Sandra Mantovani*

Università degli Studi di Milano

Push forwards of crossed squares

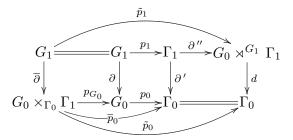
It is well known that given a crossed module $\partial: G_1 \to G_0$ of groups, then:

ker ∂ is G_0 -invariant, so that ker $\partial \to G_0$ is a crossed module;

the action of G_0 on the abelian group ker ∂ passes to coker ∂ so that ker $\partial \rightarrow \operatorname{coker} \partial$ is still a crossed module.

We show that there is a corresponding result if we start with a crossed square (an internal crossed module in the category of crossed modules):

and we take the homotopical version of kernels and cokernels, using pullbacks for the first and push forwards for the second, so that in the diagram



both (p_1, \overline{p}_0) and $(\tilde{p}_1, \tilde{p}_0)$ give rise to crossed squares.

References:

- P. Carrasco, A. R. Garzón, E. M. Vitale, On categorical crossed module, *Theory and Applications of Categories* 16 (2006) 585-618.
- [2] A. Cigoli, S. Mantovani, G. Metere, A Push Forward Construction and the Comprehensive Factorization for Internal Crossed Modules, *Applied Categorical Struc*tures (2013).
- [3] D. Conduché, Simplicial Crossed Modules and Mapping Cones, Georgian Mathematical Journal, 10 (2003) 623-636.
- [4] B. Noohi, On weak maps between 2-groups, Available as arXiv:math/0506313v3 (2008).

^{*}Joint work with L. Pizzamiglio.