◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

1/19

A Galois-theoretic approach to the covering theory of quandles

Valérian Even

UCL

25th January 2014, Universidade de Coimbra

2 Central extension in the exact context

Introduction to quandles

- 2 Central extension in the exact context
- Overing theory of quandles

Definition (D. Joyce, S. Matveev)

A *quandle* is a set A with two binary operations \triangleleft and \triangleleft^{-1} satisfying the following identities :

<ロト < 部ト < 目ト < 目ト 目 のへの 4/19

・ロト ・ 日 ・ ・ 日 ・ ・

注入 注

4/19

Definition (D. Joyce, S. Matveev)

A *quandle* is a set A with two binary operations \triangleleft and \triangleleft^{-1} satisfying the following identities :

• $a \triangleleft a = a$ and $a \triangleleft^{-1} a = a$ for all $a \in A$;

・ロト ・ 日 ・ ・ 日 ・ ・

Definition (D. Joyce, S. Matveev)

A *quandle* is a set A with two binary operations \triangleleft and \triangleleft^{-1} satisfying the following identities :

- $a \triangleleft a = a$ and $a \triangleleft^{-1} a = a$ for all $a \in A$;
- $(a \lhd b) \lhd^{-1} b = a$ and $(a \lhd^{-1} b) \lhd b = a$ for all $a, b \in A$;

Definition (D. Joyce, S. Matveev)

A *quandle* is a set A with two binary operations \triangleleft and \triangleleft^{-1} satisfying the following identities :

•
$$a \lhd a = a$$
 and $a \lhd^{-1} a = a$ for all $a \in A$;

•
$$(a \lhd b) \lhd^{-1} b = a$$
 and $(a \lhd^{-1} b) \lhd b = a$ for all $a, \ b \in A$;

•
$$(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$$
 and
 $(a \lhd^{-1} b) \lhd^{-1} c = (a \lhd^{-1} c) \lhd^{-1} (b \lhd^{-1} c)$ for all $a, b, c \in A$.

Definition (D. Joyce, S. Matveev)

A *quandle* is a set A with two binary operations \triangleleft and \triangleleft^{-1} satisfying the following identities :

•
$$a \lhd a = a$$
 and $a \lhd^{-1} a = a$ for all $a \in A$;

•
$$(a \lhd b) \lhd^{-1} b = a$$
 and $(a \lhd^{-1} b) \lhd b = a$ for all $a, \ b \in A$;

•
$$(a \lhd b) \lhd c = (a \lhd c) \lhd (b \lhd c)$$
 and
 $(a \lhd^{-1} b) \lhd^{-1} c = (a \lhd^{-1} c) \lhd^{-1} (b \lhd^{-1} c)$ for all $a, b, c \in A$.

Denote Qnd the corresponding category. It is a variety of universal algebras.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

5/19

Examples

Let A be a set, define a ⊲ b = a and a ⊲⁻¹ b = a for all a, b ∈ A.

・ロト ・ 日 ・ ・ 日 ・ ・

3

5/19

Examples

Let A be a set, define a ⊲ b = a and a ⊲⁻¹ b = a for all a, b ∈ A. It defines a quandle named *trivial quandle*. The corresponding category is denoted Qnd*.

Examples

- Let A be a set, define a ⊲ b = a and a ⊲⁻¹ b = a for all a, b ∈ A. It defines a quandle named *trivial quandle*. The corresponding category is denoted Qnd*.
- Let G be a group, define g ⊲ h = h⁻¹gh and g ⊲⁻¹ h = hgh⁻¹ for all g, h ∈ G. It defines the conjugation quandle.

Examples

- Let A be a set, define a ⊲ b = a and a ⊲⁻¹ b = a for all a, b ∈ A. It defines a quandle named *trivial quandle*. The corresponding category is denoted Qnd*.
- Let G be a group, define $g \triangleleft h = h^{-1}gh$ and $g \triangleleft^{-1} h = hgh^{-1}$ for all g, $h \in G$. It defines the *conjugation quandle*.
- Let G be a group, define g ⊲ h = hg⁻¹h. This defines the core quandle.

The right translation $\rho_b \colon A \to A$ defined by $\rho_b(a) = a \triangleleft b$ is an automorphism.

The right translation $\rho_b \colon A \to A$ defined by $\rho_b(a) = a \lhd b$ is an automorphism.

Let Inn(A) be the subgroup of Aut(A) generated by the elements ρ_b with $b \in A$.

The right translation $\rho_b \colon A \to A$ defined by $\rho_b(a) = a \triangleleft b$ is an automorphism.

Let Inn(A) be the subgroup of Aut(A) generated by the elements ρ_b with $b \in A$.

Definition

A connected component of A is an orbit under the action of Inn(A).

The right translation $\rho_b: A \to A$ defined by $\rho_b(a) = a \triangleleft b$ is an automorphism.

Let Inn(A) be the subgroup of Aut(A) generated by the elements ρ_b with $b \in A$.

Definition

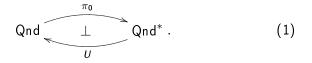
A connected component of A is an orbit under the action of $\operatorname{Inn}(A)$. Two elements a and b of a quandle A are in the same connected component if there exist $a_1, a_2, \ldots a_n \in A$ and $\triangleleft^{\alpha_i} \in \{\triangleleft, \triangleleft^{-1}\}$ such that $(\ldots(((a \triangleleft^{\alpha_1} a_1) \triangleleft^{\alpha_2} a_2) \ldots) \triangleleft^{\alpha_n} a_n = b$.

The set of connected components of A is denoted by $\pi_0(A)$.

The set of connected components of A is denoted by $\pi_0(A)$. It is a trivial quandle.

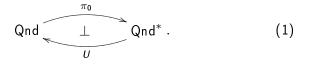
The set of connected components of A is denoted by $\pi_0(A)$. It is a trivial quandle.

We have the following adjunction :



The set of connected components of A is denoted by $\pi_0(A)$. It is a trivial quandle.

We have the following adjunction :



Remark

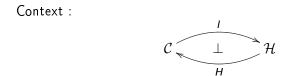
The category Qnd is not Mal'tsev neither Goursat ($R \circ S = S \circ R$ or $R \circ S \circ R = S \circ R \circ S$ for any congruences R, S on an object A).

- 2 Central extension in the exact context
- Overing theory of quandles

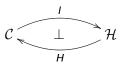
Context :

 Н

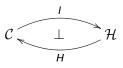
 \mathcal{H}



• C is an exact category;



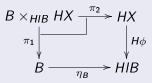
- \mathcal{C} is an exact category;
- *H* is a Birkhoff subcategory of *C* (i.e. closed under quotients and subobjects);



- \mathcal{C} is an exact category;
- *H* is a Birkhoff subcategory of *C* (i.e. closed under quotients and subobjects);
- the functor I is left adjoint to the inclusion functor H.

Definition

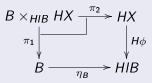
A Birkhoff subcategory \mathcal{H} is *admissible* with respect to \mathcal{C} when the functor I preserves a certain type of pullbacks :



where

Definition

A Birkhoff subcategory \mathcal{H} is *admissible* with respect to \mathcal{C} when the functor I preserves a certain type of pullbacks :



where

• $X \in \mathcal{H}$;

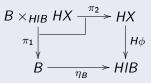
・ロト ・ 日 ・ ・ 日 ・ ・

3 x 3

10/19

Definition

A Birkhoff subcategory \mathcal{H} is *admissible* with respect to \mathcal{C} when the functor I preserves a certain type of pullbacks :

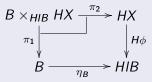


where

- $X \in \mathcal{H}$;
- $\phi: X \to HIB$ is a regular epimorphism.

Definition

A Birkhoff subcategory \mathcal{H} is *admissible* with respect to \mathcal{C} when the functor I preserves a certain type of pullbacks :



where

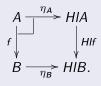
- $X \in \mathcal{H}$;
- $\phi: X \to HIB$ is a regular epimorphism.
- $\eta_B \colon B \to HIB$ is the unit of the adjunction at object B.

・ロト ・四ト ・ヨト ・ヨー うへで

11/19

Definition

A regular epimorphism $f: A \rightarrow B$ is a *trivial extension* when

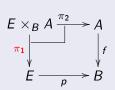


is a pullback.

<ロ> (四) (四) (三) (三) (三) (三)

Definition

A regular epimorphism $f: A \to B$ is a *central extension* if there exists a regular epimorphism $p: E \to B$ such that the pullback π_1 of f along p is a trivial extension.



- 2 Central extension in the exact context
- 3 Covering theory of quandles

▲□▶ ▲圖▶ ▲≧▶

14/19

Definition (M. Eisermann)

A quandle homomorphism $f: A \to B$ is a *covering in the sense of Eisermann* if it is surjective and f(a) = f(b) implies $c \triangleleft a = c \triangleleft b$ for all $a, b, c \in A$.

・ロト ・ 日 ・ ・ 日 ・ ・

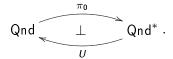
14/19

Definition (M. Eisermann)

A quandle homomorphism $f: A \to B$ is a *covering* in the sense of *Eisermann* if it is surjective and f(a) = f(b) implies $c \triangleleft a = c \triangleleft b$ for all $a, b, c \in A$. For short, we shall call such a morphism an *E-covering*.

Definition (M. Eisermann)

A quandle homomorphism $f: A \to B$ is a *covering in the sense of Eisermann* if it is surjective and f(a) = f(b) implies $c \triangleleft a = c \triangleleft b$ for all $a, b, c \in A$. For short, we shall call such a morphism an *E-covering*.



Lemma

Given a quandle A, there exists a class of congruences \sim_N , where N is a normal subgroup of lnn(A), such that

 $\sim_N \circ R = R \circ \sim_N$,

for any congruence R on A.

Lemma

Given a quandle A, there exists a class of congruences \sim_N , where N is a normal subgroup of lnn(A), such that

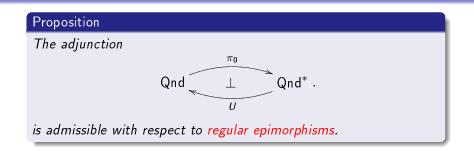
 $\sim_N \circ R = R \circ \sim_N$,

for any congruence R on A.

Remark

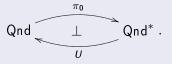
The kernel pair of $\eta_A \colon A \to \pi_0(A)$ is such a congruence.

・ロト (母) (臣) (E) (



Proposition

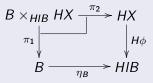
The adjunction



is admissible with respect to regular epimorphisms.

Remark

The reflection of Qnd onto Qnd* is not semi-left-exact. (Cassidy-Hébert-Kelly, 1985)



16/19

17/19

Proposition

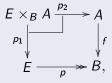
A surjective homomorphism $f : A \to B$ is a trivial extension if and only if the condition (T) is verified : (T) : $\forall a, a' \in A$, if f(a) = f(a') and [a] = [a'], then a = a'.

Proposition

A surjective homomorphism $f : A \to B$ is a trivial extension if and only if the condition (T) is verified : (T) : $\forall a, a' \in A$, if f(a) = f(a') and [a] = [a'], then a = a'.

Lemma

Given the pullback



where p is a surjective homomorphism, then : f is an *E*-covering if and only if p_1 is an *E*-covering.

Corollary

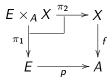
If $f: A \rightarrow B$ is a central extension then $f: A \rightarrow B$ is an E-covering.

<ロ> (四) (四) (三) (三) (三) (三)

18/19

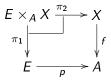
Corollary

If $f: A \rightarrow B$ is a central extension then $f: A \rightarrow B$ is an E-covering.



Corollary

If $f: A \rightarrow B$ is a central extension then $f: A \rightarrow B$ is an E-covering.



Theorem

 $f: A \rightarrow B$ is an E-covering if and only if it is a central extension.

<ロト < 部 > < 目 > < 目 > こ 目 の Q () 18/19

References

- M. Eisermann, Quandle coverings and their Galois correspondence, arXiv :math/0612459v3 [math.GT] (2007)
- G. Janelidze and G. M. Kelly, Galois theory and a general notion of central extension, *J. Pure Appl. Algebra* **97** (1994) 135-161.
- V. Even, A Galois-theoretic approach to the covering theory of quandles, *Appl. Categ. Structures*, published online.