Graphs, polarities and completions of lattices

Maria João Gouveia

CAUL & Universidade de Lisboa

Categorical Methods in Algebra and Topology Workshop in honour of Manuela Sobral

Departamento de Matemática da Universidade de Coimbra January 24th 2014

Polarities

A **polarity** is a triple (X, Y, R) where X and Y are non-empty sets and $R \subseteq X \times Y$ is a binary relation from X to Y.

Let ${\boldsymbol{\mathsf{L}}}$ be a bounded lattice and consider

 $\mathcal{F}(L) = \{ \text{filters of } L \} \text{ and } \mathcal{I}(L) = \{ \text{ideals of } L \}$

For $R \subseteq \mathcal{F}(\mathsf{L}) \times \mathcal{I}(\mathsf{L})$ defined as follows

 $FRI \iff F \cap I \neq \emptyset,$

the triple $(\mathcal{F}(\mathsf{L}), \mathcal{I}(\mathsf{L}), R)$ is a polarity.

・ 「「「」、 「」、 「」、 「」、 「」、 「」、 「」、 「」、 」、 」、 」、

The polarity given by non-empty intersection between the filters and the ideals of L yields a Galois connection:

$$()^{R} \colon \mathcal{P}(\mathcal{F}(\mathsf{L})) \rightleftarrows \mathcal{P}(\mathcal{I}(\mathsf{L})) \colon {}^{R}()$$

where

$$A^{R} = \{ I \mid \forall F \in A \quad FRI \}$$

and

$${}^{R}B = \{ F \mid \forall I \in B \quad FRI \}.$$

The set of Galois closed subsets $\mathcal{G}(\mathbf{L}) = \{ U \subseteq \mathcal{F}(\mathbf{L}) \mid U = {}^{R} (U^{R}) \}$ is a complete lattice.

э

Completions of lattices

Let $\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$ be a bounded lattice.

Maria João Gouveia

CAUL & Universidade de Lisboa

3

Completions of lattices

Let $\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$ be a bounded lattice.

 (e, C) is a completion of L if C is a complete lattice and e: L → C is a lattice embedding.

э

Completions of lattices

Let $\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$ be a bounded lattice.

 (e, C) is a completion of L if C is a complete lattice and e: L → C is a lattice embedding.

 For the embedding e: L → G(L) defined by e(a) = { F ∈ (L) | a ∈ F }, (e, G(L)) is a completion of L.

Compactness

Maria João Gouveia

CAUL & Universidade de Lisboa

イロン 不聞と 不同と 不同と

3

Compactness

• A completion (e, C) is compact if

$$\bigwedge e(F) \leq \bigvee e(I) \Leftrightarrow F \cap I \neq \emptyset$$

for every filter F and every ideal I of L.

э

Compactness

• A completion (e, C) is compact if

$$\bigwedge e(F) \leq \bigvee e(I) \Leftrightarrow F \cap I \neq \emptyset$$

for every filter F and every ideal I of L.

• The completion $(e, \mathcal{G}(\mathsf{L}))$ is compact.

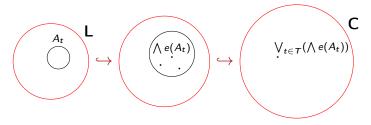
A completion (e, \mathbf{C}) is dense if

A completion (e, \mathbf{C}) is dense if

• every element of C is a join of meets of elements of e(L)

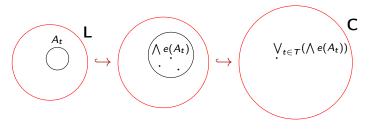
A completion (e, \mathbf{C}) is dense if

• every element of C is a join of meets of elements of e(L)



A completion (e, \mathbf{C}) is dense if

• every element of C is a join of meets of elements of e(L)

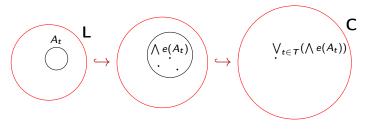


and

$$A_t \subseteq L \quad \rightsquigarrow \quad \bigvee e(A_t) \quad \rightsquigarrow \quad \bigwedge \{ \bigvee e(A_t) \mid t \in T \}$$

A completion (e, \mathbf{C}) is dense if

• every element of C is a join of meets of elements of e(L)



and

• every element of C is a meet of joins of elements of e(L).

$$A_t \subseteq L \quad \rightsquigarrow \quad \bigvee e(A_t) \quad \rightsquigarrow \quad \bigwedge \{ \bigvee e(A_t) \mid t \in T \}$$

The completion $(e, \mathcal{G}(\mathsf{L}))$ is dense.

CAUL & Universidade de Lisboa

æ

Let
$$\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$$
 be a bounded lattice.

Maria João Gouveia

CAUL & Universidade de Lisboa

글 🕨 🛛 글

Let $\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$ be a bounded lattice.

• A canonical extension of L is a completion (e, C) of L that is simultaneously compact and dense.

Let $\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$ be a bounded lattice.

- A canonical extension of L is a completion (e, C) of L that is simultaneously compact and dense.
- Canonical extensions are unique up to isomorphism.

CAUL & Universidade de Lisboa

Let $\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$ be a bounded lattice.

- A canonical extension of L is a completion (*e*, C) of L that is simultaneously compact and dense.
- Canonical extensions are unique up to isomorphism.
- Hence the completion (e, G(L)) of L, or simply G(L), is the canonical extension of L.

Perfect lattices

Let $\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$ be a bounded lattice.

Maria João Gouveia

CAUL & Universidade de Lisboa

æ

Perfect lattices

Let $\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$ be a bounded lattice.

- A lattice L is perfect if
 - it is complete,
 - it is join generated by its completely join-irreducible elements
 - it is meet generated by its completely meet-irreducible elements.

Perfect lattices

Let $\mathbf{L} = \langle L; \vee, \wedge, 0, 1 \rangle$ be a bounded lattice.

- A lattice L is perfect if
 - it is complete,
 - it is join generated by its completely join-irreducible elements
 - it is meet generated by its completely meet-irreducible elements.
- The canonical extension $\mathcal{G}(L)$ of L is a perfect lattice.

Let L be a perfect lattice.

CAUL & Universidade de Lisboa

æ

Let ${\boldsymbol{\mathsf{L}}}$ be a perfect lattice.

$$\mathsf{L} \ \rightarrow \ (\mathcal{J}^\infty(\mathsf{L}), \mathcal{M}^\infty(\mathsf{L}), \leq)$$

where

- $\mathcal{J}^\infty(\mathsf{L})$ is the set of completely join-irreducible elements of $\mathsf{L},$
- $\mathcal{M}^\infty(L)$ is the set of completely meet-irreducible elements of L
- \leq is the order on L restricted to $\mathcal{J}^{\infty}(L) \times \mathcal{M}^{\infty}(L)$.

The polarity $(\mathcal{J}^\infty(\mathsf{L}),\mathcal{M}^\infty(\mathsf{L}),\leq)$ is

Maria João Gouveia

CAUL & Universidade de Lisboa

イロト 不得下 イヨト イヨト

э.

The polarity
$$(\mathcal{J}^\infty(\mathsf{L}),\mathcal{M}^\infty(\mathsf{L}),\leq)$$
 is

• separated, i.e.,

if for all $x_1, x_2 \in \mathcal{J}^{\infty}(\mathsf{L})$ and $y_1, y_2 \in \mathcal{M}^{\infty}(\mathsf{L})$, (i) $x_1 \neq x_2$ implies $x_1^R \neq x_2^R$; (ii) $y_1 \neq y_2$ implies ${}^Ry_1 \neq {}^Ry_2$.

3

The polarity
$$(\mathcal{J}^\infty(\mathsf{L}),\mathcal{M}^\infty(\mathsf{L}),\leq)$$
 is

separated, i.e.,

if for all $x_1, x_2 \in \mathcal{J}^{\infty}(\mathsf{L})$ and $y_1, y_2 \in \mathcal{M}^{\infty}(\mathsf{L})$, (i) $x_1 \neq x_2$ implies $x_1^R \neq x_2^R$; (ii) $y_1 \neq y_2$ implies ${}^Ry_1 \neq {}^Ry_2$.

and reduced, i.e.,

- (i) for every $x \in \mathcal{J}^{\infty}(\mathsf{L})$ there exists $y \in \mathcal{M}^{\infty}(\mathsf{L})$ such that $\neg(xRy)$ and $\forall w \in \mathcal{J}^{\infty}(\mathsf{L})$ ($(w \neq x \& xR \subseteq wR) \Rightarrow wRy$);
- (ii) for every $y \in \mathcal{M}^{\infty}(\mathsf{L})$ there exists $x \in \mathcal{J}^{\infty}(\mathsf{L})$ such that $\neg(xRy)$ and $\forall z \in \mathcal{M}^{\infty}(\mathsf{L})$ $((z \neq y \& Ry \subseteq Rz) \Rightarrow xRz)$.

The polarity
$$(\mathcal{J}^\infty(\mathsf{L}),\mathcal{M}^\infty(\mathsf{L}),\leq)$$
 is

separated, i.e.,

if for all $x_1, x_2 \in \mathcal{J}^{\infty}(\mathsf{L})$ and $y_1, y_2 \in \mathcal{M}^{\infty}(\mathsf{L})$, (i) $x_1 \neq x_2$ implies $x_1^R \neq x_2^R$; (ii) $y_1 \neq y_2$ implies ${}^{R}y_1 \neq {}^{R}y_2$.

and reduced, i.e.,

- (i) for every $x \in \mathcal{J}^{\infty}(\mathsf{L})$ there exists $y \in \mathcal{M}^{\infty}(\mathsf{L})$ such that $\neg(xRy)$ and $\forall w \in \mathcal{J}^{\infty}(\mathsf{L})$ ($(w \neq x \& xR \subseteq wR) \Rightarrow wRy$);
- (ii) for every $y \in \mathcal{M}^{\infty}(\mathsf{L})$ there exists $x \in \mathcal{J}^{\infty}(\mathsf{L})$ such that $\neg(xRy)$ and $\forall z \in \mathcal{M}^{\infty}(\mathsf{L})$ $((z \neq y \& Ry \subseteq Rz) \Rightarrow xRz)$.

The polarities that are separated and reduced are called **RS** frames.

(Dunn, Gehrke, Palmigiano (2005), Gehrke(2006))

PerLat :

category of perfect lattices with complete lattice homomorphisms. ${\bf RSFr}$:

category of RS frames with RS morphisms.

Let L be a bounded lattice and let $\mathcal{G}(\mathsf{L})$ be its canonical extension.

CAUL & Universidade de Lisboa

3

B ► 4 B ►

Let L be a bounded lattice and let $\mathcal{G}(\mathsf{L})$ be its canonical extension.

•
$$\mathcal{J}^\infty(\mathcal{G}(\mathsf{L}))=\mathcal{F}_0(\mathsf{L})$$
 and $\mathcal{M}^\infty(\mathcal{G}(\mathsf{L}))=\mathcal{I}_0(\mathsf{L})$ where

CAUL & Universidade de Lisboa

3

B ► 4 B ►

Let L be a bounded lattice and let $\mathcal{G}(\mathsf{L})$ be its canonical extension.

- $\mathcal{J}^\infty(\mathcal{G}(\mathsf{L})) = \mathcal{F}_0(\mathsf{L})$ and $\mathcal{M}^\infty(\mathcal{G}(\mathsf{L})) = \mathcal{I}_0(\mathsf{L})$ where
- \$\mathcal{F}_0(L)\$ is the set of all filters belonging to a maximal filter-ideal pair of L;

3

Let L be a bounded lattice and let $\mathcal{G}(\mathsf{L})$ be its canonical extension.

- $\mathcal{J}^\infty(\mathcal{G}(\mathsf{L})) = \mathcal{F}_0(\mathsf{L})$ and $\mathcal{M}^\infty(\mathcal{G}(\mathsf{L})) = \mathcal{I}_0(\mathsf{L})$ where
- \$\mathcal{F}_0(L)\$ is the set of all filters belonging to a maximal filter-ideal pair of L;

and

• $\mathcal{I}_0(L)$ is the set of all ideals belonging to a maximal filter-ideal pair of L.

Let L be a bounded lattice.

Let ${\boldsymbol{\mathsf{L}}}$ be a bounded lattice.

- A maximal filter-ideal pair of L is a pair (F, I) such that
 - F is a filter and I is an ideal of L;
 - F is maximal in $\mathcal{F}(\mathsf{L})$ with respect to not intersect I;
 - I is maximal in $\mathcal{I}(\mathsf{L})$ with respect to not intersect F.

Let ${\boldsymbol{\mathsf{L}}}$ be a bounded lattice.

- A maximal filter-ideal pair of L is a pair (F, I) such that
 - F is a filter and I is an ideal of L;
 - F is maximal in $\mathcal{F}(\mathbf{L})$ with respect to not intersect I;
 - I is maximal in $\mathcal{I}(\mathsf{L})$ with respect to not intersect F.
- A partial homomorphism f: L → 2 is a partial map such that dom f is a bounded sublattice of L and f \cdot dom f: dom f → 2 is a bounded lattice homomorphism.

Let ${\boldsymbol{\mathsf{L}}}$ be a bounded lattice.

- A maximal filter-ideal pair of L is a pair (F, I) such that
 - F is a filter and I is an ideal of L;
 - F is maximal in $\mathcal{F}(\mathbf{L})$ with respect to not intersect I;
 - I is maximal in $\mathcal{I}(\mathsf{L})$ with respect to not intersect F.
- A partial homomorphism f: L → 2 is a partial map such that dom f is a bounded sublattice of L and f \cdot dom f : dom f → 2 is a bounded lattice homomorphism.
- A maximal partial homomorphism is a partial homomorphism f: L → 2 which is not properly extended by any partial homomorphism g: L → 2.

Bounded lattices and graphs

Let L be a bounded lattice.

CAUL & Universidade de Lisboa

æ

Bounded lattices and graphs

Let ${\boldsymbol{\mathsf{L}}}$ be a bounded lattice.

- The dual graph of L is the graph $(\mathcal{L}^{mp}(\mathbf{L}, \underline{2}), E)$ where
 - (i) the vertex set is the set $\mathcal{L}^{mp}(\mathbf{L}, \underline{2})$ of all maximal partial homomorphisms from **L** to 2;
 - (ii) the set E is formed by the pairs (f,g) such that $f \leq G$, or equivalently, $f^{-1}(1) \cap g^{-1}(0) = \emptyset$.

(Craig, Haviar, Priestley, 2013)

Let L be a bounded lattice and take its dual graph $\textbf{X}=(\mathcal{L}^{\mathrm{mp}}(\textbf{L},2),\textit{E})\text{,}$

(Craig, Haviar, Priestley, 2013)

Let L be a bounded lattice and take its dual graph $\textbf{X}=(\mathcal{L}^{\mathrm{mp}}(\textbf{L},2),\textit{E})\text{,}$

Define \$\mathcal{G}^{mp}(X, \mathcal{Z})\$ to be the set of all maximal partial \$E\$-preserving maps from X to \$\mathcal{Z}\$,

(Craig, Haviar, Priestley, 2013)

Let L be a bounded lattice and take its dual graph $\textbf{X}=(\mathcal{L}^{\mathrm{mp}}(\textbf{L},2),\textit{E})\text{,}$

Define \$\mathcal{G}^{mp}(X, \mathcal{Z})\$ to be the set of all maximal partial \$E\$-preserving maps from X to \$\mathcal{Z}\$,

where \mathfrak{Z} is the graph ($\{0,1\};\leq$).

(Craig, Haviar, Priestley, 2013)

Let L be a bounded lattice and take its dual graph $\textbf{X}=(\mathcal{L}^{\mathrm{mp}}(\textbf{L},2),\textit{E})\text{,}$

Define \$\mathcal{G}^{mp}(X, \mathcal{Z})\$ to be the set of all maximal partial \$E\$-preserving maps from X to \$\mathcal{Z}\$,

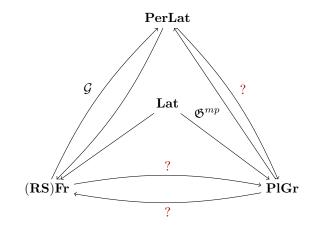
where \geq is the graph ({0,1}; \leq).

• The lattice $\mathcal{G}^{mp}(\mathbf{X}, \mathbf{2})$ ordered by

$$\varphi \leq \psi \iff \varphi^{-1}(1) \subseteq \psi^{-1}(1)$$

is the canonical extension of L.

Graphs, RS frames and canonical extensions



A graph $\mathbf{X} = (X, E)$ is a TiRS graph if

Maria João Gouveia

CAUL & Universidade de Lisboa

A graph $\mathbf{X} = (X, E)$ is a TiRS graph if *E* is reflexive;

Maria João Gouveia

CAUL & Universidade de Lisboa

A graph $\mathbf{X} = (X, E)$ is a TiRS graph if *E* is reflexive;

(S) for every $x, y \in X$, if $x \neq y$ then $xE \neq yE$ or $Ex \neq Ey$;

э

A graph $\mathbf{X} = (X, E)$ is a TiRS graph if *E* is reflexive;

(S) for every $x, y \in X$, if $x \neq y$ then $xE \neq yE$ or $Ex \neq Ey$;

(R) (i) for all $x, z \in X$, if $zE \subsetneq xE$ then $(z, x) \notin E$; (ii) for all $y, z \in X$, if $Ez \subsetneq Ey$ then $(y, z) \notin E$;

A graph $\mathbf{X} = (X, E)$ is a TiRS graph if *E* is reflexive;

(S) for every $x, y \in X$, if $x \neq y$ then $xE \neq yE$ or $Ex \neq Ey$;

- (R) (i) for all $x, z \in X$, if $zE \subsetneq xE$ then $(z, x) \notin E$; (ii) for all $y, z \in X$, if $Ez \subsetneq Ey$ then $(y, z) \notin E$;
- (Ti) for all $x, y \in X$, if $(x, y) \in E$, then there exists $z \in X$ such that $zE \subseteq xE$ and $Ez \subseteq Ey$.

A frame $\mathbf{F} = (X_1, X_2, R)$ is a TiRS frame if

Maria João Gouveia

CAUL & Universidade de Lisboa

A frame $\mathbf{F} = (X_1, X_2, R)$ is a TiRS frame if it is a RS frame; and

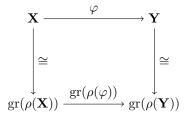
CAUL & Universidade de Lisboa

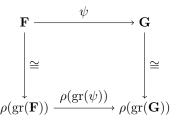
A B M A B M

```
A frame \mathbf{F} = (X_1, X_2, R) is a TiRS frame if
it is a RS frame;
and
```

```
(Ti) for every x ∈ X₁ and for every y ∈ X₂, if ¬(xRy) then there exist w ∈ X₁ and z ∈ X₂ such that
(i) ¬(wRz);
(ii) xR ⊆ wR and Ry ⊆ Rz;
(iii) for every u ∈ X₁, if u ≠ w and wR ⊆ uR then uRz;
(iv) for every v ∈ X₂, if v ≠ z and Rz ⊂ Rv then wRv.
```

TiRS Graphs and TiRS frames: an equivalence of categories





 ${\bf X}$ and ${\bf Y}$ are TiRS frames

 ${\bf F}$ and ${\bf G}$ are TiRS graphs