
Frames and locales: topology without points ERRATA (March 31, 2021)

Page Line Where is Should be

3 19 V W

14 -2 a p

17 4 (f∗(a) (f∗(a))

17 -7 )U(F )) = φ−1L [U(F )] (U(F )) = φ−1L [U(F )]

18 8 σX σL
18 -6 6= =

18 -1 Σ′b � Σ′a Σ′b * Σ′a
20 14 X x

21 4 characteristics characteristic

21 -9 ↑x ∈ U ↑ x ⊆ U
22 4 if and only if if

22 -2 ↓x ∈ U J ∈ Ũ
26 13 right adjoint left adjoint

33 13 x ∧ x x ∧ a
39 13 the right adjoint of f∗

39 -2 f [S] f [L]

49 8 than then

52 16 DM DS

52 -10
∨
x∈X f(x)

∨
x∈S f(x)

53 14 0 ≤ X ∅ ≥ X
53 15 X ∩ Y X ∪ Y
62 2 Z

62 -6 Ω(qif) = fi = hφ−1φιi = hιi = Ω(fi) Ω(qi ·f) = h ·φ−1 ·φ · ιi = h · ιi = Ω(fi)

79 -3 We have that For any sober space X, we have that

90 16 h : M → L h : L→M

94 proof of V.6.4.1(b) See corrected proof below

126 proof of Lemma VII.1.4 See corrected proof below

128 -12 V.4.8 V.5.8

131 -14 x = {a ∧ x | a ∈ F} x =
∨
{a ∧ x | a ∈ F}

133 7 ⊇ ⊆
133 10 vσ(a) vσ(a) = a

137 -14 if D ⊆ L if D ⊆ L is directed

147 -12 U U◦

158 8
⋃ ∨

158 8 o(U) o(u)

217 -5 Bring Bing

232 -8 III.7.3 III.6.3

232 -7 (h⊕h)−1(o(E)) = o((h⊕h)∗(E)) ∈ E
for any o(E) ∈ F

((h⊕ h)∗)−1(o(E)) = o((h⊕ h)(E)) ∈
o(F) for any E ∈ E

293 5 f(p, q) = 1 p ≤ f ≤ q

300 7 γε εγ

302 -11 h′(x) = x h′(x) = h(x)

302 -1 ↑c ⊕ ↑c =↑(c⊕ c) ↑c ⊕ ↑c =↑((c⊕ 1) ∨ (1⊕ c))
303 2 µ(x) = µ(x) µ(x) = (h⊕ h)µ(x)



Page Line Where is Should be

303 11 h′ϕ = h′ϕ resp. (h′⊕h′)ϕ = (h′⊕h′)ϕ h′ϕ = h′ψ resp. (h′⊕h′)ϕ = (h′⊕h′)ψ
306 15 v � u1 v ⊀ u1
307 -10

∨
{x | ∃y 6= 0, x⊕ y ≤ u}

∧
{x | u ≤ x⊕ 1}

309 3 ((µ⊕ id)µ) ((µ⊕ id)µ)#
311 -7 common refinement E ∧ F supremum E ∨ F
319 8 (h(f(y)) = y f(h(y)) = y

319 9 h ≥ f h ≥ g
321 18 least greatest

321 19 greatest least

321 -7 X r g[Y r f [X rM ]] X r g[Y r f [M ]]

321 -5 g[Y r f [X rA]] g[Y r f [A]]

331 12 lattice bounded lattice

331 16 lattice bounded lattice

331 -7 semilatice semilattice

332 -9 lattice bounded lattice

333 11 lattice bounded lattice

344 -8 suprema (resp. infima) infima (resp. suprema)

• (Mono)coreflectivity of FitFrm in Frm (pp. 94-95):

The proof used for coreflectivity of fitness (V.6.4.1 (b)) is confused and incorrect (luckily

enough, it was not used anywhere else in the book). Here is a better one:

1. Let f : L→M denote the localic map associated with a frame homomorphism h : L→M .

Recall that for the image and coimage of a sublocale (III.4) one has f [S] ⊆ T iff S ⊆ f−1[T ]

and hence f−1[−] preserves meets. Recall the formulas (III.6.3)

f−1[c(a)] = c(h(a)) and f−1[o(a)] = o(h(a)). (1.1)

2. For a frame L define

F1(L) =
⋂
{o(x) | c(a) ⊆ o(x)}}.

Explicitly, a ∈ F1(L) iff

(a ∨ u = 1⇒ u→x = x)⇒ x ≥ a. (∗)

Lemma. F1(L) is a subframe of L, and F1(L) = L iff L is fit.

Proof. Obviously, 0, 1 ∈ F1(L). Let ai ∈ F1(L). We will show that
∨
ai satisfies (∗). Assume∨

ai ∨ u = 1⇒ u→x = x

and suppose that ai ∨ u = 1. Then
∨
ai ∨ u = 1 and consequently u→ x = x. Since ai

satisfies (∗), we have that x ≥ ai for every i and hence x ≥
∨
ai.

Finally let a, b ∈ F1(L). We have

c(a ∧ b) = c(a) ∨ c(b) =
⋂
{o(x) | c(a) ⊆ o(x)} ∨

⋂
{o(y) | c(b) ⊆ o(y)} =

=
⋂
{o(x ∨ y) | c(a) ⊆ o(x), c(b) ⊆ o(y)} ⊇

⋂
{o(u) | c(a) ∨ c(b) ⊆ o(u)}.

This shows that F1(L) is a subframe of L.

The second statement is the definition of fitness.



3. For ordinals α define Fα as follows:

F0(L) = L, Fα+1 = F1(Fα(L)) and Fα(L) =
⋂
β<α

Fβ(L) for a limit ordinal.

Since Fα(L) decrease there is an ordinal γ(L) such that F1(Fγ(L)(L)) = Fγ(L)(L). Set

F (L) = Fγ(L)(L).

4. Theorem. F can be extended to a functor Frm → FitFrm and together with the

inclusion homomorphisms ιL : F (L)→ L it constitutes a coreflection.

Proof. It suffices to show that for each frame homomorphism h : L→M one has

h[F1(L)] ⊆ F1(M).

Let a ∈ F1(L) and consider the localic map f adjoint to h. We have

c(a) =
⋂
{o(x) | c(a) ⊆ o(x)}

and hence, by (1.1) and since f−1[−] preserves meets,

c(h(a)) = f−1[c(a)] = f−1[
⋂
{o(x) | c(a) ⊆ o(x)}] =

⋂
{f−1[o(x)] | c(a) ⊆ o(x)} =

=
⋂
{o(h(x)) | c(a) ⊆ o(x)} ⊇

⋂
{o(y) | c(h(a)) ⊆ o(y)}.

• Corrected proof of Lemma VII.1.4 (page 126):

Proof. First, observe that if β is a limit ordinal and (1, c) ∈ π1νβ(U) then (1, c) ∈ νγ(U)

for some γ < β: indeed, by compactness there is a finite A with
∨
A = 1 and A × {c} ⊆⋃

{νγ(U) | γ non-limit, γ < β} and by IV.5.6 then (1, c) ∈ νγ(U).

Now let the statement not hold. Then there exists (1, b) ∈ να(U) with α > 1 least among

such (1, b)’s. Obviously α is not a limit ordinal, and by the observation α is not a successor

of a limit ordinal β either (else b =
∨
B such that all the c ∈ B are in a νγ(U) and by the

minimality of α, (1, c) ∈ π2π1(U) and (1, b) ∈ π2π2π1(U) = π2π1(U), a contradiction). Thus,

(1, b) ∈ νν(V ) = π2π1π2π1(V ) for V = νγ(U). Then b =
∨
B for some B with {1} × B ⊆

π1π2π1(V ), and for each c ∈ B, (1, c) ∈ π1π2π1(V ) and we have Ay such that
∨
Ay = 1

and Ay × {y} ⊆ π2π1(V ). By compactness we can assume that Ay is finite and by IV.5.6,

(1, y) = (
∨
Ay, y) ∈ π2π1(V ) and hence (1, b) = (1,

∨
B) ∈ π2π2π1(V ) = π2π1(V ) = να−1(U),

a contradiction.

• Corrected proof of Proposition XV.5.2.2 (page 311):

The last four lines of the proof of Proposition 5.2.2 in Chapter XV are incorrect. When

mending the error we found that it can also be made more transparent. It goes as follows.

Proof. We will show that

E = {E | E entourage, E ≥ E(a), a ∈ N} =

= EU = {E | E entourage, E ≥ EU(a), a ∈ N}.

We have EU(a)(=
∨
{x⊕ x | x⊕ γ(x) ≤ µ(a)}) ≤ E(a).



To obtain an estimate from the other side, choose by 4.2.4 b, c ∈ N such that b ∗ b−1 ≤ c
and c ∗ c−1 ≤ a. Let x ⊕ y ≤ E(b). We can assume x ⊕ y 6= 0, hence x 6= 0 6= y. First, as

y 6= 0, we have by 4.2.3 ((2), (3) and (5)) that y−1 ∗ y ∈ N and further

x∗x−1 ≤ (x∗(y−1∗y))∗x−1 = (x∗y−1)∗(y∗x−1) ≤ b∗b−1 ≤ c and x∗y−1 ≤ b ≤ b∗b−1 ≤ c

and hence (x, x), (x, y) ∈ E(c) and since E(c) is saturated we have, for z = x∨y, (x, z) ∈ E(c),

that is, x ∗ z−1 ≤ c.
Similarly, we have also y ∗ x−1 ≤ b−1 ≤ b ∗ b−1 ≤ c, hence also (z, x) ∈ E(c), that is,

z ∗ x−1 ≤ c. Then, as x 6= 0, we have by 4.2.3 ((2), (3) and (5)) again,

z ∗ z−1 ≤ (z ∗ (x−1 ∗ x)) ∗ z−1 ≤ z ∗ x−1 ∗ x ∗ z−1 ≤ c ∗ c−1 ≤ a

so that x⊕ y ≤ z ⊕ z ≤ EU(a). Thus, E(b) ≤ EU(a).


