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Motivation

Let C be an abelian category, (T ,X ) a torsion theory in C.

This means :
1. T and X are full replete subcategories of C ;
2. if T ∈ T and X ∈ X then the only morphism from T to X is

T → 0→ X ;

3. for every object C ∈ C there is a short exact sequence

0 // T (C) // C // F (C) // 0

with T (C) ∈ T and F (C) ∈ X .

T is a torsion subcategory of C, X a torsion-free subcategory of C.
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Torsion-free subcategories of an abelian category C correspond to full
epireflective subcategories X of C

X
U
// C

F
⊥
oo

such that F : C → X is semi-left-exact (Cassidy-Hébert-Kelly, 1985) :

F : C → X preserves all pullbacks of the form

P
π2 //

π1

��

U(X )

U(x)

��
C

ηC
// UF (C)

where x : X → F (C) lies in X , and η is the unit of the adjunction.
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A torsion-free subcategory X of an abelian category C

X
U
// C

F
⊥
oo

inherits some interesting exactness properties from C :

Theorem (Rump, 2001)
For a category X the following conditions are equivalent :

1. X is a torsion-free subcategory of an abelian category C ;
2. (a) X is additive ;

(b) any morphism f : A→ D in X has a factorization f = kgq

A f //

q
��

D

B g
// C

k

OO

with q a normal epi, g a bimorphism, k a normal mono ;
(c) normal epimorphisms are pullback stable.
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A category X satisfying the conditions
(a) X is additive,
(b) any morphism f : A→ D in X has a factorization

A f //

q
��

D

B g
// C

k

OO

with q a normal epi, g a bimorphism, k a normal mono,
(c) normal epimorphisms are pullback stable,

is called an almost abelian category (Rump, Cah. Topol. Géom.
Différ. Catég. 2001).

Examples
Any abelian category, Ab(Top), Ab(Haus), Banach spaces,
locally compact abelian groups, etc.
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Some authors have recently investigated torsion theories in
non-abelian contexts :

I Bourn-Gran, J. Algebra (2006)
I Clementino-Dikranjan-Tholen, J. Algebra (2006)
I Janelidze-Tholen, Contemp. Mathem. (2007)
I Rosický-Tholen, J. Homotopy Rel. Struct. (2007)
I Gran-Janelidze, Cah. Topol. Géom. Différ. Catég. (2009)
I Everaert-Gran, Bull. Sciences Mathém. (2013)

New examples of torsion theories have been studied in the
semi-abelian categories Grp,CRng,VNRegRng,XMod,Grp(Comp).

Question
Can one find an intrinsic characterisation of torsion-free
subcategories of a semi-abelian category ?
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Let us make the question more precise : observe that any (normal
epi)-reflective subcategory X of a semi-abelian category C is :

I pointed,
I regular,
I protomodular,
I with binary coproducts.

Question
Can one find an additional property on a homological category X with
binary coproducts making X a torsion-free subcategory of a
semi-abelian category C ?

More generally : call X a semi-localizations of C if it is a full reflective
subcategory X of C whose reflector is semi-left-exact.

Is it possible to characterize semi-localizations of exact protomodular
categories ?
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Semi-localizations of exact categories

A remarkable result in this direction has been discovered by
S. Mantovani (1998, Cah. Topol. Géom. Différ. Catég.) :

Theorem (Mantovani)
For a category X the following conditions are equivalent :

1. X is a semi-localization of an exact category C ;
2. X has finite limits and stable coequalizers of equivalence

relations.
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Given a coequalizer q : A→ B of an equivalence relation
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f
��

R
p1 //

p2

// A
q // B



Given a coequalizer q : A→ B of an equivalence relation

R
p1 //

p2

// A
q // // B

and any arrow f
C

f
��

R
p1 //

p2

// A
q // B



Given a coequalizer q : A→ B of an equivalence relation

R
p1 //

p2

// A
q // B

and any arrow f ,

R
p1 //

p2

//

��

A×B C
q // //

��

C

f
��

R
p1 //

p2

// A
q // // B



Given a coequalizer q : A→ B of an equivalence relation

R
p1 //

p2

// A
q // B

and any arrow f

R
p1 //

p2

//

��

A×B C
q // //

��

C

f
��

R
p1 //

p2

// A
q // // B

X has stable coequalizers ⇔ q = coeq(p1,p2)



This theorem uses the exact completion Xex/reg of a regular category
X .

There is a fully faithful functor Γ: X → Xex/reg such that for any regular
functor F : X → D to an exact category D

X Γ //

F
""

Xex/reg

D
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This theorem uses the exact completion Xex/reg of a regular category
X , which satisfies the following universal property :

There is a fully faithful functor Γ: X → Xex/reg such that for any regular
functor F : X → D to an exact category D

X Γ //

F
""

Xex/reg

F
��
D

there exists an essentially unique regular functor F : Xex/reg → D with

F ◦ Γ ∼= F .
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An easy application : the Mal’tsev case
Any semi-localization X of a Mal’tsev category C is a Mal’tsev
category :

given a reflexive relation R on X in X

R
d **

c
44 Xeoo ,

it is also a reflexive relation in the Mal’tsev category C.

Then R is an equivalence relation in C

R ×X R
p1 ++
p2

33// R

s

�� d ++
c
33 Xeoo ,

therefore also in X .
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Conversely, given a regular Mal’tsev category X , its exact completion
Xex/reg is again a Mal’tsev category :

given a reflexive relation

R
d ))

c
55 Aeoo

in Xex/reg,

there is a regular epimorphism p : X → A with X ∈ X :

X

p
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It is then easy to complete the diagram as follows :
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where the upper reflexive graph is a reflexive relation in X ,
p and p′ are regular epimorphisms.
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It is then easy to complete the diagram as follows :

R

s





p′
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**
44 Xoo

p
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R

σ

ZZ

d ))

c
55 Aeoo

where the upper reflexive graph is a reflexive relation in X ,
p and p′ are regular epimorphisms.

Since X is a Mal’tsev category, R is a symmetric relation in X .

This implies that R is a symmetric relation in Xex/reg as well.



Conclusion :
A regular X is a Mal’tsev category⇔ if Xex/reg is a Mal’tsev category.

Theorem
For a category X , the following conditions are equivalent :
(a) X is a semi-localization of an exact Mal’tsev category C ;
(b) X is a regular Mal’tsev category, and has stable coequalizers of

equivalence relations ;
(c) X is a regular Mal’tsev category, and is a semi-localization of its

exact completion Xex/reg as a regular category.
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Example
Let T be a Mal’tsev algebraic theory : ∃p(x , y , z) such that

p(x , y , y) = x and p(x , x , y) = y .

Then the category T(Top) of topological Mal’tsev algebras is
I regular
I Mal’tsev
I with stable coequalizers of equivalence relations

T(Top) is then a semi-localization of an exact Mal’tsev category.
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How to deal with protomodularity ?
In order to imitate the Mal’tsev case one needs a new characterization
of protomodular categories in terms of internal relations.

Definition
A relation R on X is left pseudoreflexive if xRy implies xRx .

A relation R on X is right pseudoreflexive if xRy implies yRy .
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Pseudosymmetry
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Remark
In the pointed case, R is left pseudosymmetric⇔ 0Ry implies yR0
(Z. Janelidze, Appl. Categ. Structures, 2007).



Theorem
For a finitely complete category C the following are equivalent :
(a) C is protomodular ;
(b) every relation in C which is left pseudoreflexive and left

pseudosymmetric is symmetric ;
(c) every relation in C which is left pseudoreflexive and left

pseudosymmetric is right pseudoreflexive.

Remark
This extends an important result due to Z. Janelidze in the pointed
context (Appl. Categ. Structures, 2007).
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Lemma
A regular category X is protomodular⇔ Xex/reg is protomodular.

Theorem

(a) X is a semi-localization of an exact protomodular category C ;
(b) X is regular, protomodular, and has stable coequalizers of

equivalence relations ;
(c) X is regular, is a semi-localization of its exact completion Xex/reg,

and Xex/reg is protomodular.
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The semi-abelian case
In order to give the characterization of torsion-free subcategories we
recall the following

Definition
In a protomodular category, a morphism m : X → Y is Bourn-normal
when there exists an equivalence relation R and a discrete fibration

X × X //

p2

��
p1

��

R

r2

��
r1

��
X m

// Y

Such a morphism m : X → Y is necessarily a monomorphism.
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Remark
In a pointed category any normal monomorphism is Bourn-normal.
The converse is not true, in general.

Definition
A cokernel q : B → Q of a monomorphism m : A→ B is stable if,
given any f : D → Q as in

D

f
��

A m
// B q

// // Q

with pullback

B ×Q D
π2 // //

π1

��

D

f
��

A m
//

m′
<<

B q
// // Q,

one has that π2 = coker(m′).
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Theorem
For a category X , the following conditions are equivalent :
(a) X is a semi-localization of a semi-abelian category C ;
(b) X is a torsion-free subcategory a semi-abelian category C ;
(c) X is homological, and has binary coproducts and stable

coequalizers of equivalence relations ;
(d) X is homological, has binary coproducts, and stable cokernels of

Bourn-normal monomorphisms ;
(e) X is homological, has binary coproducts, and every

Bourn-normal monomorphism factorizes as a monomorphism
with trivial cokernel followed by a normal monomorphism.



Example
Let T be a semi-abelian algebraic theory. This means that there is a
unique constant 0, binary terms αi (x , y) (for i ∈ {1, · · · ,n}) and an
(n + 1)-ary term β such that :

αi (x , x) = 0

and
β(α1(x , y), · · · , αn(x , y), y) = x .

As shown by F. Borceux and M.M. Clementino (Adv. Math, 2005), the
category T(Top) is homological, and it has binary coproducts.

Furthermore, every Bourn-normal mono factorizes as a mono with
trivial cokernel followed by a normal mono.

T(Top) is then the semi-localization of a semi-abelian category.
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Example
The category NormMono(C) of normal monomorphisms in a
semi-abelian category C is a semi-localization of a semi-abelian
category.

It turns out that

NormMono(C)ex/reg = XMod(C).

Example
The category RedRng of reduced rings (xn = 0 ⇒ x = 0) is a
semi-localization of a semi-abelian category.

In this case :
RedRngex/reg = CRng
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Remark 1
Our results can be used to characterize the hereditarily-torsion-free
subcategories of semi-abelian categories.

Remark 2
The previous theorem implies in particular Rump’s Theorem on
almost abelian categories.
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Thank you for your attention !
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