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Internal crossed modules

Let C be a semi-abelian category satisfying (SH) (i.e. where two equivalence relation
centralize each other as soon as their normalizations commute).
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Internal crossed modules

Let C be a semi-abelian category satisfying (SH) (i.e. where two equivalence relation
centralize each other as soon as their normalizations commute).

An internal crossed module (9, €) in C is a morphism 0 together with an action &

GG — > G —2 Gy
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Internal crossed modules

Let C be a semi-abelian category satisfying (SH) (i.e. where two equivalence relation
centralize each other as soon as their normalizations commute).

An internal crossed module (9, €) in C is a morphism 0 together with an action &

GG — > G —2 Gy

such that the following squares commute:

GG X5 G

on | |
13

GopG ——= G

o |

GobGo G
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Internal crossed modules

A morphism of crossed modules (8’,&’) — (9, €) is a pair (f, fo) of maps that makes
the following diagram commute:

fobf
HobH e GobG

o

H4f>G
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Internal crossed modules

A morphism of crossed modules (8’,&’) — (9, €) is a pair (f, fo) of maps that makes
the following diagram commute:

fobf
HobH e GobG

o

H4f>G

A

Hy —— Gy
fo

These data form a category XMod(C) equivalent to Grpd(C) [G. Janelidze '03].

Alan Cigoli Extention theory and the calculus of butterflies



Internal crossed modules

A morphism of crossed modules (8’,&’) — (9, €) is a pair (f, fo) of maps that makes
the following diagram commute:

fobf
HobH e GobG

o

H4f>G

A

Hy —— Gy
fo
These data form a category XMod(C) equivalent to Grpd(C) [G. Janelidze '03].

This equivalence extends to a biequivalence of bicategories [Abbad, Mantovani,
Metere, Vitale '13].
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Internal crossed modules

We can define homotopy invariants:
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Internal crossed modules

We can define homotopy invariants:

71-1(6’) —_— 71-1(8)

ker(8' )z

1}
HQ — (o
fo
coker( /) coker(9)
m0(8") 0(9)

m1(0) is central in C.
Bourn's global direction of a groupoid translates in terms of crossed modules as:

m1(0) =——= m1(9)

Ik

G x¢ Gg —>mp(9)
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Internal crossed modules

Translation of some special morphisms:

final disc. fib. To-cart.

7r18’ —>m o mé)’ >> m 0 7'(18/ — m0

vy

H——G

R

Hy —= Gy Hy — Go Ho — Go

=TI <<
I <<

47
<—
<—

71-08’ — Troa 7\'03/ — 7T0(9 71'08, — 71’08

[C., Mantovani,
Metere '13]

fully faith.

71'18/ p— 7T16

v

o

HO%GU

00" —> e

weak equiv.

7\'18/ p— 71'18

v

H——G
Hy — Gp
7706’ — ﬂoa

[Everaert, Kieboom,
Van der Linden '04]
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Internal crossed modules

Translation of some special morphisms:

final disc. fib. To-cart.

7r18’ —>m o mé)’ >> m 0 7'(18/ — m0

vy

H——G

R

=TI <<
I <<

Hy — Go Ho — Go Ho — Go
oL o4
71-08’ — Troa 7\'03/ — 7T0(9 71'08, —> 71’08

[C., Mantovani,
Metere '13]

We have (among others) two factorization systems:

(final, disc. fib.)
n U
(mo-inv.,  mo-cart.)

fully faith.

71'18/ p— 7T16

v

o

HO%GU

00" —> e

weak equiv.

7\'18/ p— 71'18

v

H——G
Hy — Gp
7706’ — ﬂoa

[Everaert, Kieboom,
Van der Linden '04]
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Butterflies

Internal butterflies
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Butterflies

Introduced by Noohi in the category of groups, further developed in the semi-abelian
context [Abbad, Mantovani, Metere, Vitale '13].
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Butterflies

Introduced by Noohi in the category of groups, further developed in the semi-abelian
context [Abbad, Mantovani, Metere, Vitale '13].

A butterfly E: (8',¢') & (9,€) is a commutative diagram of the form

\/
/\
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Butterflies

Introduced by Noohi in the category of groups, further developed in the semi-abelian
context [Abbad, Mantovani, Metere, Vitale '13].

A butterfly E: (8',¢') & (9,€) is a commutative diagram of the form

\/
/\

such that

(k,7v) is a complex, i.e. v-k =0,
(¢, 0) is short exact,

The action of E on H induced by that of Hy on H via 6 makes x: H — E a
crossed module,

. The action of E on G induced by that of Gy on G via v makes t: g — E a

crossed module.
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Butterflies

Introduced by Noohi in the category of groups, further developed in the semi-abelian
context [Abbad, Mantovani, Metere, Vitale '13].

A butterfly E: (8',¢') & (9,€) is a commutative diagram of the form

\/
/\

such that

(k,7v) is a complex, i.e. v-k =0,
(¢, 0) is short exact,

The action of E on H induced by that of Hy on H via 6 makes x: H — E a
crossed module,

. The action of E on G induced by that of Gy on G via v makes t: g — E a

crossed module.

A morphism of butterflies E, E’: (0",¢&") - (0,&) is an arrow o: E — E’ commuting
with the k's, the ('s, the d's and the ~'s.
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Butterflies

Horizontal composition:

H G K
K l/
NSNS
) E o E’ )
PR PN
Ho Go Ko
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Butterflies

Horizontal composition:

E X,Y,(;/ El
H ’ G ° K
" L/
) E P E’ E}
HQ Gg Kg
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Butterflies

Horizontal composition:
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Butterflies

Horizontal composition:

Q
‘fq
EX7,5' El

A

L,5’>
H ’ G ° K

K L/

) E F) E’ E}
Ho Gg Kg
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Butterflies

Horizontal composition:

. I .

E ><,%5/ E’

(r,0) (0,.)
/ L-ﬁ’> \
‘i
H ’ G ° K
K L/
E P E’
Ho Go Ko
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Butterflies

Horizontal composition:

Identity butterfly:

&y

G><1§Go

Go

o
X
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Butterflies

Butterfly composition extends to 2-cells, and these data form a bicategory Bfly(C)
whose hom-categories are groupoids.
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Butterflies

Butterfly composition extends to 2-cells, and these data form a bicategory Bfly(C)
whose hom-categories are groupoids.

The 2-category of crossed modules embeds in the bicategory of butterflies:

XMod(C) — Bfly(C)
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Butterflies

Butterfly composition extends to 2-cells, and these data form a bicategory Bfly(C)
whose hom-categories are groupoids.

The 2-category of crossed modules embeds in the bicategory of butterflies:
XMod(C) — Bfly(C)

Butterflies coming from morphisms:
H G
o’ E a
;//Z \

Ho Go
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Butterflies

Butterfly composition extends to 2-cells, and these data form a bicategory Bfly(C)
whose hom-categories are groupoids.

The 2-category of crossed modules embeds in the bicategory of butterflies:
XMod(C) — Bfly(C)

Butterflies coming from morphisms:
H G
o’ E a
V2
2R
Ho Go

In fact, Bfly(C) is the bicategory of fractions of XMod(C) with respect to weak
equivalences.
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Butterflies

Every butterfly is associated with a span of crossed module morphisms:

where the morphism (p1,d) is a weak equivalence.
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Butterflies

Every butterfly is associated with a span of crossed module morphisms:

m0 == m1(kft) —> m10
Y z Y
Hx G
AR
H 20 G
N 7
N R L
~
A\ £
8/ E a
/ \
Ho Go
, 4
700" ——= mo(Kk#t) —> m0

where the morphism (p1, d) is a weak equivalence.

This allows us to extend the definition of my and m; to butterflies.
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Extensions

Extensions
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Extensions

If C is action representative, for any object K there is a canonical crossed module:

)
K — > Aut(K)
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Extensions

If C is action representative, for any object K there is a canonical crossed module:
Ik
K —— Aut(K)

. k f . . .
Every extension KP>—— X ——>Y s associated with a butterfly:

\/
/\

Aut(K)
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Extensions

If C is action representative, for any object K there is a canonical crossed module:
Ik
K —— Aut(K)
Every extension K>L> X ;DY is associated with a butterfly:
0 \
Ayk /
Y Aut(

Ay =Y T molk = Out(K)

K)

<+—

whose image under 7 is the so called “abstract kernel” of the extension.
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Extensions

If C is action representative, for any object K there is a canonical crossed module:
Ik
K —— Aut(K)
Every extension K>L> X ;DY is associated with a butterfly:
0 \
Ayk /
Y Aut(

Ay =Y T molk = Out(K)

K)

<+—

whose image under 7 is the so called “abstract kernel” of the extension.

We can denote by Ext(Y, K, ¢) the set of isomorphism classes of butterflies in
Bfly(Ay, Ix) inducing ¢ on 7.
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Extensions

If C is action representative, for any object K there is a canonical crossed module:
Ik
K —— Aut(K)
Every extension K>L> X ;DY is associated with a butterfly:
0 \
Ayk /
Y Aut(

Ay =Y T molk = Out(K)

K)

<+—

whose image under 7 is the so called “abstract kernel” of the extension.

We can denote by Ext(Y, K, ¢) the set of isomorphism classes of butterflies in
Bfly(Ay, Ix) inducing ¢ on 7.

Global direction of Ix: (ZK A Out(K),£)
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Extensions

If C is action representative, for any object K there is a canonical crossed module:
Ik
K —— Aut(K)
Every extension K>L> X ;DY is associated with a butterfly:
0 \
Ayk /
Y Aut(

Ay =Y T molk = Out(K)

K)

<+—

whose image under 7 is the so called “abstract kernel” of the extension.

We can denote by Ext(Y, K, ¢) the set of isomorphism classes of butterflies in
Bfly(Ay, Ix) inducing ¢ on 7.

Global direction of Ix: (ZK 2 Out(K),£) induces (ZK > Y, $*¢)
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Extensions

Alternative embedding for abelian extensions:

oA\kXon
Y/ xv
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Extensions

Alternative embedding for abelian extensions:
A A
\\;k y
0 X 0
PN
Y Y

With this choice we have identity on 7 and 7.
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Extensions

Alternative embedding for abelian extensions:
\\;k /

With this choice we have identity on 7 and 7.

In particular, we consider butterflies of this kind where domain and codomain are

(ZK 2 Y, ¢*€). We can denote by H3(Y, ZK, ¢*£) the abelian group of isomorphism
classes of such butterflies.
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Extensions

Alternative embedding for abelian extensions:
\\;k /

With this choice we have identity on 7 and 7.

In particular, we consider butterflies of this kind where domain and codomain are

(ZK 2 Y, ¢*€). We can denote by H3(Y, ZK, ¢*£) the abelian group of isomorphism
classes of such butterflies.

Going back to general extensions

\/
/\

Aut(K)
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Extensions

Alternative embedding for abelian extensions:

\/
/\

With this choice we have identity on 7 and 7.

In particular, we consider butterflies of this kind where domain and codomain are

(ZK N Y, ¢*€). We can denote by H3(Y, ZK, ¢*£) the abelian group of isomorphism
classes of such butterflies.

By factorizing
E— ZK K
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Extensions

Alternative embedding for abelian extensions:

\/
/\

With this choice we have identity on mg and 7.

In particular, we consider butterflies of this kind where domain and codomain are

(ZK 5 Y, ¢*€). We can denote by H3(Y, ZK, ¢*£) the abelian group of isomorphism
classes of such butterflies.

By factorizing and composing...

)

—

\/
/\

ZK
Y Aut(K)
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Extensions

Alternative embedding for abelian extensions:

\/
/\

With this choice we have identity on mg and 7.

In particular, we consider butterflies of this kind where domain and codomain are

(ZK 5 Y, ¢*€). We can denote by H3(Y, ZK, ¢*£) the abelian group of isomorphism
classes of such butterflies.

By factorizing and composing...

\/
/\

Aut(K)
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Extensions

We get a simply transitive action:

H2(Y, ZK, ¢*¢) x Ext(Y, K, ¢) — Ext(Y, K, $)
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Extensions

We get a simply transitive action:
H2(Y, ZK, $*¢) x Ext(Y, K, ¢) = Ext(Y, K, ¢)

This is the intrinsic Schreier-Mac Lane theorem [Bourn '08].
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Extensions

Given a crossed module
KobK — = K — 2+ K,
and a morphism

Y e 7o (0)
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Extensions

Given a crossed module
KobK — = K — 2+ K,
and a morphism

Y e 7o (0)

m1(0) is endowed with a Y-module structure (let ¢*& be the corresponding action)
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Extensions

Given a crossed module
KobK — = K — 2+ K,
and a morphism
Y o m0(0)
m1(0) is endowed with a Y-module structure (let ¢*& be the corresponding action)

We denote by Ext(Y, 9, ¢) the set of isomorphism classes of extensions of Y by (9, &)
inducing ¢ on my. That is, the triples (k, f, ) that make the following diagram a
butterfly with its 7o image:
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Extensions

Given a crossed module
KobK — = K — 2+ K,
and a morphism
Y o m0(0)
m1(0) is endowed with a Y-module structure (let ¢*& be the corresponding action)

We denote by Ext(Y, 9, ¢) the set of isomorphism classes of extensions of Y by (9, &)
inducing ¢ on my. That is, the triples (k, f, ) that make the following diagram a
butterfly with its 7o image:

Either Ext(Y, 0, ¢) is empty, or it is a simply transitive H*(Y, 71(0), ¢*€)-set.
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