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Push forwards of crossed squares

It is well known that given a crossed module ∂ : G1 → G0 of groups, then:

ker ∂ is G0 -invariant, so that ker ∂ → G0 is a crossed module;

the action of G0 on the abelian group ker ∂ passes to coker ∂ so that ker ∂ →
coker ∂ is still a crossed module.

We show that there is a corresponding result if we start with a crossed square (an

internal crossed module in the category of crossed modules):
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and we take the homotopical version of kernels and cokernels, using pullbacks for the

first and push forwards for the second, so that in the diagram
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both (p1, p0) and (p̃1, p̃0) give rise to crossed squares.
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