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Polarities
A polarity is a triple (X ,Y ,R) where X and Y are non-empty sets
and R ⊆ X × Y is a binary relation from X to Y .

Let L be a bounded lattice and consider

F(L) = {filters of L} and I(L) = {ideals of L}

For R ⊆ F(L)× I(L) defined as follows

FRI ⇐⇒ F ∩ I 6= ∅,

the triple (F(L), I(L),R) is a polarity.
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The polarity given by non-empty intersection between the filters and
the ideals of L yields a Galois connection:

( )R : P(F(L))� P(I(L)) : R( )

where
AR = { I | ∀F ∈ A FRI }

and
RB = {F | ∀I ∈ B FRI }.

The set of Galois closed subsets G(L) = {U ⊆ F(L) | U =R (UR) }
is a complete lattice.
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Completions of lattices

Let L = 〈L;∨,∧, 0, 1〉 be a bounded lattice.

(e,C) is a completion of L if C is a complete lattice and
e : L ↪→ C is a lattice embedding.

For the embedding e : L→ G(L) defined by
e(a) = {F ∈ (L) | a ∈ F }, (e,G(L)) is a completion of L.
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Compactness

A completion (e,C) is compact if∧
e(F ) ≤

∨
e(I )⇔ F ∩ I 6= ∅

for every filter F and every ideal I of L.

The completion (e,G(L)) is compact.

Maria João Gouveia CAUL & Universidade de Lisboa



Compactness

A completion (e,C) is compact if∧
e(F ) ≤

∨
e(I )⇔ F ∩ I 6= ∅

for every filter F and every ideal I of L.

The completion (e,G(L)) is compact.

Maria João Gouveia CAUL & Universidade de Lisboa



Compactness

A completion (e,C) is compact if∧
e(F ) ≤

∨
e(I )⇔ F ∩ I 6= ∅

for every filter F and every ideal I of L.

The completion (e,G(L)) is compact.

Maria João Gouveia CAUL & Universidade de Lisboa



Density

A completion (e,C) is dense if

every element of C is a join of meets of elements of e(L)

At

↪→ ·· ·
∧

e(At)

↪→
∨

t∈T (
∧

e(At))·
L C

and
every element of C is a meet of joins of elements of e(L).

At ⊆ L  
∨

e(At)  
∧
{
∨

e(At) | t ∈ T }
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Density

The completion (e,G(L)) is dense.
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Canonical extensions, Gehrke & Harding (2001)

Let L = 〈L;∨,∧, 0, 1〉 be a bounded lattice.

A canonical extension of L is a completion (e,C) of L that
is simultaneously compact and dense.

Canonical extensions are unique up to isomorphism.

Hence the completion (e,G(L)) of L, or simply G(L), is the
canonical extension of L.
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Perfect lattices

Let L = 〈L;∨,∧, 0, 1〉 be a bounded lattice.

A lattice L is perfect if

- it is complete,
- it is join generated by its completely join-irreducible elements
- it is meet generated by its completely meet-irreducible elements.

The canonical extension G(L) of L is a perfect lattice.
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Perfect lattices and RS frames

Let L be a perfect lattice.

L → (J∞(L),M∞(L),≤)
where

J∞(L) is the set of completely join-irreducible elements of L,

M∞(L) is the set of completely meet-irreducible elements of L

≤ is the order on L restricted to J∞(L)×M∞(L).
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Perfect lattices and RS frames

The polarity (J∞(L),M∞(L),≤) is

separated, i.e.,
if for all x1, x2 ∈ J∞(L) and y1, y2 ∈M∞(L),

(i) x1 6= x2 implies xR
1 6= xR

2 ;
(ii) y1 6= y2 implies Ry1 6= Ry2.

and reduced, i.e.,

(i) for every x ∈ J∞(L) there exists y ∈M∞(L) such that ¬(xRy)
and ∀w ∈ J∞(L) ((w 6= x & xR ⊆ wR)⇒ wRy);

(ii) for every y ∈M∞(L) there exists x ∈ J∞(L) such that ¬(xRy)
and ∀z ∈M∞(L) ((z 6= y & Ry ⊆ Rz)⇒ xRz).

The polarities that are separated and reduced are called RS
frames.
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Perfect lattices and RS frames
(Dunn, Gehrke, Palmigiano (2005), Gehrke(2006))

PerLat (RS)Fr
Gehrke

PerLat :

category of perfect lattices with complete lattice homomorphisms.

RSFr :

category of RS frames with RS morphisms.

1
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RS frames of canonical extensions of lattices

Let L be a bounded lattice and let G(L) be its canonical
extension.

J∞(G(L)) = F0(L) andM∞(G(L)) = I0(L) where

F0(L) is the set of all filters belonging to a maximal filter-ideal
pair of L;
and
I0(L) is the set of all ideals belonging to a maximal filter-ideal
pair of L.
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Maximal filter-ideal pairs and maximal partial homomorphisms

Let L be a bounded lattice.

A maximal filter-ideal pair of L is a pair (F , I ) such that

F is a filter and I is an ideal of L;
F is maximal in F(L) with respect to not intersect I ;
I is maximal in I(L) with respect to not intersect F .

A partial homomorphism f : L→ 2 is a partial map such that
dom f is a bounded sublattice of L and f �dom f : dom f → 2 is a
bounded lattice homomorphism.

A maximal partial homomorphism is a partial homomorphism
f : L→ 2 which is not properly extended by any partial
homomorphism g : L→ 2.
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Bounded lattices and graphs

Let L be a bounded lattice.

The dual graph of L is the graph (Lmp(L,2),E ) where

(i) the vertex set is the set Lmp(L, 2) of all maximal partial
homomorphisms from L to 2;

(ii) the set E is formed by the pairs (f , g) such that f ≤ G , or
equivalently, f −1(1) ∩ g−1(0) = ∅.
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Canonical extensions and graphs

( Craig, Haviar, Priestley, 2013)

Let L be a bounded lattice and take its dual graph
X = (Lmp(L, 2),E ),

Define Gmp(X, 2∼) to be the set of all maximal partial
E -preserving maps from X to 2∼,

where 2∼ is the graph ({0, 1};≤).

The lattice Gmp(X, 2∼) ordered by

ϕ ≤ ψ ⇐⇒ ϕ−1(1) ⊆ ψ−1(1)

is the canonical extension of L.
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Graphs, RS frames and canonical extensions

PerLat

Lat

(RS)Fr PlGr

G
Gmp

?

?

?

1
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TiRS Graphs and TiRS frames (Craig,Haviar,G)

A graph X = (X ,E ) is a TiRS graph if

E is reflexive;
(S) for every x , y ∈ X , if x 6= y then xE 6= yE or Ex 6= Ey ;
(R) (i) for all x , z ∈ X , if zE ( xE then (z , x) /∈ E ;

(ii) for all y , z ∈ X , if Ez ( Ey then (y , z) /∈ E ;
(Ti) for all x , y ∈ X , if (x , y) ∈ E , then there exists z ∈ X such that

zE ⊆ xE and Ez ⊆ Ey .
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TiRS Graphs and TiRS frames(Craig,Haviar,G)

A frame F = (X1,X2,R) is a TiRS frame if

it is a RS frame;
and

(Ti) for every x ∈ X1 and for every y ∈ X2, if ¬(xRy) then there exist
w ∈ X1 and z ∈ X2 such that
(i) ¬(wRz);
(ii) xR ⊆ wR and Ry ⊆ Rz ;
(iii) for every u ∈ X1, if u 6= w and wR ⊆ uR then uRz ;
(iv) for every v ∈ X2, if v 6= z and Rz ⊆ Rv then wRv .
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TiRS Graphs and TiRS frames: an equivalence of categories

X Y F G

gr(ρ(X)) gr(ρ(Y)) ρ(gr(F)) ρ(gr(G))

ϕ

∼= ∼=

gr(ρ(ϕ))

ψ

ρ(gr(ψ))

∼=∼=

X and Y are TiRS frames F and G are TiRS graphs

1
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