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A polarity is a triple (X, Y, R) where X and Y are non-empty sets
and R C X x Y is a binary relation from X to Y.

Let L be a bounded lattice and consider
F(L) = {filters of L} and Z(L) = {ideals of L}
For R C F(L) x Z(L) defined as follows
FRI <— FnNI#1),

the triple (F(L),Z(L), R) is a polarity.
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The polarity given by non-empty intersection between the filters and
the ideals of L yields a Galois connection:

() P(F(L)) = PZ(L): *()
where
AR={I|VFec A FRI}

and
RB={F|VlI€B FRI}.

The set of Galois closed subsets G(L) = {U C F(L) | U =R (UR)}
is a complete lattice.
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Completions of lattices

Let L= (L;V,A,0,1) be a bounded lattice.
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Completions of lattices

Let L= (L;V,A,0,1) be a bounded lattice.

e (e,C) is a completion of L if C is a complete lattice and
e: L — Cis a lattice embedding.
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Completions of lattices

Let L= (L;V,A,0,1) be a bounded lattice.

e (e,C) is a completion of L if C is a complete lattice and
e: L — Cis a lattice embedding.

@ For the embedding e: L — G(L) defined by
e(a)={Fe(L)|ae F} (e,G(L)) is a completion of L.

Maria Jodo Gouveia CAUL & Universidade de Lisboa



Maria Jodo Gouveia CAUL & Universidade de Lisboa



@ A completion (e, C) is compact if

Ne(F)<\/e(l) = Fnl#0

for every filter F and every ideal / of L.
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@ A completion (e, C) is compact if

Ne(F)<\/e(l) = Fnl#0

for every filter F and every ideal / of L.

@ The completion (e, G(L)) is compact.
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I

A completion (e, C) is dense if
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I

A completion (e, C) is dense if

@ every element of C is a join of meets of elements of e(L)
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Density
A completion (e, C) is dense if

@ every element of C is a join of meets of elements of e(
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Density
A completion (e, C) is dense if

@ every element of C is a join of meets of elements of e(

and

AL ~ \e(A) ~ A{\eA)|teT}
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Density
A completion (e, C) is dense if

@ every element of C is a join of meets of elements of e(

and

@ every element of C is a meet of joins of elements of e(L).

AL ~ \e(A) ~ A{\eA)|teT}
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The completion (e, G(L)) is dense.
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Canonical extensions, Gehrke & Harding (2001)

Let L = (L;V,A,0,1) be a bounded lattice.
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Canonical extensions, Gehrke & Harding (2001)

Let L = (L;V,A,0,1) be a bounded lattice.

@ A canonical extension of L is a completion (e, C) of L that
is simultaneously compact and dense.
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Canonical extensions, Gehrke & Harding (2001)

Let L = (L;V,A,0,1) be a bounded lattice.

@ A canonical extension of L is a completion (e, C) of L that
is simultaneously compact and dense.

@ Canonical extensions are unique up to isomorphism.
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Canonical extensions, Gehrke & Harding (2001)

Let L = (L;V,A,0,1) be a bounded lattice.

@ A canonical extension of L is a completion (e, C) of L that
is simultaneously compact and dense.

@ Canonical extensions are unique up to isomorphism.

@ Hence the completion (e, G(L)) of L, or simply G(L), is the
canonical extension of L.
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Perfect lattices

Let L = (L;V,A,0,1) be a bounded lattice.
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Perfect lattices

Let L = (L;V,A,0,1) be a bounded lattice.

o A lattice L is perfect if
- it is complete,
- it is join generated by its completely join-irreducible elements
- it is meet generated by its completely meet-irreducible elements.
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Perfect lattices

Let L = (L;V,A,0,1) be a bounded lattice.

o A lattice L is perfect if
- it is complete,
- it is join generated by its completely join-irreducible elements
- it is meet generated by its completely meet-irreducible elements.

@ The canonical extension G(L) of L is a perfect lattice.
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Perfect lattices and RS frames

Let L be a perfect lattice.
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Perfect lattices and RS frames

Let L be a perfect lattice.

L — (J72(L), M>(L), <)

where
o J°(L) is the set of completely join-irreducible elements of L,

o M®(L) is the set of completely meet-irreducible elements of L

o < is the order on L restricted to J°°(L) x M*°(L).
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R —
Perfect lattices and RS frames

The polarity (7>°(L), M>=(L), <) is
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R —
Perfect lattices and RS frames

The polarity (7°°(L), M>(L),<) is
@ separated, i.e.,
if for all x1, % € J>°(L) and y1, y» € M>(L),
(i) x1 # x2 implies xf # x§;
(ii) y1 # yo implies Ry; # Rys.
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R —
Perfect lattices and RS frames

The polarity (7>°(L), M>=(L), <) is
@ separated, i.e.,
if for all x1,x € JOO( ) and y1,y» € M>(L),
(i) x1 # x2 implies x1 # x2
(i) y1 # yo implies fy1 # Fys.
@ and reduced, i.e.,
(i) for every x € J*°(L) there exists y € M>(L) such that —(xRy)
and Vw € J*°(L) ((w # x & xR C wR) = wRy);
(i) for every y € M®°(L) there exists x € J°°(L) such that =(xRy)
and Vz € M*®(L) ((z#y & Ry C Rz) = xRz).
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R —
Perfect lattices and RS frames

The polarity (7>°(L), M>=(L), <) is
@ separated, i.e.,
if for all x1,x € JOO( ) and y1,y» € M>(L),
(i) x1 # x2 implies x1 # x2
(i) y1 # yo implies fy1 # Fys.
@ and reduced, i.e.,
(i) for every x € J*°(L) there exists y € M>(L) such that —(xRy)
and Vw € J*°(L) ((w # x & xR C wR) = wRy);
(i) for every y € M®°(L) there exists x € J°°(L) such that =(xRy)
and Vz € M*®(L) ((z#y & Ry C Rz) = xRz).

The polarities that are separated and reduced are called RS
frames.
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R —
Perfect lattices and RS frames

(Dunn, Gehrke, Palmigiano (2005), Gehrke(2006))

Gehrke
PerLat __ " (RS)Fr
PerLat :
category of perfect lattices with complete lattice homomorphisms.
RSFr :

category of RS frames with RS morphisms.
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RS frames of canonical extensions of lattices

Let L be a bounded lattice and let G(L) be its canonical
extension.
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RS frames of canonical extensions of lattices

Let L be a bounded lattice and let G(L) be its canonical
extension.

e J°(G(L)) = Fo(L) and M>(G(L)) = Zo(L) where
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RS frames of canonical extensions of lattices

Let L be a bounded lattice and let G(L) be its canonical
extension.

e J°(G(L)) = Fo(L) and M>(G(L)) = Zo(L) where

@ Fo(L) is the set of all filters belonging to a maximal filter-ideal
pair of L;
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RS frames of canonical extensions of lattices

Let L be a bounded lattice and let G(L) be its canonical
extension.

e J°(G(L)) = Fo(L) and M>(G(L)) = Zo(L) where

@ Fo(L) is the set of all filters belonging to a maximal filter-ideal
pair of L;
and

@ Zp(L) is the set of all ideals belonging to a maximal filter-ideal
pair of L.
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Maximal filter-ideal pairs and maximal partial homomorphisms

Let L be a bounded lattice.
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Maximal filter-ideal pairs and maximal partial homomorphisms

Let L be a bounded lattice.

e A maximal filter-ideal pair of L is a pair (F, /) such that
e F is a filter and / is an ideal of L;
e F is maximal in F(L) with respect to not intersect /;
o [ is maximal in Z(L) with respect to not intersect F.
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Maximal filter-ideal pairs and maximal partial homomorphisms

Let L be a bounded lattice.

e A maximal filter-ideal pair of L is a pair (F, /) such that
e F is a filter and / is an ideal of L;
e F is maximal in F(L) with respect to not intersect /;
o [ is maximal in Z(L) with respect to not intersect F.

@ A partial homomorphism f: L — 2 is a partial map such that
dom f is a bounded sublattice of L and f[4oms: domf — 2 is a
bounded lattice homomorphism.
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Maximal filter-ideal pairs and maximal partial homomorphisms

Let L be a bounded lattice.

e A maximal filter-ideal pair of L is a pair (F, /) such that
e F is a filter and / is an ideal of L;
e F is maximal in F(L) with respect to not intersect /;
o [ is maximal in Z(L) with respect to not intersect F.

@ A partial homomorphism f: L — 2 is a partial map such that
dom f is a bounded sublattice of L and f[4oms: domf — 2 is a
bounded lattice homomorphism.

@ A maximal partial homomorphism is a partial homomorphism
f: L — 2 which is not properly extended by any partial
homomorphism g: L — 2.
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Bounded lattices and graphs

Let L be a bounded lattice.
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Bounded lattices and graphs

Let L be a bounded lattice.

@ The dual graph of L is the graph (£™(L, 2), E) where

(i) the vertex set is the set £L™P(L,2) of all maximal partial
homomorphisms from L to 2;

(ii) the set E is formed by the pairs (f, g) such that f < G, or
equivalently, f~1(1) N g=1(0) = 0.
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e —
Canonical extensions and graphs

( Craig, Haviar, Priestley, 2013)

Let L be a bounded lattice and take its dual graph
X = (L"™(L,2),E),
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e —
Canonical extensions and graphs

( Craig, Haviar, Priestley, 2013)

Let L be a bounded lattice and take its dual graph
X = (L"™(L,2),E),

@ Define G™(X, 2) to be the set of all maximal partial
E-preserving maps from X to 2,
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e —
Canonical extensions and graphs

( Craig, Haviar, Priestley, 2013)

Let L be a bounded lattice and take its dual graph
X = (L"™(L,2),E),

@ Define G™(X, 2) to be the set of all maximal partial
E-preserving maps from X to 2,

where 2 is the graph ({0, 1}; <).
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e —
Canonical extensions and graphs

( Craig, Haviar, Priestley, 2013)

Let L be a bounded lattice and take its dual graph
X = (L"™(L,2),E),

@ Define G™(X, 2) to be the set of all maximal partial
E-preserving maps from X to 2,

where 2 is the graph ({0, 1}; <).

@ The lattice G™P(X, 2) ordered by
p<P = ¢ (1) Syl

is the canonical extension of L.
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Graphs, RS frames and canonical extensions

PerLat
g ?
Lat
&P
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(RS)Fr Pl1Gr
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TiRS Graphs and TiRS frames (Craig,Haviar,G)

A graph X = (X, E) is a TiRS graph if
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TiRS Graphs and TiRS frames (Craig,Haviar,G)

A graph X = (X, E) is a TiRS graph if

E is reflexive;
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TiRS Graphs and TiRS frames (Craig,Haviar,G)

A graph X = (X, E) is a TiRS graph if
E is reflexive;
(S) for every x,y € X, if x # y then xE # yE or Ex # Ey;
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TiRS Graphs and TiRS frames (Craig,Haviar,G)

A graph X = (X, E) is a TiRS graph if
E is reflexive;
(S) for every x,y € X, if x # y then xE # yE or Ex # Ey;

(R) (i) for all x,z € X, if zE C xE then (z,x) ¢ E;
(ii) for all y,z € X, if Ez C Ey then (y,z) ¢ E;
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TiRS Graphs and TiRS frames (Craig,Haviar,G)

A graph X = (X, E) is a TiRS graph if
E is reflexive;
(S) for every x,y € X, if x # y then xE # yE or Ex # Ey;

(R) (i) for all x,z € X, if zE C xE then (z,x) ¢ E;
(ii) for all y,z € X, if Ez C Ey then (y,z) ¢ E;

(Ti) for all x,y € X, if (x,y) € E, then there exists z € X such that
zE C xE and Ez C Ey.
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TiRS Graphs and TiRS frames(Craig,Haviar,G)

A frame F = (X1, X3, R) is a TiRS frame if
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TiRS Graphs and TiRS frames(Craig,Haviar,G)

A frame F = (X1, X3, R) is a TiRS frame if
it is a RS frame;

and
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TiRS Graphs and TiRS frames(Craig,Haviar,G)

A frame F = (X1, X3, R) is a TiRS frame if
it is a RS frame;
and
(Ti) for every x € X; and for every y € Xj, if =(xRy) then there exist
w € X; and z € X5 such that
(i) =(wRz);
(i) xR € wR and Ry C Rz,
(iii) for every u € Xi, if u # w and wR C uR then uRz;
(iv) for every v € Xp, if v # z and Rz C Rv then wRyv.

Maria Jodo Gouveia CAUL & Universidade de Lisboa



IS
TiRS Graphs and TiRS frames: an equivalence of categories

X z % F v G
ertox) 2 i) o) ZE, i)
X and Y are TiRS frames F and G are TiRS graphs
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