Preliminaries General Morita theorem Examples and summary

Enriched Morita equivalence for *S*-sorted theories

Matěj Dostál joint work with Jiří Velebil

Czech Technical University in Prague

WCMAT 2014

E ▶ < E ▶

A ■

Preliminaries General Morita theorem Examples and summary

Outline

- History of Morita equivalence results
- Basic notions and our setting
- Our general result
- Examples: sorted Morita equivalence

< 17 >

프 🖌 🛪 프 🕨

History of Morita equivalence results

- Original motivation: module theory (Morita, 1950s)
- Two rings R and S are called Morita equivalent if $_RMod$ is categorically equivalent to $_SMod$
- Result: R ≃_M S iff S is an idempotent modification of a matrix ring R^[n] for some natural n
- Non-additive version Banaschewski, Knauer: For monoids *M* and *N*, it holds that *M*-Act ~ *N*-Act iff *N* is an idempotent modification of *M*.

・ 同 ト ・ ヨ ト ・ ヨ ト

History of Morita equivalence results

- Dukarm, 1980s: Morita-type result for (one-sorted) Lawvere theories.
 Again using the notion of a pseudoinvertible idempotent
- Adámek, Sobral, Sousa, 2006: many-sorted generalisation of Dukarm's result

Our aim:

- Generalise the 2006 result to the enriched setting
- Make the result modular: other notions of an algebraic theory

• 3 > 1

Our setting

- We work with categories enriched over V,
 V being a symmetric monoidal closed category
- Algebraic theory: a Ψ -theory is a category with Ψ -colimits

- Ψ-theory morphism: a Ψ-cocontinuous functor between Ψ-theories
- Algebras for a Ψ-theory T: a subcategory Ψ-Alg(T) of Ψ-limit-preserving functors from [T^{op}, V]

What can Ψ be

 Ψ is a locally small, sound class of weights.

Local smallness – Kelly, Schmitt

 Ψ is a locally small class of weights if for any small \mathcal{D} its free cocompletion $\Psi(\mathcal{D})$ under Ψ -colimits is again small.

Notation: Ψ^+ is a class of weights such that Ψ^+ -colimits commute with Ψ -limits (Ψ -flat weights). Example ($\mathcal{V} = \text{Set}, \Psi \dots$ finite limits): Ψ^+ are weights for filtered colimits.

Soundness – Adámek, Borceux, Lack, Rosický

 Ψ is a sound class of weights if for any Ψ -theory \mathcal{T} it holds that

$$\Psi$$
-Alg $(\mathcal{T}) \simeq \Psi^+(\mathcal{T}).$

イロト イポト イヨト イヨト

$\mathcal{S}\text{-}\mathsf{sorted}$ theories

$\mathcal{S}\text{-}\mathsf{sorted}$ theory

Fix a discrete category S of sorts. A Ψ -theory is S-sorted if it is equipped with a theory morphism $\Psi(S) \to \mathcal{T}$ that is an identity on objects.

(4月) (4日) (4日)

Example

Let $\mathcal{V} = \text{Set}$, Ψ be weights for finite coproducts, $ob(\mathcal{S}) = S$. Then \mathcal{S} -sorted Ψ -theories are exactly the S-sorted algebraic theories of [Adámek,Sobral,Sousa].

Idempotent completion vs. Q

- $\mathcal{V} = \mathsf{Set:}$ idempotent completion $\mathrm{Idem}(\mathcal{T})$ for a theory \mathcal{T} .
- For general V, the role of the idempotent completion is taken by the Cauchy completion Q(T).

Basic Morita theorem

Two Ψ -theories S and T are Morita equivalent iff $Q(S) \simeq Q(T)$. (In the case of $\mathcal{V} = \text{Set}$, $\text{Idem}(S) \simeq \text{Idem}(T)$.)

Cauchy completion: absolute colimit cocompletion of a theory \mathcal{T} .

イロト イポト イヨト イヨト

Idempotent modification of a theory

Given an S-sorted theory \mathcal{T} , a collection of idempotents u is

Adámek, Sobral, Sousa:

a choice of an idempotent $u_s: t_s \to t_s$ from \mathcal{T} for every sort $s \in \operatorname{ob}(\mathcal{S})$.

Our approach:

a functor $u: S \to Q(\mathcal{T})$.

イロト イポト イヨト イヨト

An idempotent modification $u\mathcal{T}u$ of \mathcal{T} is the closure of $\langle u_s \mid s \in ob(\mathcal{T}) \rangle$ (of the image of $u : S \to Q(\mathcal{T})$) under coproducts. Ψ -colimits.

Pseudoinvertible idempotent

Given a collection of idempotents u for an S-sorted theory \mathcal{T} , we say that *u* is pseudoinvertible if

Adámek.Sobral.Sousa:

for every sort s from S there is an idempotent $u_s: t \to t$ from uTu and morphisms $m: s \rightarrow t$ and $e: t \rightarrow s$ s.t.

$$\begin{array}{c} t \xrightarrow{u_s} t \\ m \uparrow & \downarrow e \\ s \xrightarrow{id_s} s \end{array}$$

Our approach:

the following equivalence

$$\mathcal{Q}(u\mathcal{T}u)\simeq \mathcal{Q}(\mathcal{T}).$$

holds.

Note: the definitions coincide for $\mathcal{V} = \text{Set}$.

물 제 문 제 문 제

Theorem

Morita theorem

Two S-sorted Ψ -theories \mathcal{T}_1 and \mathcal{T}_2 are Morita equivalent if and only if $\mathcal{T}_2 \simeq u \mathcal{T}_1 u$ for some pseudoinvertible u.

Proof:

• That $\mathcal{T}_1 \simeq u \mathcal{T}_1 u$ is easy; one direction follows directly from this observation.

If \mathcal{T}_2 and \mathcal{T}_1 are Morita equivalent, then $\mathcal{Q}(\mathcal{T}_2) \simeq \mathcal{Q}(\mathcal{T}_1)$.

- Use the above equivalence and the sorting functor Ψ(S) → T₂ to construct a pseudoinvertible idempotent u : S → Q(T₁).
- The idempotent gives rise to uT_1u which is easily shown to be equivalent to T_2 .

イロト イポト イヨト イヨト

Examples, Ψ weights for coproducts

- V = Set: We get a short and compact proof of the characterisation of Morita equivalent algebraic (S-sorted) theories. Thus we reprove and generalise the results of Dukarm and Adámek, Sobral, Sousa.
- V = Pos, V = Cat: Two S-sorted theories T₁ and T₂ are Morita equivalent if and only if T₂ ≃ uT₁u. Pseudoinvertible idempotent: for each sort s in S there needs to be an idempotent u_s : t → t from uT₁u and morphisms m : s → t and e : t → s such that

イロン イヨン イヨン イヨン

Examples, Ψ empty class of weights

- $\mathcal{V} = \mathsf{Ab}$: We get the standard Morita result.
- $\mathcal{V} =$ Set: For one-object \mathcal{T} , we recreate the results of Banaschewski and Knauer. This generalises straightforwardly for many-sorted \mathcal{T} .
- $\mathcal{V} = \mathsf{Pos:}$ Morita equivalence for partially ordered monoids. We get the result of Laan and generalise it to the many-sorted case.
- $\mathcal{V} = \text{Cat:}$ Morita equivalence for Cat-enriched monoids and categories.

・ 同 ト ・ ヨ ト ・ ヨ ト

Future work

- What happens when we enrich over $\mathcal V$ being simplicial sets?
- Study the enrichment which yields probabilistic metric spaces as enriched categories.
- Let V = [Set_{fp}, Set] with composition. Then a monoid in V is a finitary monad. Do we get an interesting Morita theorem for finitary monads?

(4回) (1日) (日)

References

- Adámek, Borceux, Lack, Rosický: A classification of accessible categories, 2002
- Adámek, Sobral, Sousa: Morita equivalence of many-sorted algebraic theories, 2006
- Banaschewski: Functors into categories of *M*-sets, 1972
- Dukarm: Morita equivalence of algebraic theories, 1988
- Kelly, Schmitt: Notes on enriched categories with colimits of some class, 2005
- Knauer: Projectivity of acts and Morita equivalence of monoids, 1971
- Morita: Duality for modules and its applications to the theory of rings with minimum condition, 1958

<ロ> (日) (日) (日) (日) (日)