Extention theory and the calculus of butterflies

Alan Cigoli Università degli Studi di Milano (joint work with G. Metere)

Categorical Methods in Algebra and Topology workshop in honour of Manuela Sobral on the occasion of her 70th birthday Coimbra, January 26, 2014

Internal crossed modules

Let $\mathcal C$ be a semi-abelian category satisfying (SH) (i.e. where two equivalence relation centralize each other as soon as their normalizations commute).

Let $\mathcal C$ be a semi-abelian category satisfying (SH) (i.e. where two equivalence relation centralize each other as soon as their normalizations commute).

An internal crossed module (∂,ξ) in $\mathcal C$ is a morphism ∂ together with an action ξ

$$G_0
ightharpoonup G \xrightarrow{\xi} G \xrightarrow{\partial} G_0$$

Let $\mathcal C$ be a semi-abelian category satisfying (SH) (i.e. where two equivalence relation centralize each other as soon as their normalizations commute).

An internal crossed module (∂,ξ) in $\mathcal C$ is a morphism ∂ together with an action ξ

$$G_0 \flat G \xrightarrow{\xi} G \xrightarrow{\partial} G_0$$

such that the following squares commute:

$$G \triangleright G \xrightarrow{\chi_G} G$$

$$\partial \triangleright 1 \downarrow \qquad \qquad \qquad \parallel$$

$$G_0 \triangleright G \xrightarrow{\xi} G$$

$$1 \triangleright \partial \downarrow \qquad \qquad \downarrow \partial$$

$$G_0 \triangleright G_0 \xrightarrow{\chi_{G_0}} G_0$$

A morphism of crossed modules $(\partial', \xi') \to (\partial, \xi)$ is a pair (f, f_0) of maps that makes the following diagram commute:

$$\begin{array}{ccc} H_0 \flat H & \xrightarrow{f_0 \flat f} & G_0 \flat G \\ \xi' & & & & \xi \\ H & \xrightarrow{f} & & G \\ \partial' & & & & \partial \\ H_0 & \xrightarrow{f_0} & & G_0 \end{array}$$

A morphism of crossed modules $(\partial', \xi') \to (\partial, \xi)$ is a pair (f, f_0) of maps that makes the following diagram commute:

$$\begin{array}{ccc} H_0 \flat H & \xrightarrow{f_0 \flat f} & G_0 \flat G \\ \xi' \bigvee & & & & \downarrow \xi \\ H & \xrightarrow{f} & G \\ \partial' \bigvee & & & \downarrow \partial \\ H_0 & \xrightarrow{f_0} & G_0 \end{array}$$

These data form a category $\mathsf{XMod}(\mathcal{C})$ equivalent to $\mathsf{Grpd}(\mathcal{C})$ [G. Janelidze '03].

A morphism of crossed modules $(\partial', \xi') \to (\partial, \xi)$ is a pair (f, f_0) of maps that makes the following diagram commute:

$$\begin{array}{ccc} H_0 \flat H & \stackrel{f_0 \flat f}{\longrightarrow} & G_0 \flat G \\ \xi' \bigvee_{} & & \bigvee_{} \xi \\ H & \stackrel{f}{\longrightarrow} & G \\ \partial' \bigvee_{} & & \bigvee_{} \partial' \\ H_0 & \stackrel{}{\longrightarrow} & G_0 \end{array}$$

These data form a category $\mathsf{XMod}(\mathcal{C})$ equivalent to $\mathsf{Grpd}(\mathcal{C})$ [G. Janelidze '03].

This equivalence extends to a biequivalence of bicategories [Abbad, Mantovani, Metere, Vitale '13].

We can define homotopy invariants:

$$\begin{array}{cccc} \pi_1(\partial') & \xrightarrow{\pi_1(f)} & \pi_1(\partial) \\ \ker(\partial') \bigvee & & \bigvee \ker(\partial) \\ & H & \xrightarrow{f} & G \\ & \partial' \bigvee & & \bigvee \partial \\ & H_0 & \xrightarrow{f_0} & G_0 \\ \operatorname{coker}(\partial') \bigvee & & \bigvee \operatorname{coker}(\partial) \\ & & \pi_0(\partial') & \xrightarrow{\pi_0(f)} & \pi_0(\partial) \end{array}$$

We can define homotopy invariants:

$$\begin{array}{cccc} \pi_1(\partial') & \xrightarrow{\pi_1(f)} & \pi_1(\partial) \\ & & & & & & \\ \ker(\partial') \bigvee_{\downarrow} & & & & & \\ & & & & & \\ H & \xrightarrow{f} & & G \\ & & & & & \downarrow \partial \\ & & & & & & \\ H_0 & \xrightarrow{f_0} & & & & \\ \cosher(\partial') & & & & & \\ \pi_0(\partial') & \xrightarrow{\pi_0(f)} & \pi_0(\partial) \end{array}$$

 $\pi_1(\partial)$ is central in \mathcal{C} .

Bourn's global direction of a groupoid translates in terms of crossed modules as:

$$\pi_1(\partial) = \pi_1(\partial)
\downarrow 0
G \bowtie_{\xi} G_0 \longrightarrow \pi_0(\partial)$$

Translation of some special morphisms:

[C., Mantovani, Metere '13] [Everaert, Kieboom, Van der Linden '04] Translation of some special morphisms:

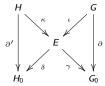
[C., Mantovani, Metere '13] [Everaert, Kieboom, Van der Linden '04]

We have (among others) two factorization systems:

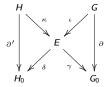
(final, disc. fib.)
$$\cap$$
 \cup (π_0 -inv., π_0 -cart.)

Internal butterflies

A butterfly \widehat{E} : $(\partial', \xi') \hookrightarrow (\partial, \xi)$ is a commutative diagram of the form



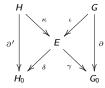
A butterfly \widehat{E} : $(\partial', \xi') \hookrightarrow (\partial, \xi)$ is a commutative diagram of the form



such that

- i. (κ, γ) is a complex, i.e. $\gamma \cdot \kappa = 0$,
- ii. (ι, δ) is short exact,
- iii. The action of E on H induced by that of H_0 on H via δ makes $\kappa\colon H\to E$ a crossed module,
- iv. The action of E on G induced by that of G_0 on G via γ makes $\iota\colon g\to E$ a crossed module.

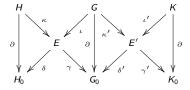
A butterfly \widehat{E} : $(\partial', \xi') \hookrightarrow (\partial, \xi)$ is a commutative diagram of the form



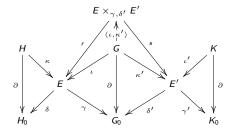
such that

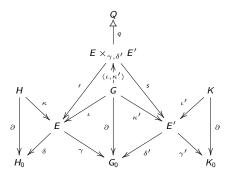
- i. (κ, γ) is a complex, i.e. $\gamma \cdot \kappa = 0$,
- ii. (ι, δ) is short exact,
- iii. The action of E on H induced by that of H_0 on H via δ makes $\kappa\colon H\to E$ a crossed module,
- iv. The action of E on G induced by that of G_0 on G via γ makes $\iota\colon g\to E$ a crossed module.

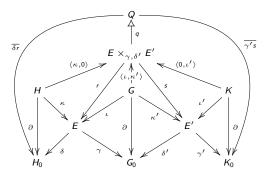
A morphism of butterflies \widehat{E} , \widehat{E}' : $(\partial', \xi') \hookrightarrow (\partial, \xi)$ is an arrow $\alpha \colon E \to E'$ commuting with the κ 's, the ι 's, the δ 's and the γ 's.

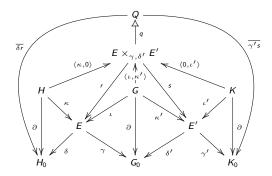




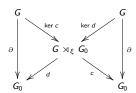








Identity butterfly:



Butterfly composition extends to 2-cells, and these data form a bicategory Bfly(\mathcal{C}) whose hom-categories are groupoids.

Butterfly composition extends to 2-cells, and these data form a bicategory Bfly(\mathcal{C}) whose hom-categories are groupoids.

The 2-category of crossed modules embeds in the bicategory of butterflies:

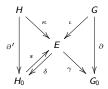
$$\mathsf{XMod}(\mathcal{C}) \to \mathsf{Bfly}(\mathcal{C})$$

Butterfly composition extends to 2-cells, and these data form a bicategory $\mathsf{Bfly}(\mathcal{C})$ whose hom-categories are groupoids.

The 2-category of crossed modules embeds in the bicategory of butterflies:

$$\mathsf{XMod}(\mathcal{C}) \to \mathsf{Bfly}(\mathcal{C})$$

Butterflies coming from morphisms:

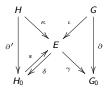


Butterfly composition extends to 2-cells, and these data form a bicategory Bfly(\mathcal{C}) whose hom-categories are groupoids.

The 2-category of crossed modules embeds in the bicategory of butterflies:

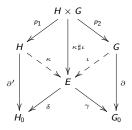
$$\mathsf{XMod}(\mathcal{C}) \to \mathsf{Bfly}(\mathcal{C})$$

Butterflies coming from morphisms:



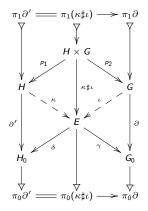
In fact, $Bfly(\mathcal{C})$ is the bicategory of fractions of $XMod(\mathcal{C})$ with respect to weak equivalences.

Every butterfly is associated with a span of crossed module morphisms:



where the morphism (p_1, δ) is a weak equivalence.

Every butterfly is associated with a span of crossed module morphisms:



where the morphism (p_1, δ) is a weak equivalence.

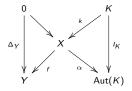
This allows us to extend the definition of π_0 and π_1 to butterflies.

Extensions

$$K \xrightarrow{I_K} Aut(K)$$

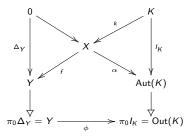
$$K \xrightarrow{I_K} Aut(K)$$

Every extension $K \triangleright \xrightarrow{k} X \xrightarrow{f} \triangleright Y$ is associated with a butterfly:



$$K \xrightarrow{I_K} Aut(K)$$

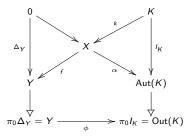
Every extension $K \triangleright \xrightarrow{k} X \xrightarrow{f} Y$ is associated with a butterfly:



whose image under π_0 is the so called "abstract kernel" of the extension.

$$K \xrightarrow{I_K} Aut(K)$$

Every extension $K \triangleright \xrightarrow{k} X \xrightarrow{f} \triangleright Y$ is associated with a butterfly:

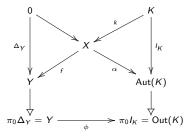


whose image under π_0 is the so called "abstract kernel" of the extension.

We can denote by $\operatorname{Ext}(Y, K, \phi)$ the set of isomorphism classes of butterflies in $\operatorname{Bfly}(\Delta_Y, I_K)$ inducing ϕ on π_0 .

$$K \xrightarrow{I_K} Aut(K)$$

Every extension $K \triangleright \xrightarrow{k} X \xrightarrow{f} \triangleright Y$ is associated with a butterfly:



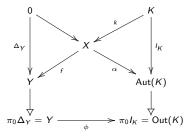
whose image under π_0 is the so called "abstract kernel" of the extension.

We can denote by $\operatorname{Ext}(Y, K, \phi)$ the set of isomorphism classes of butterflies in $\operatorname{Bfly}(\Delta_Y, I_K)$ inducing ϕ on π_0 .

Global direction of I_K : $(ZK \xrightarrow{0} Out(K), \xi)$

$$K \xrightarrow{I_K} Aut(K)$$

Every extension $K \triangleright \xrightarrow{k} X \xrightarrow{f} \triangleright Y$ is associated with a butterfly:



whose image under π_0 is the so called "abstract kernel" of the extension.

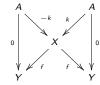
We can denote by $\operatorname{Ext}(Y,K,\phi)$ the set of isomorphism classes of butterflies in $\operatorname{Bfly}(\Delta_Y,I_K)$ inducing ϕ on π_0 .

Global direction of $I_K \colon (ZK \xrightarrow{0} \operatorname{Out}(K), \xi)$ induces $(ZK \xrightarrow{0} Y, \phi^* \xi)$

With this choice we have identity on π_0 and π_1 .

With this choice we have identity on π_0 and π_1 .

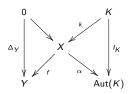
In particular, we consider butterflies of this kind where domain and codomain are $(ZK \xrightarrow{0} Y, \phi^* \xi)$. We can denote by $H^2(Y, ZK, \phi^* \xi)$ the abelian group of isomorphism classes of such butterflies.



With this choice we have identity on π_0 and π_1 .

In particular, we consider butterflies of this kind where domain and codomain are $(ZK \xrightarrow{0} Y, \phi^* \xi)$. We can denote by $H^2(Y, ZK, \phi^* \xi)$ the abelian group of isomorphism classes of such butterflies.

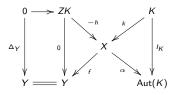
Going back to general extensions

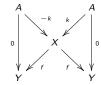


With this choice we have identity on π_0 and π_1 .

In particular, we consider butterflies of this kind where domain and codomain are $(ZK \xrightarrow{0} Y, \phi^* \xi)$. We can denote by $H^2(Y, ZK, \phi^* \xi)$ the abelian group of isomorphism classes of such butterflies.

By factorizing

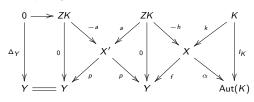


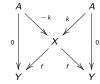


With this choice we have identity on π_0 and π_1 .

In particular, we consider butterflies of this kind where domain and codomain are $(ZK \xrightarrow{0} Y, \phi^* \xi)$. We can denote by $H^2(Y, ZK, \phi^* \xi)$ the abelian group of isomorphism classes of such butterflies.

By factorizing and composing...

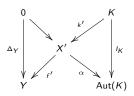




With this choice we have identity on π_0 and π_1 .

In particular, we consider butterflies of this kind where domain and codomain are $(ZK \xrightarrow{0} Y, \phi^* \xi)$. We can denote by $H^2(Y, ZK, \phi^* \xi)$ the abelian group of isomorphism classes of such butterflies.

By factorizing and composing...



We get a simply transitive action:

$$\mathsf{H}^2(Y, \mathsf{Z}\mathsf{K}, \phi^*\xi) \times \mathsf{Ext}(Y, \mathsf{K}, \phi) \to \mathsf{Ext}(Y, \mathsf{K}, \phi)$$

We get a simply transitive action:

$$H^2(Y, ZK, \phi^*\xi) \times Ext(Y, K, \phi) \rightarrow Ext(Y, K, \phi)$$

This is the intrinsic Schreier-Mac Lane theorem [Bourn '08].

$$K_0
arrow K \xrightarrow{\xi} K \xrightarrow{\partial} K_0$$

and a morphism

$$Y \xrightarrow{\phi} \pi_0(\partial)$$

$$K_0
arrow K \xrightarrow{\xi} K \xrightarrow{\partial} K_0$$

and a morphism

$$Y \xrightarrow{\phi} \pi_0(\partial)$$

 $\pi_1(\partial)$ is endowed with a Y-module structure (let $\phi^*\overline{\xi}$ be the corresponding action)

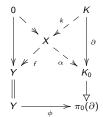
$$K_0
ightarrow K \xrightarrow{\xi} K \xrightarrow{\partial} K_0$$

and a morphism

$$Y \xrightarrow{\phi} \pi_0(\partial)$$

 $\pi_1(\partial)$ is endowed with a Y-module structure (let $\phi^*\overline{\xi}$ be the corresponding action)

We denote by $\operatorname{Ext}(Y,\partial,\phi)$ the set of isomorphism classes of extensions of Y by (∂,ξ) inducing ϕ on π_0 . That is, the triples (k,f,α) that make the following diagram a butterfly with its π_0 image:



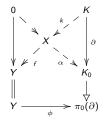
$$K_0
ightharpoonup K \xrightarrow{\xi} K \xrightarrow{\partial} K_0$$

and a morphism

$$Y \xrightarrow{\phi} \pi_0(\partial)$$

 $\pi_1(\partial)$ is endowed with a Y-module structure (let $\phi^*\overline{\xi}$ be the corresponding action)

We denote by $\operatorname{Ext}(Y,\partial,\phi)$ the set of isomorphism classes of extensions of Y by (∂,ξ) inducing ϕ on π_0 . That is, the triples (k,f,α) that make the following diagram a butterfly with its π_0 image:



Theorem

Either $\operatorname{Ext}(Y, \partial, \phi)$ is empty, or it is a simply transitive $\operatorname{H}^2(Y, \pi_1(\partial), \phi^*\overline{\xi})$ -set.

