.,
2015).

For a classification propose the criteria of readability (of the proof produced), efficiency,
interaction between the GATP and its users, student-level, must be considered. This is an open
and active research area. The following classes could be considered:

• yes: a small (in length) and fast (in processing time), readable synthetic GATP proof exist;

• maybe: a small (in length) and fast (in processing time), non-synthetic (e.g. semi-synthetic)
readable GATP proof exist;

• no: no GATP proof exist or the GATP proof is neither small nor fast nor readable.

3. Taxonomies in TGTP

Applying the above defined taxonomies to the TGTP server of geometric knowledge poses a
few technical problems that should not be difficult to solve. Indeed TGTP, in its current version,
already provides, for each conjecture, the ratio of successful proofs to proof’s attempts, as well
as other items of information needed to classify a given conjecture. TGTP also provides a proof
of a conjecture if one is provided by the method’s implementation, a notable exception is the
implementation of the area method using the Coq proof assistant20 (Janičić et al., 2012; Narboux,
2007), which only provides a proved or not proved output.

For the GCLC constructions contained in TGTP an average value of simplicity (cs) of 22.5
was obtained. Having that in mind, three classes of geometric constructions for an increasing
level of complexity were defined: simple constructions, 1 ≤ cs < 15; average complexity con-
structions, 15 ≤ cs < 30; complex constructions, cs ≥ 30.

19Note that the “wait-time” concept will be used to define the threshold values for the response times of GATPs, it is
not any new kind of taxonomy.

20http://dpt-info.u-strasbg.fr/~narboux/area_method.html
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TGTP contain 36 simple constructions; 119 average complexity constructions; 30 complex
constructions.

If applied to TGTP the educational taxonomies should also take into account the objectives
of teaching, a short response time and readable demonstrations.

A first step would be to make the necessary modifications to TGTP to be able to add the
missing items of information: modifying the forms used to manually manipulate the informa-
tion about the geometric problems; implementing scripts capable of manipulate the information
already contained in TGTP, adding, automatically, those needed items of information. A final
step would be the use of all that information into filters that, by manual selection or automatic
processing of users’ needs, could be used to improve the users’ queries.

3.1. TGTP Examples
In the following, some selected examples are presented. For each example its classification,

accordingly to the taxonomies defined above, is shown.
Below, the GATP provability ratio is given by the number of proofs successfully concluded

over the number of attempts.
The complexity is given by the GCLC geometrography complexity coefficient.

GEO0316—Nine Points Circle Prove that in any triangle midpoints of each side, feet of each
altitude and midpoints of the segments of each altitude from its vertex to the orthocenter
lie on a circle (Chou, 1988).

A B

C

D

E

FG

JI

K
L

M

H

O

MSC: 51M05, 70G55, 94B27.
GATP Provability: 1/3.

Semi-synthetic methods: 0/1: GCLC area method, “The conjecture is out of scope
of the prover”.

Algebraic methods: 1/2: GCLC Wu’s method, “The conjecture successfully proved”;
GCLC Gröbner basis method, “The conjecture not proved - timeout”.

Readability (Chou et al., 1994): non-synthetic proof
Wu’s Method, 16 pages long proof.

Readability (de Bruijn, 1994): no readable proof.
de Bruijn factor: 16/6.
See section Appendix A.1 for the informal proof. The formal proof is not included
given its size, it can be consulted in TGTP.
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Efficiency (CPU time): 0.17s.
GCLC Wu’s Method: 0.17s.

CCS: C.A.3; CO.A.1; CO.C.10; CO.D.12.
Construction Complexity: complex (cs=41).

Coefficient of simplicity: 3×D + 3× 2C + 3× 2C + 3× 2C + 2× 2C + 2C + 3× 2C +

2 × 2C + 2C + 2C = 41.
Coefficient of freedom: 3 × 2 = 6.

Proofs in Education:
Verification: good

GCLC Wu’s Method: 0.17s.
Explanation: no

only an algebraic, long (16 pages) GATP proof, exist.

GEO0001—Ceva’s Theorem Let ∆ABC be a triangle and P be any point in the plane. Let
D = AP ∩ CB, E = BP ∩ AC, and F = CP ∩ AB. Show that: AF

FB
× BD

DC
× CE

EA
= 1. P

should not be in the lines parallels to AC, AB and BC and passing through B, C and A
respectively (Zhang et al., 1995).

A

B

C

D

F

E

P

MSC: 51M05, 70G55, 94B27, 97G70, 03B35.
GATP Provability: 4/4.

Semi-synthetic methods: 2/2: GCLC area method, “The conjecture successfully
proved”; Coq area method, proved.

Algebraic methods: 2/2: GCLC Wu’s method, “The conjecture successfully proved”;
GCLC Gröbner basis method, “The conjecture successfully proved”.

Readability (Chou et al., 1994): semi-synthetic proof with a corresponding prover’s lan-
guage description;
GCLC area method deduction steps = 9 < 10;
GCLC area method, 4 pages long proof; GCLC Wu’s method, 7 pages long proof;
GCLC Gröbner basis method, 8 pages long proof.

Readability (de Bruijn, 1994): semi-synthetic proof with a corresponding prover’s lan-
guage description;
de Bruijn factor: 1/1;
See section Appendix A.2 for the informal proof and section Appendix B.1 for the
area method formal proof.

Efficiency (CPU time): 0.04s
GCLC area method: 0.04s; Coq area method: 3.32s; GCLC Wu’s method: 0.33s;
GCLC Gröbner basis method: 0.08s.
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CCS: CO.A.4; CO.C.10; CO.D.12; SRT.B.5.

Construction Complexity: average (cs=22).
Coefficient of simplicity: 4 × D + 6 × 2C + 3 × 2C = 22.
Coefficient of freedom: 4 × 2 = 8.

Proofs in Education:
Verification: good

GCLC area method: 0.04s; GCLC Gröbner basis method: 0.08s.
Explanation: maybe

the area method, semi-synthetic, GATP readable proof is 1 page long (4 pages in
total if title and proof information pages are to be considered) and it is produced
in 0.04s.

GEO0013—Centroid Theorem The three medians of a triangle meet in a point, and each me-
dian is trisected by this point (Chou et al., 1996a).

BC

A

D E

F

G

MSC: 51M05, 70G55, 94B27, 97G70, 03B35.

GATP Provability: 4/4.

Semi-synthetic methods: 2/2: GCLC area method, “The conjecture successfully
proved”; Coq area method, proved.

Algebraic methods: 2/2: GCLC Wu’s method, “The conjecture successfully proved”;
GCLC Gröbner basis method, “The conjecture successfully proved”.

Readability (Chou et al., 1994): semi-synthetic proof with a corresponding prover’s lan-
guage description;
GCLC area method: maximal term 4 < 5.
GCLC area method, 4 pages long proof; Wu’s method, 7 pages long proof; Gröbner
basis method, 12 pages long proof.

Readability (de Bruijn, 1994): semi-synthetic proof with a corresponding prover’s lan-
guage description.
de Bruijn factor: 2/1.
See section Appendix A.3 for the informal proof and section Appendix B.2 for the
area method formal proof.

Efficiency (CPU time): 0.05s
GCLC area method: 0.05s; Coq area method: 3.32s; GCLC Wu’s method: 0.08s;
GCLC Gröbner basis method: 0.09s.

CCS: C.A.3; CO.A.1; CO.A.4; CO.C.10; SRT.B.4.

Construction Complexity: average (cs=17).
Coefficient of simplicity: 3 × D + 3 × 2C + 2 × 2C + 2 × 2C = 17.
Coefficient of freedom: 3 × 2 = 6.
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Proofs in Education:
Verification: good

GCLC area method: 0.05s; GCLC Wu’s method: 0.08s.
Explanation: maybe

the area method, semi-synthetic, GATP readable proof is 2 pages long (4 pages
in total if title and proof information pages are to be considered) and it is pro-
duced in 0.05s.

3.2. TGTP Queries
Querying the TGTP repository is possible in three ways: a simple textual query, a more com-

prehensive textual search, and a geometric search (Quaresma, 2011; Haralambous and Quaresma,
2018).

The simple textual query is done using MySQL regular expressions queries,21 over the name
attribute of the Conjectures table, it will provide the list of conjectures with names containing
the query as a sub-string. Another, more powerful, textual query is available, using the full-text
search of MySQL.21 The attributes name, description, shortDescription, keyword of
the theorems and keywords tables are used, allowing, for a given input sentence, to get the list
of most similar sentences in any attribute of the different problem descriptions.

Based on some preliminary work on geometric search (Haralambous and Quaresma, 2014) a
geometric search mechanism is being developed. The queries are constructed using GeoGebra
dynamic geometry system and the constructed figure is semantically compared with the figures
in the repository (Haralambous and Quaresma, 2018).

The developed taxonomies will allow to apply filters to any given query, e.g. in the Intergeo
repository, the “complex text search” filter, already implements an adaptive filtering, alongside
the query, the user can choose some filters (e.g. type of activity).

Finally, together with some machine learning mechanisms capable of finding the level of
geometric knowledge and/or preferences of TGTP users, the proposed taxonomies will open the
possibility of implementing adaptive queries, where the user’s profile will be used to find the
filters that best adjust to the users’ needs.

4. Conclusions & Future Work

The definition of taxonomies for geometry will enable to incorp orate many useful informa-
tion in the geometric objects (constructions, conjectures, proofs). All the collected information
will constitute a meta-information block that would became part of the geometric objects in the
repositories, in a similar way as the meta-information contained in a digital photography.

The next step is the construction of meta-information reports and filters capable of using that
information to enhance the user’s queries.

The filtering mechanism will allow improved and adapted user’s queries. It will open the
possibility to query for classes of geometric information, e.g. conjectures with semi-synthetic
proofs; geometric construction with a coefficient of simplicity lower then 30, etc.

Considering repositories of geometric knowledge, the implementation of a, taxonomies aware
filtering mechanism, must be preceded by populating the repositories databases with the meta in-
formation needed for the classification of the problems. Using TGTP as an example, adding the
information can be seen as a three stages process:

21https://dev.mysql.com/doc/refman/8.0/en/
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Manual Stage: the MSC classification; the CCS classification; the de Bruijn’s factor of read-
ability; availability of proofs for educational purposes. The procedures for inserting or
updating geometric information must be changed in such a way that the meta-information
can be manually added.

Automatic Stage: GATP provability; Chou’s factor of readability; efficiency; GCLC geometro-
graphy. The information already contained in the database is enough, it must be, automati-
cally, parsed and transformed in meta-information whenever modifications are being made
to the database.

Machine Learning Stage: some of the considered taxonomies are not absolute, e.g the read-
ability is strongly dependant of the reader: GATP experts; secondary students; etc. The
introduction of users’ profiles build interactively through analysis of users’ interaction with
the system, will allow to adapt the filters to each users’ needs. In a first adaptive stage the
users modelling can be implemented with simple quantitative or qualitative rule-based ap-
proaches, in a later stage, machine learning techniques over users’ interactions with the
system should be used to have an automatic and continuous fit of the system to the user’s
needs.

The presented taxonomies must be validated, improved if necessary, and other taxonomies
must be taken into consideration as well.

The filtering mechanism introduced by the taxonomies, the possibility of combining different
filters and the combination of this filtering stage with the search mechanism must be implemented
in the repositories, or in any system that remotely access the repository, e.g. WGL (Quaresma
et al., 2018a).
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Karol Pąk. Improving legibility of formal proofs based on the close reference principle is NP-Hard. Journal of Automated
Reasoning, 55(3):295–306, Oct 2015. ISSN 1573-0670. doi: 10.1007/s10817-015-9337-1.

Tuan Minh Pham and Yves Bertot. A combination of a dynamic geometry software with a proof assistant for interactive
formal proofs. Electronic Notes in Theoretical Computer Science, 285:43 – 55, 2012. ISSN 1571-0661. doi: 10.
1016/j.entcs.2012.06.005. Proceedings of the 9th International Workshop On User Interfaces for Theorem Provers
(UITP10).

Vergílio Athayde Pinheiro. Geometrografia 1. Gráfica Editora Bahiense, 1974.
Pedro Quaresma. Thousands of Geometric problems for geometric Theorem Provers (TGTP). In Pascal Schreck, Julien

Narboux, and Jürgen Richter-Gebert, editors, Automated Deduction in Geometry, volume 6877 of Lecture Notes in
Computer Science, pages 169–181. Springer, 2011. ISBN 978-3-642-25069-9. doi: 10.1007/978-3-642-25070-5_10.

Pedro Quaresma. Towards an intelligent and dynamic geometry book. Mathematics in Computer Science, 11(3–4):
427–437, Dec 2017. ISSN 1661-8289. doi: 10.1007/s11786-017-0302-8.

Pedro Quaresma and Vanda Santos. Visual geometry proofs in a learning context. In Walther Neuper and Pedro
Quaresma, editors, Proceedings of ThEdu’15, volume 2016001 of CISUC Technical Reports, pages 1–6. CISUC,
2016. URL https://www.cisuc.uc.pt/ckfinder/userfiles/files/TR2016-01.pdf.

Pedro Quaresma, Vanda Santos, and Nuno Baeta. Exchange of geometric information between applications. In Pedro
Quaresma and Walther Neuper, editors, ThEdu’17 PostProceedings, volume 267 of EPTCS, pages 108–119. Open
Publishing Association, 2018a. doi: 10.4204/EPTCS.267.7.
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Appendix A. Informal Proofs

Appendix A.1. Nine Points Circle Informal Proof

Taken from:
www.ma.utexas.edu/users/shirley/a333l/Handouts/euclidean-geometry-ii/9_

pt_circle_thm.pdf, consulted 2017/12/23. Proof done with the help of lemmas to reduce the
size of the proof.
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The Nine-Point Circle Theorem: 
 
 For any triangle the following nine points lie on the same circle: 
 
     1) The three midpoints of the sides of the triangle, 
 
     2) The feet of the three altitudes of the triangle, 
 
     3) The midpoints of the three segments connecting vertices to the orthocenter. 
 
This circle is called the Nine-point Circle of the triangle.  Its center is the midpoint of the 
segment between the orthocenter and the circumcenter and its radius is ½ the radius of the 
circumcircle. 
 
In the following discussion, the following three theorems are frequently applied : 
  
Theorem 4.2.15, The Midpoint Connection Theorem: If a line segment has as its endpoints 
the midpoints of two sides of a triangle then the segment is contained in a line that is parallel to 
the third side and the segment is one-half the length of the third side. 
 
Theorem (NIB) 4.6, The Hypotenuse Diameter Theorem:  For any right triangle, the circle 
which has the hypotenuse as diameter contains the vertex with the right angle. 
 
The Perpendicularity Statement:  If a line is perpendicular to one of two parallel lines, then it 
is perpendicular to the other.  
 
As shown before, in Neutral Geometry the Perpendicularity Statement is equivalent to the 
Euclidean Parallel Postulate, so the Perpendicularity Statement is true in Euclidean Geometry. 
 
Two Lemmas are used below and their proofs are left as exercises: 
 
Lemma 1:  A parallelogram with at least one right angle is a rectangle. 
 
 
Lemma 2: A rectangle is circumscribed by a circle and each diagonal of the rectangle is a  
                 diameter of the circle. 
 
Recall that, in Euclidean Geometry, Parallelism is Transitive  (by Theorem 4.2.9): 
 
        For given lines  l , m ,  and  n ,   if   l  ||  m    and    m  ||  n    then  l  || n . 
 
Also, by the Perpendicularity Statement, for given lines  l , m ,  and  t ,    
 
                                       if    l  ||  m    and    t  ⊥  l  ,    then    t  ⊥  m. 
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Proof of the Nine-Point Circle Theorem: 
 
 Proof:  Let ∆ ABC be a given triangle.  
             Let H denote the orthocenter and let S denote the circumcenter.     
 
  Let the following notations be defined: 
 
1)  MA, MB, and MC are the midpoints of the sides of    
     the triangle opposite vertices A, B, and C,  
     respectively. 
 
2)  FA, FB, and FC are the feet of the altitudes from  
      vertices A, B and C, respectively. 
 
3)  QA, QB, and QC are the midpoints of the  
      segments between the orthocenter H of the triangle    
      and the vertices A, B and C, respectively.  
 
 
�����������  ||  ������    by the Midpoint Connection Theorem   
                                                      applied to HAB∆ .  
����
��������  ||  ������    by the Midpoint Connection Theorem   
                                                       applied to ABC∆ .  
�����������  ||   ����

��������   by the transitivity of parallelism. 
 
 
����
��������  ||  �	����    by the Midpoint Connection Theorem   
                                                      applied to HAC∆ .  
������������  ||  �	����     by the Midpoint Connection Theorem   
                                                       applied to H BC∆ . 
  
����
��������  ||  ������������  by the transitivity of parallelism.      ∴  �  QA QB MA MB   is a parallelogram .    
 
 

CC F AB⊥    by definition of “altitude”.    ∴ C A BC F Q Q⊥    by the Perpendicularity Statement. 
 
∴����
��������  ||  �
������  since  C – H – FC  .      ∴ A B A BQ M Q Q⊥    by the Perpendicularity Statement. 

 
∴ B A BQ Q M∠   is a right angle.        ∴  By Lemma 1,  �  A B A BQ Q M M   is a rectangle. 
  

MB

MC MA

QC

QB

QA

HFC

FA

FB
CA

B

MB

MC MA

QC

QB

QA

HFC

FA

FB
CA

B
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 Recall that  �   QA QB MA MB   is a rectangle. 
 
By Lemma 2, there exists a circle c 1  such that  
 
circle  c 1  circumscribes   �  A B A BQ Q M M   and  

       c 1    =   C( diameter  =   A AQ M  )   and   

       c 1    =   C( diameter  =   B BQ M  ) . 
 
By definition of “altitude”,  A A AQ F M∠  is a  right angle .   

∴ A A AF Q M∆  is a right triangle with hypotenuse A AQ M  . 

∴ Circle c 1 contains  FA by the Hypotenuse Diameter Theorem. 
 
By definition of “altitude”,  B B BQ F M∠   is a right angle.   

∴ B B BF Q M∆  is a right triangle with hypotenuse B BQ M  . 

∴ Circle c 1 contains  FB by the Hypotenuse Diameter Theorem. 
 
∴∴∴∴ Circle c 1 contains the six points: QA , QB , MA , MB , FA , FB  
 
 
A similar argument shows that                        Then, a similar argument shows that  
                                                                          the circle c 1 =   C( diameter  =   A AQ M  )                     

   �  QA QC MA MC is a rectangle                      circumscribes �  QA QC MA MC   and  that   
                                                                          circle c 1 contains the point  FC . 
                                                                         

 
 
 
 
 
 
 
 
 
 
 

 
 
Note also that all three rectangle diagonals serve as diameters for circle  c 1 ,  that is, 
 
  ������������ ,      ����

�������� ,  and    ����
��������  ,    all three  are diameters of circle  c 1   . 

 
  
 

 c1
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H
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B
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QA

HFC
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QA
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∴∴∴∴ Circle c 1 contains the nine points: QA , QB , QC , MA , MB , MC , FA , FB , FC  
 
  and it has   A AQ M   ,  B BQ M  ,  and  C CQ M  as diameters .   
 
The circle  c 1  is called the Nine-Point Circle. 
 
 
Let N be the midpoint of  A AQ M  .  Then,  N  is the center of the Nine-Point Circle. 
 
 
                   We will call this circle the Nine-point Circle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It remains only to locate the center on the Euler Line and to determine  
 
                          the radius of the Nine-point Circle.   
 

The Nine-Point Circle

N

MB

MC MA

QC

QB

QA

HFC

FA

FB
CA

B
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Recall that S denotes the Circumcenter of ABC∆    
            and that N denotes the center of the Nine-point Circle. 
Let O be the point where Nine-Point Circle diameter BB MQ  intersects HS .   
 
(A technical argument, which shows that  BB MQ  and  HS  must intersect, is omitted here.) 
 
We show that point  O  and point  N are the same point. 
 
 It will suffice to show that O is the 
midpoint BB MQ  since BB MQ  is a 
diameter of the Nine-Point Circle. 
 
To do this, we show that HQO B∆  is 
congruent to SMO B∆ : 
 
Now, BSM  lies along the 
perpendicular bisector of side AC , so  

ACSM B ⊥ .   
 

Since BH AC
←−−→

⊥   also,  BHSM B ||  .  
 
Since BHSM B || , HOQB∠  and 

SOM B∠  are alternate interior angles formed where transversal B BQ M
←−−−−−→

 intersects parallel lines.   
 
∴ By the Converse of the Alternate Interior Angle Theorem , HOQB∠  ≅  SOM B∠ . 
 
Also, BHOQ∠  ≅  BSOM∠   by the Vertical Angles Theorem. 
 
Since QB is, by definition, the midpoint of BH ,  H QB  =    ½ (BH).   
By the Altitude Segment Theorem, Theorem 4.7.1,  BH  =  2 (S M  B);  so,  S M  B   =   ½ (BH) . 
Therefore,  H QB   =   S M  B   and so,  B BHQ SM≅  .  

∴ HQO B∆  ≅  SMO B∆   by AAS. 
 
Then, by CPCF, OMOQ BB ≅  ,  and so,  O  is the midpoint of BB MQ .    
Since BB MQ is a diameter of the Nine-Point Circle, O  =  N, the center of the Nine-point Circle. 
 
Also, by CPCF,  SOHO ≅  , so point  O  =  N  is also the midpoint of HS  . 
 
This locates the center N of the Nine-Point Circle at the point midway between the Orthocenter 
H and the Circumcenter S .  . 
   

N
O

S

MB

MC MA

QC

QB

QA

H

FC

FA

FB CA

B
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 Thus, the center N of the Nine-point circle is the midpoint of the segment between the 
orthocenter H and the circumcenter S.     
 

     Therefore, the center of the Nine-Point Circle is on the Euler LineHS
←−−→

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We show that the radius of the Nine-Point Circle is one-half the radius of the Circumcircle. 
 
Segment SB is a radius of the circumcircle (since S is the circumcenter)   
       and segment BNQ  is a radius of the Nine-point circle.  
 
Also, N is the midpoint of HS , so BNQ  connects the midpoints of  two of the sides of  SBH∆ .   
 
∴ By the Midpoint Connection Theorem applied to SBH∆ ,   NQB   =   ½ (SB). 
 
Therefore, since  SB  is the radius of the Circumcircle, 
 
             the radius of the Nine-point circle is  ½  the radius of the Circumcircle. 
 
                 QED 
 
 
 
 
 
 
   

The Circumcircle

Nine-Point
Circle

The Euler Line

H = Orthocenter
S = Circumcenter
N = Nine-Point Center

N S

MB

MC
MA

QC

QB
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HFC

FA

FB C

A

B
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Appendix A.2. Ceva’s Theorem Informal Proof

Taken from: artofproblemsolving.com/wiki/index.php?title=Ceva’s_Theorem,
consulted on 2017/12/18.

Proof
We will use the notation [ABC] to denote the area of a triangle with vertices A, B,C.
First, suppose AD, BE,CF meet at a point X.We note that triangles ABD, ADC have the

same altitude to line BC, but bases BD and DC. It follows that BD
DC = [ABD]

[ADC] . The same is true for
triangles XBD, XDC, so

BD
DC

=
[ABD]
[ADC]

=
[XBD]
[XDC]

=
[ABD] − [XBD]
[ADC] − [XDC]

=
[ABX]
[AXC]

.

Similarly, CE
EA = [BCX]

[BXA] and AF
FB = [CAX]

[CXB] , so

BD
DC
·

CE
EA
·

AF
FB

=
[ABX]
[AXC]

·
[BCX]
[BXA]

·
[CAX]
[CXB]

= 1

Now, suppose D, E, F satisfy Ceva’s criterion, and suppose AD, BE intersect at X. Suppose
the line CX intersects line AB at F′. We have proven that F′ must satisfy Ceva’s criterion. This
means that

AF′

F′B
=

AF
FB
,

so
F′ = F,

and line CF concurs with AD and BE. �

Appendix A.3. Centroid Theorem Informal Proof

Taken from: new.math.uiuc.edu/public403/affine/centroid.html, consulted on
2017/12/14.

Let G be the point where medians BB′ and CC′ of ∆ABC intersect. We shall show that G
trisects the two medians in the sense that BG : GB′ = 2 : 1 and CG : GC′ = 2 : 1. This means
that any two medians meet at their point two-thirds of the way from the vertex to the midpoint of
the opposite side. So all three do.

Prior to the place in Euclid’s Elements are theorems about similar triangles and about angles
made by transversals of two parallel lines. The ones we’ll use here are

simAAA Two triangles are similar if and only if their angles are pairwise equal.

simSAS Two triangles are similar if and only if two pairs of corresponding sides have the same
proportion and the included angles are equal.

altIA Two lines are parallel if and only if two alternate interior angles they make with a transver-
sal are equal.

sameSA Two lines are parallel if and only if corresponding angles on the same side of a transver-
sal are equal.
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Step 1:. Apply simSAS to ∆AC′B′ and ∆ABC by noting that they have ∠A in common, and the
adjacent sides are in the ratio of 1 : 2. So the two triangles are similar. That, by definition of
similarity, implies that ∠B′C′A = ∠CBA and C′B′ : BC = 1 : 2.

Step 2:. Apply sameSA to the two lines C′B′ and BC to the first consequence: ∠B′C′A = ∠CBA.
Therefore C′B′‖BC. That in turn, by sameSA, implies that ∠GC′B′ = ∠GCB and ∠C′B′G =

∠CBG.

Step 3:. Apply simAAA to the two triangles ∆GB′C′ and ∆GBC. Two pairs of their angles have
already been shown to be equal. The third pair, ∠B′GC′ and ∠BGC, are equal because they are
“opposite angles”. Thus the two triangles are similar.

Step 4:. From the second conclusion in Step 1 we know the ratio of to be 2 : 1. So 1 : 2 = GB′ :
GB and 1 : 2 = GC′ : GC. So G does “trisect” two of the medians, as predicted. �

Appendix B. Formal Proofs

Appendix B.1. Ceva’s Theorem Formal Proof

Proof produced by GCLC area method.
−−→AF
−−→
FB
·

−−→
BD
−−→
DC

 · −−→CE
−−→
EA

 = 1 by the statement (0)



−1 ·

−−→
AF
−−→
BF

 · −−→BD
−−→
DC

 · −−→CE
−−→
EA

 = 1 by geometric simpli-
fications

(1)

−1 ·

−−→AF
−−→
BF
·

−−→BD
−−→
DC
·

−−→
CE
−−→
EA



 = 1 by algebraic simplifi-

cations
(2)

−1 ·

S APC

S BPC
·

−−→BD
−−→
DC
·

−−→
CE
−−→
EA



 = 1

by Lemma 8 (point F
eliminated) (3)

−1 ·

S APC

S BPC
·

−−→BD
−−→
DC
·

−1 ·
−−→
CE
−−→
AE




 = 1 by geometric simpli-

fications
(4)

(
S APC ·

(
−−→
BD
−−→
DC
·
−−→
CE
−−→
AE

))
S BPC

= 1 by algebraic simplifi-
cations

(5)

(
S APC ·

(
−−→
BD
−−→
DC
·

S CPB
S APB

))
S BPC

= 1
by Lemma 8 (point E
eliminated) (6)

(
S APC ·

((
−1 ·

−−→
BD
−−→
CD

)
·

S CPB
S APB

))
(−1 · S CPB)

= 1 by geometric simpli-
fications

(7)
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(
S APC ·

−−→
BD
−−→
CD

)
S APB

= 1 by algebraic simplifi-
cations

(8)

(
S APC ·

S BPA
S CPA

)
S APB

= 1
by Lemma 8 (point
D eliminated) (9)

(
S APC ·

S BPA
(−1·S APC )

)
(−1 · S BPA)

= 1 by geometric simpli-
fications

(10)

1 = 1 by algebraic simplifi-
cations

(11)

NDG conditions are:
S BPA , S CPA i.e., lines BC and PA are not parallel (construction based assumption)
S APB , S CPB i.e., lines AC and PB are not parallel (construction based assumption)
S APC , S BPC i.e., lines AB and PC are not parallel (construction based assumption)
PFBF , 0 i.e., points F and B are not identical (conjecture based assumption)
PDCD , 0 i.e., points D and C are not identical (conjecture based assumption)
PEAE , 0 i.e., points E and A are not identical (conjecture based assumption)

Appendix B.2. Centroid Theorem Formal Proof
Proof produced by GCLC area method.−2 ·

−−→
GD
−−→
GB

 = 1 by the statement (0)

−2 ·

−1 ·

−1 ·
−−→
DG
−−→
BG



 = 1 by geometric simpli-

fications
(1)

−2 ·
−−→
DG
−−→
BG

 = 1 by algebraic simplifi-
cations

(2)

(
−2 ·

S DEC

S BEC

)
= 1

by Lemma 8 (point G
eliminated) (3)

(−2 · S DEC)
S BEC

= 1 by algebraic simplifi-
cations

(4)

(−2 · S CDE)
S CBE

= 1 by geometric simpli-
fications

(5)

(
−2 ·

(
S CDA +

(
1
2 · (S CDB + (−1 · S CDA))

)))
S CBE

= 1
by Lemma 29 (point
E eliminated) (6)

((−1 · S CDA) + (−1 · S CDB))
S CBE

= 1 by algebraic simplifi-
cations

(7)
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((−1 · S CDA) + (−1 · S CDB))(
S CBA +

(
1
2 · (S CBB + (−1 · S CBA))

)) = 1
by Lemma 29 (point
E eliminated) (8)

((−1 · S ACD) + (−1 · S BCD))(
S CBA +

(
1
2 · (0 + (−1 · S CBA))

)) = 1 by geometric simpli-
fications

(9)

((−1 · S ACD) + (−1 · S BCD))(
1
2 · S CBA

) = 1 by algebraic simplifi-
cations

(10)

((
−1 ·

(
S ACA +

(
1
2 · (S ACC + (−1 · S ACA))

)))
+ (−1 · S BCD)

)(
1
2 · S CBA

) = 1
by Lemma 29 (point
D eliminated) (11)

((
−1 ·

(
0 +

(
1
2 · (0 + (−1 · 0))

)))
+ (−1 · S BCD)

)(
1
2 · S CBA

) = 1 by geometric simpli-
fications

(12)

(−1 · S BCD)(
1
2 · S CBA

) = 1 by algebraic simplifi-
cations

(13)

(
−1 ·

(
S BCA +

(
1
2 · (S BCC + (−1 · S BCA))

)))(
1
2 · S CBA

) = 1
by Lemma 29 (point
D eliminated) (14)

(
−1 ·

(
S BCA +

(
1
2 · (0 + (−1 · S BCA))

)))(
1
2 · (−1 · S BCA)

) = 1 by geometric simpli-
fications

(15)

1 = 1 by algebraic simplifi-
cations

(16)

NDG conditions are: S DEC , S BEC i.e., lines DB and EC are not parallel (construction based
assumption); PGBG , 0 i.e., points G and B are not identical (conjecture based assumption).
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