Semi-localizations of semi-abelian categories

Marino Gran Université catholique de Louvain

Work in collaboration with Stephen Lack

Workshop on Categorical Methods in Algebra and in Topology In honour of Professor Manuela Sobral

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Motivation

Semi-localizations of exact categories

An easy application : the Mal'tsev case

Semi-localizations of exact protomodular categories

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The semi-abelian case

Outline

Motivation

Semi-localizations of exact categories

An easy application : the Mal'tsev case

Semi-localizations of exact protomodular categories

The semi-abelian case

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Let C be an abelian category, (T, X) a torsion theory in C.

This means :

1. \mathcal{T} and \mathcal{X} are full replete subcategories of \mathcal{C} ;

2. if $T \in T$ and $X \in X$ then the only morphism from T to X is

 $T \rightarrow 0 \rightarrow X;$

3. for every object $C \in C$ there is a short exact sequence

 $T(C) \longrightarrow C \longrightarrow F(C) \longrightarrow 0$

(日) (四) (日) (日) (日)

with $T(G) \in \mathcal{T}$ and $F(G) \in \mathcal{X}$.

 ${\mathcal T}$ is a torsion subcategory of ${\mathcal C}, {\mathcal X}$ a torsion-free subcategory of ${\mathcal C}$

Let C be an abelian category, (T, X) a torsion theory in C.

This means :

1. ${\mathcal T}$ and ${\mathcal X}$ are full replete subcategories of ${\mathcal C}$;

2. if $T \in \mathcal{T}$ and $X \in \mathcal{X}$ then the only morphism from T to X is

 $T \rightarrow 0 \rightarrow X;$

3. for every object $C \in C$ there is a short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \longrightarrow F(C) \longrightarrow 0$$

(日) (日) (日) (日) (日) (日) (日)

with $T(C) \in \mathcal{T}$ and $F(C) \in \mathcal{X}$.

 ${\mathcal T}$ is a torsion subcategory of ${\mathcal C}, {\mathcal X}$ a torsion-free subcategory of ${\mathcal C}$

Let C be an abelian category, (T, X) a torsion theory in C.

This means :

- **1.** \mathcal{T} and \mathcal{X} are full replete subcategories of \mathcal{C} ;
- **2.** if $T \in \mathcal{T}$ and $X \in \mathcal{X}$ then the only morphism from T to X is

 $T \rightarrow 0 \rightarrow X;$

3. for every object $C \in C$ there is a short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \longrightarrow F(C) \longrightarrow 0$$

(日) (日) (日) (日) (日) (日) (日)

with $T(C) \in \mathcal{T}$ and $F(C) \in \mathcal{X}$.

 ${\mathcal T}$ is a torsion subcategory of ${\mathcal C}, {\mathcal X}$ a torsion-free subcategory of ${\mathcal C}$

Let C be an abelian category, (T, X) a torsion theory in C.

This means :

- 1. ${\mathcal T}$ and ${\mathcal X}$ are full replete subcategories of ${\mathcal C}$;
- **2.** if $T \in \mathcal{T}$ and $X \in \mathcal{X}$ then the only morphism from T to X is

$$T \rightarrow 0 \rightarrow X$$
;

3. for every object $C \in C$ there is a short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \longrightarrow F(C) \longrightarrow 0$$

(日) (日) (日) (日) (日) (日) (日)

with $T(C) \in \mathcal{T}$ and $F(C) \in \mathcal{X}$.

 ${\mathcal T}$ is a torsion subcategory of ${\mathcal C},\, {\mathcal X}$ a torsion-free subcategory of ${\mathcal C}$

Let C be an abelian category, (T, X) a torsion theory in C.

This means :

- 1. ${\mathcal T}$ and ${\mathcal X}$ are full replete subcategories of ${\mathcal C}$;
- **2.** if $T \in \mathcal{T}$ and $X \in \mathcal{X}$ then the only morphism from T to X is

$$T \rightarrow 0 \rightarrow X$$
;

3. for every object $C \in C$ there is a short exact sequence

$$0 \longrightarrow T(C) \longrightarrow C \longrightarrow F(C) \longrightarrow 0$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

with $T(C) \in \mathcal{T}$ and $F(C) \in \mathcal{X}$.

 \mathcal{T} is a torsion subcategory of \mathcal{C}, \mathcal{X} a torsion-free subcategory of \mathcal{C} .

Torsion-free subcategories of an abelian category ${\cal C}$ correspond to full epireflective subcategories ${\cal X}$ of ${\cal C}$

such that $F: \mathcal{C} \to \mathcal{X}$ is semi-left-exact (Cassidy-Hébert-Kelly, 1985) :

 $F: \mathcal{C} \to \mathcal{X}$ preserves all pullbacks of the form

A D F A 同 F A E F A E F A Q A

where $x \colon X \to F(C)$ lies in \mathcal{X} , and η is the unit of the adjunction.

Torsion-free subcategories of an abelian category C correspond to full epireflective subcategories X of C

$$\mathcal{X} \xrightarrow{F} \mathcal{C}$$

such that $F: \mathcal{C} \to \mathcal{X}$ is semi-left-exact (Cassidy-Hébert-Kelly, 1985) :

 $F \colon \mathcal{C} \to \mathcal{X}$ preserves all pullbacks of the form

A D F A 同 F A E F A E F A Q A

where $x: X \to F(C)$ lies in \mathcal{X} , and η is the unit of the adjunction.

A torsion-free subcategory ${\mathcal X}$ of an abelian category ${\mathcal C}$

inherits some interesting exactness properties from $\ensuremath{\mathcal{C}}$:

Theorem (Rump, 2001)

For a category ${\mathcal X}$ the following conditions are equivalent :

- **1.** \mathcal{X} is a torsion-free subcategory of an abelian category \mathcal{C} ;
- **2.** (a) \mathcal{X} is additive ;
 - (b) any morphism $f: A \rightarrow D$ in \mathcal{X} has a factorization f = kgq

A torsion-free subcategory ${\mathcal X}$ of an abelian category ${\mathcal C}$

$$\mathcal{X} \stackrel{\checkmark}{\overset{\vdash}{\longrightarrow}} \mathcal{C}$$

inherits some interesting exactness properties from $\ensuremath{\mathcal{C}}$:

Theorem (Rump, 2001)

For a category ${\mathcal X}$ the following conditions are equivalent :

- 1. \mathcal{X} is a torsion-free subcategory of an abelian category \mathcal{C} ;
- (a) X is additive;
 (b) any morphism f: A → D in X has a factorization f = kgq

with q a normal epi, g a bimorphism, k a normal mono; (c) normal epimorphisms are pullback stable $a \in a$ and $a \in a$ and $a \in a$ and $a \in a$ A category \mathcal{X} satisfying the conditions

(a) \mathcal{X} is additive,

(b) any morphism $f: A \rightarrow D$ in \mathcal{X} has a factorization

with *q* a normal epi, *g* a bimorphism, *k* a normal mono, (c) normal epimorphisms are pullback stable, is called an almost abelian category (Rump, Cah. Topol. Géom. Différ. Catég. 2001).

Examples

Any abelian category, Ab(Top), Ab(Haus), Banach spaces, locally compact abelian groups, etc.

A category \mathcal{X} satisfying the conditions

(a) \mathcal{X} is additive,

(b) any morphism $f: A \rightarrow D$ in \mathcal{X} has a factorization

with *q* a normal epi, *g* a bimorphism, *k* a normal mono,
(c) normal epimorphisms are pullback stable,
is called an almost abelian category (Rump, Cah. Topol. Géom. Différ. Catég. 2001).

Examples

Any abelian category, Ab(Top), Ab(Haus), Banach spaces, locally compact abelian groups, etc.

Some authors have recently investigated torsion theories in non-abelian contexts :

- Bourn-Gran, J. Algebra (2006)
- Clementino-Dikranjan-Tholen, J. Algebra (2006)
- ► Janelidze-Tholen, Contemp. Mathem. (2007)
- Rosický-Tholen, J. Homotopy Rel. Struct. (2007)
- Gran-Janelidze, Cah. Topol. Géom. Différ. Catég. (2009)
- Everaert-Gran, Bull. Sciences Mathém. (2013)

New examples of torsion theories have been studied in the semi-abelian categories Grp, CRng, VNRegRng, XMod, Grp(Comp).

(日) (日) (日) (日) (日) (日) (日)

Question

Can one find an intrinsic characterisation of torsion-free subcategories of a semi-abelian category ?

Some authors have recently investigated torsion theories in non-abelian contexts :

- Bourn-Gran, J. Algebra (2006)
- Clementino-Dikranjan-Tholen, J. Algebra (2006)
- ▶ Janelidze-Tholen, Contemp. Mathem. (2007)
- Rosický-Tholen, J. Homotopy Rel. Struct. (2007)
- Gran-Janelidze, Cah. Topol. Géom. Différ. Catég. (2009)
- Everaert-Gran, Bull. Sciences Mathém. (2013)

New examples of torsion theories have been studied in the semi-abelian categories Grp, CRng, VNRegRng, XMod, Grp(Comp).

(ロ) (同) (三) (三) (三) (三) (○) (○)

Question Can one find an intrinsic characterisation of torsion-free subcategories of a semi-abelian category ? Some authors have recently investigated torsion theories in non-abelian contexts :

- Bourn-Gran, J. Algebra (2006)
- Clementino-Dikranjan-Tholen, J. Algebra (2006)
- Janelidze-Tholen, Contemp. Mathem. (2007)
- Rosický-Tholen, J. Homotopy Rel. Struct. (2007)
- Gran-Janelidze, Cah. Topol. Géom. Différ. Catég. (2009)
- Everaert-Gran, Bull. Sciences Mathém. (2013)

New examples of torsion theories have been studied in the semi-abelian categories Grp, CRng, VNRegRng, XMod, Grp(Comp).

Question

Can one find an intrinsic characterisation of torsion-free subcategories of a semi-abelian category ?

- pointed,
- regular,
- protomodular,
- with binary coproducts.

Question

Can one find an additional property on a homological category \mathcal{X} with binary coproducts making \mathcal{X} a torsion-free subcategory of a semi-abelian category \mathcal{C} ?

More generally : call \mathcal{X} a semi-localizations of \mathcal{C} if it is a full reflective subcategory \mathcal{X} of \mathcal{C} whose reflector is semi-left-exact.

Is it possible to characterize semi-localizations of exact protomodular categories ?

- pointed,
- regular,
- protomodular,
- with binary coproducts.

Question

Can one find an additional property on a homological category \mathcal{X} with binary coproducts making \mathcal{X} a torsion-free subcategory of a semi-abelian category \mathcal{C} ?

More generally : call \mathcal{X} a semi-localizations of \mathcal{C} if it is a full reflective subcategory \mathcal{X} of \mathcal{C} whose reflector is semi-left-exact.

Is it possible to characterize semi-localizations of exact protomodular categories ?

- pointed,
- regular,
- protomodular,
- with binary coproducts.

Question

Can one find an additional property on a homological category \mathcal{X} with binary coproducts making \mathcal{X} a torsion-free subcategory of a semi-abelian category \mathcal{C} ?

More generally : call \mathcal{X} a semi-localizations of \mathcal{C} if it is a full reflective subcategory \mathcal{X} of \mathcal{C} whose reflector is semi-left-exact.

Is it possible to characterize semi-localizations of exact protomodular categories ?

- pointed,
- regular,
- protomodular,
- with binary coproducts.

Question

Can one find an additional property on a homological category \mathcal{X} with binary coproducts making \mathcal{X} a torsion-free subcategory of a semi-abelian category \mathcal{C} ?

More generally : call \mathcal{X} a semi-localizations of \mathcal{C} if it is a full reflective subcategory \mathcal{X} of \mathcal{C} whose reflector is semi-left-exact.

Is it possible to characterize semi-localizations of exact protomodular categories ?

- pointed,
- regular,
- protomodular,
- with binary coproducts.

Question

Can one find an additional property on a homological category \mathcal{X} with binary coproducts making \mathcal{X} a torsion-free subcategory of a semi-abelian category \mathcal{C} ?

More generally : call \mathcal{X} a semi-localizations of \mathcal{C} if it is a full reflective subcategory \mathcal{X} of \mathcal{C} whose reflector is semi-left-exact.

Is it possible to characterize semi-localizations of exact protomodular categories ?

- pointed,
- regular,
- protomodular,
- with binary coproducts.

Question

Can one find an additional property on a homological category \mathcal{X} with binary coproducts making \mathcal{X} a torsion-free subcategory of a semi-abelian category C?

More generally : call \mathcal{X} a semi-localizations of \mathcal{C} if it is a full reflective subcategory \mathcal{X} of \mathcal{C} whose reflector is semi-left-exact.

Is it possible to characterize semi-localizations of exact protomodular categories ?

(ロ) (同) (三) (三) (三) (三) (○) (○)

- pointed,
- regular,
- protomodular,
- with binary coproducts.

Question

Can one find an additional property on a homological category \mathcal{X} with binary coproducts making \mathcal{X} a torsion-free subcategory of a semi-abelian category C?

More generally : call \mathcal{X} a semi-localizations of \mathcal{C} if it is a full reflective subcategory \mathcal{X} of \mathcal{C} whose reflector is semi-left-exact.

Is it possible to characterize semi-localizations of exact protomodular categories?

(ロ) (同) (三) (三) (三) (三) (○) (○)

- pointed,
- regular,
- protomodular,
- with binary coproducts.

Question

Can one find an additional property on a homological category \mathcal{X} with binary coproducts making \mathcal{X} a torsion-free subcategory of a semi-abelian category C?

More generally : call \mathcal{X} a semi-localizations of \mathcal{C} if it is a full reflective subcategory \mathcal{X} of \mathcal{C} whose reflector is semi-left-exact.

Is it possible to characterize semi-localizations of exact protomodular categories ?

(ロ) (同) (三) (三) (三) (三) (○) (○)

Outline

Motivation

Semi-localizations of exact categories

An easy application : the Mal'tsev case

Semi-localizations of exact protomodular categories

The semi-abelian case

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Semi-localizations of exact categories

A remarkable result in this direction has been discovered by S. Mantovani (1998, Cah. Topol. Géom. Différ. Catég.) :

Theorem (Mantovani)

For a category $\ensuremath{\mathcal{X}}$ the following conditions are equivalent :

- 1. \mathcal{X} is a semi-localization of an exact category \mathcal{C} ;
- **2.** \mathcal{X} has finite limits and stable coequalizers of equivalence relations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Semi-localizations of exact categories

A remarkable result in this direction has been discovered by S. Mantovani (1998, Cah. Topol. Géom. Différ. Catég.) :

Theorem (Mantovani)

For a category \mathcal{X} the following conditions are equivalent :

- 1. \mathcal{X} is a semi-localization of an exact category \mathcal{C} ;
- **2.** \mathcal{X} has finite limits and stable coequalizers of equivalence relations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

and any arrow f

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

and any arrow f

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

and any arrow f,

and any arrow f

 \mathcal{X} has stable coequalizers $\Leftrightarrow \overline{q} = \operatorname{coeq}(\overline{p}_1, \overline{p}_2)$

(ロ) (同) (三) (三) (三) (○) (○)

This theorem uses the exact completion $\mathcal{X}_{\text{ex/reg}}$ of a regular category $\mathcal{X}.$

There is a fully faithful functor $\Gamma : \mathcal{X} \to \mathcal{X}_{ex/reg}$ such that for any regular functor $F : \mathcal{X} \to \mathcal{D}$ to an exact category \mathcal{D}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This theorem uses the exact completion $\mathcal{X}_{\text{ex/reg}}$ of a regular category $\mathcal{X}.$

There is a fully faithful functor $\Gamma : \mathcal{X} \to \mathcal{X}_{ex/reg}$ such that for any regular functor $F : \mathcal{X} \to \mathcal{D}$ to an exact category \mathcal{D}

(ロ) (同) (三) (三) (三) (○) (○)

This theorem uses the exact completion $\mathcal{X}_{\text{ex/reg}}$ of a regular category \mathcal{X} , which satisfies the following universal property :

There is a fully faithful functor $\Gamma : \mathcal{X} \to \mathcal{X}_{ex/reg}$ such that for any regular functor $F : \mathcal{X} \to \mathcal{D}$ to an exact category \mathcal{D}

there exists an essentially unique regular functor \overline{F} : $\mathcal{X}_{ex/reg} \rightarrow \mathcal{D}$ with

 $\overline{F} \circ \Gamma \cong F.$

Outline

Motivation

Semi-localizations of exact categories

An easy application : the Mal'tsev case

Semi-localizations of exact protomodular categories

The semi-abelian case

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●
An easy application : the Mal'tsev case

Any semi-localization ${\mathcal X}$ of a Mal'tsev category ${\mathcal C}$ is a Mal'tsev category :

given a reflexive relation R on X in \mathcal{X}

it is also a reflexive relation in the Mal'tsev category C.

Then R is an equivalence relation in C

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

therefore also in \mathcal{X} .

An easy application : the Mal'tsev case

Any semi-localization ${\mathcal X}$ of a Mal'tsev category ${\mathcal C}$ is a Mal'tsev category :

given a reflexive relation R on X in \mathcal{X}

$$R \underbrace{\stackrel{d}{\underbrace{e}} X}_{c}$$

it is also a reflexive relation in the Mal'tsev category C.

Then R is an equivalence relation in C

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

therefore also in \mathcal{X} .

An easy application : the Mal'tsev case

Any semi-localization ${\mathcal X}$ of a Mal'tsev category ${\mathcal C}$ is a Mal'tsev category :

given a reflexive relation R on X in \mathcal{X}

$$R \underbrace{\stackrel{d}{\underbrace{e}} X}_{c}$$

it is also a reflexive relation in the Mal'tsev category C.

Then *R* is an equivalence relation in C

$$R \times_X R \xrightarrow[P_2]{p_2}^{s} R \xleftarrow[c]{d} X,$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

therefore also in \mathcal{X} .

Conversely, given a regular Mal'tsev category \mathcal{X} , its exact completion $\mathcal{X}_{\text{ex/reg}}$ is again a Mal'tsev category :

given a reflexive relation

in $\mathcal{X}_{ex/reg}$,

there is a regular epimorphism $p: X \to A$ with $X \in \mathcal{X}$:

Conversely, given a regular Mal'tsev category \mathcal{X} , its exact completion $\mathcal{X}_{\text{ex/reg}}$ is again a Mal'tsev category :

given a reflexive relation

$$R \underbrace{\stackrel{d}{\underbrace{e}}}_{c} A$$

in $\mathcal{X}_{\text{ex/reg}}$,

there is a regular epimorphism $p \colon X \to A$ with $X \in \mathcal{X}$:

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Conversely, given a regular Mal'tsev category \mathcal{X} , its exact completion $\mathcal{X}_{\text{ex/reg}}$ is again a Mal'tsev category :

given a reflexive relation

$$R \underbrace{\stackrel{d}{\underbrace{e}}}_{c} A$$

in $\mathcal{X}_{\text{ex/reg}}$,

there is a regular epimorphism $p: X \to A$ with $X \in \mathcal{X}$:

・ロト・西ト・西ト・日 シック

It is then easy to complete the diagram as follows :

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where the upper reflexive graph is a reflexive relation in \mathcal{X} , p and p' are regular epimorphisms.

It is then easy to complete the diagram as follows :

where the upper reflexive graph is a reflexive relation in \mathcal{X} , p and p' are regular epimorphisms.

Since \mathcal{X} is a Mal'tsev category, \overline{R} is a symmetric relation in \mathcal{X} .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

It is then easy to complete the diagram as follows :

where the upper reflexive graph is a reflexive relation in \mathcal{X} , p and p' are regular epimorphisms.

Since \mathcal{X} is a Mal'tsev category, \overline{R} is a symmetric relation in \mathcal{X} .

This implies that *R* is a symmetric relation in $\mathcal{X}_{ex/reg}$ as well.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Conclusion : A regular \mathcal{X} is a Mal'tsev category \Leftrightarrow if $\mathcal{X}_{ex/reg}$ is a Mal'tsev category.

Theorem

For a category \mathcal{X} , the following conditions are equivalent :

- (a) ${\mathcal X}$ is a semi-localization of an exact Mal'tsev category ${\mathcal C}$;
- (b) X is a regular Mal'tsev category, and has stable coequalizers of equivalence relations;

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Conclusion :

A regular \mathcal{X} is a Mal'tsev category \Leftrightarrow if $\mathcal{X}_{ex/reg}$ is a Mal'tsev category.

Theorem

For a category $\ensuremath{\mathcal{X}}$, the following conditions are equivalent :

- (a) \mathcal{X} is a semi-localization of an exact Mal'tsev category \mathcal{C} ;
- (b) \mathcal{X} is a regular Mal'tsev category, and has stable coequalizers of equivalence relations ;
- (c) \mathcal{X} is a regular Mal'tsev category, and is a semi-localization of its exact completion $\mathcal{X}_{\text{ex/reg}}$ as a regular category.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion :

A regular \mathcal{X} is a Mal'tsev category \Leftrightarrow if $\mathcal{X}_{ex/reg}$ is a Mal'tsev category.

Theorem

For a category $\ensuremath{\mathcal{X}}$, the following conditions are equivalent :

- (a) \mathcal{X} is a semi-localization of an exact Mal'tsev category \mathcal{C} ;
- (b) \mathcal{X} is a regular Mal'tsev category, and has stable coequalizers of equivalence relations;
- (c) \mathcal{X} is a regular Mal'tsev category, and is a semi-localization of its exact completion $\mathcal{X}_{\text{ex/reg}}$ as a regular category.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Conclusion :

A regular \mathcal{X} is a Mal'tsev category \Leftrightarrow if $\mathcal{X}_{ex/reg}$ is a Mal'tsev category.

Theorem

For a category $\ensuremath{\mathcal{X}}$, the following conditions are equivalent :

- (a) \mathcal{X} is a semi-localization of an exact Mal'tsev category \mathcal{C} ;
- (b) \mathcal{X} is a regular Mal'tsev category, and has stable coequalizers of equivalence relations;
- (c) \mathcal{X} is a regular Mal'tsev category, and is a semi-localization of its exact completion $\mathcal{X}_{\text{ex/reg}}$ as a regular category.

Let \mathbb{T} be a Mal'tsev algebraic theory : $\exists p(x, y, z)$ such that p(x, y, y) = x and p(x, x, y) = y.

Then the category $\mathbb{T}(\mathsf{Top})$ of topological Mal'tsev algebras is

- regular
- Mal'tsev
- snotice relations of equivalence relations

 $\mathbb{T}(\mathsf{Top})$ is then a semi-localization of an exact Mal'tsev category.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let \mathbb{T} be a Mal'tsev algebraic theory : $\exists p(x, y, z)$ such that p(x, y, y) = x and p(x, x, y) = y.

Then the category $\mathbb{T}(\mathsf{Top})$ of topological Mal'tsev algebras is

- regular
- Mal'tsev
- with stable coequalizers of equivalence relations

 $\mathbb{T}(\mathsf{Top})$ is then a semi-localization of an exact Mal'tsev category.

Let \mathbb{T} be a Mal'tsev algebraic theory : $\exists p(x, y, z)$ such that p(x, y, y) = x and p(x, x, y) = y.

Then the category T(Top) of topological Mal'tsev algebras is

- regular
- Mal'tsev
- with stable coequalizers of equivalence relations

 $\mathbb{T}(\mathsf{Top})$ is then a semi-localization of an exact Mal'tsev category.

Let \mathbb{T} be a Mal'tsev algebraic theory : $\exists p(x, y, z)$ such that p(x, y, y) = x and p(x, x, y) = y.

Then the category T(Top) of topological Mal'tsev algebras is

- regular
- Mal'tsev
- with stable coequalizers of equivalence relations

 $\mathbb{T}(\mathsf{Top})$ is then a semi-localization of an exact Mal'tsev category.

Let \mathbb{T} be a Mal'tsev algebraic theory : $\exists p(x, y, z)$ such that p(x, y, y) = x and p(x, x, y) = y.

Then the category T(Top) of topological Mal'tsev algebras is

- regular
- Mal'tsev
- with stable coequalizers of equivalence relations

 $\mathbb{T}(\mathsf{Top})$ is then a semi-localization of an exact Mal'tsev category.

Outline

Motivation

Semi-localizations of exact categories

An easy application : the Mal'tsev case

Semi-localizations of exact protomodular categories

The semi-abelian case

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

How to deal with protomodularity?

In order to imitate the Mal'tsev case one needs a new characterization of protomodular categories in terms of internal relations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition A relation *R* on *X* is left pseudoreflexive if *xRy* implies *xRx*.

A relation R on X is right pseudoreflexive if xRy implies yRy.

How to deal with protomodularity?

In order to imitate the Mal'tsev case one needs a new characterization of protomodular categories in terms of internal relations.

(ロ) (同) (三) (三) (三) (○) (○)

Definition

A relation R on X is left pseudoreflexive if xRy implies xRx.

A relation R on X is right pseudoreflexive if xRy implies yRy.

How to deal with protomodularity?

In order to imitate the Mal'tsev case one needs a new characterization of protomodular categories in terms of internal relations.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

A relation R on X is left pseudoreflexive if xRy implies xRx.

A relation R on X is right pseudoreflexive if xRy implies yRy.

Pseudosymmetry

A relation *R* on *X* is left pseudosymmetric if there is a morphism $f: \mathbb{Z} \to X$ with the property that (fz)Ry implies yR(fz)for $y: Y \to X$ and $z: Y \to Z$.

The existence of the factorisation *i* implies the existence of *j* :

Pseudosymmetry

A relation *R* on *X* is left pseudosymmetric if there is a morphism $f: \mathbb{Z} \to X$ with the property that (fz)Ry implies yR(fz)for $y: Y \to X$ and $z: Y \to Z$.

The existence of the factorisation *i* implies the existence of *j*:

・ コット (雪) (小田) (コット 日)

Remark

In the pointed case, *R* is left pseudosymmetric $\Leftrightarrow 0Ry$ implies *yR*0 (Z. Janelidze, Appl. Categ. Structures, 2007).

Theorem

For a finitely complete category \mathcal{C} the following are equivalent :

- (a) C is protomodular;
- (b) every relation in C which is left pseudoreflexive and left pseudosymmetric is symmetric;
- (c) every relation in C which is left pseudoreflexive and left pseudosymmetric is right pseudoreflexive.

Remark

This extends an important result due to Z. Janelidze in the pointed context (Appl. Categ. Structures, 2007).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

For a finitely complete category \mathcal{C} the following are equivalent :

- (a) C is protomodular;
- (b) every relation in C which is left pseudoreflexive and left pseudosymmetric is symmetric;
- (c) every relation in C which is left pseudoreflexive and left pseudosymmetric is right pseudoreflexive.

Remark

This extends an important result due to Z. Janelidze in the pointed context (Appl. Categ. Structures, 2007).

(ロ) (同) (三) (三) (三) (○) (○)

Lemma A regular category \mathcal{X} is protomodular $\Leftrightarrow \mathcal{X}_{ex/reg}$ is protomodular.

Theorem

- (a) \mathcal{X} is a semi-localization of an exact protomodular category \mathcal{C} ;
- (b) \mathcal{X} is regular, protomodular, and has stable coequalizers of equivalence relations;
- (c) \mathcal{X} is regular, is a semi-localization of its exact completion $\mathcal{X}_{\text{ex/reg}}$, and $\mathcal{X}_{\text{ex/reg}}$ is protomodular.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Lemma

A regular category \mathcal{X} is protomodular $\Leftrightarrow \mathcal{X}_{ex/reg}$ is protomodular.

Theorem

- (a) \mathcal{X} is a semi-localization of an exact protomodular category \mathcal{C} ;
- (b) \mathcal{X} is regular, protomodular, and has stable coequalizers of equivalence relations;
- (c) \mathcal{X} is regular, is a semi-localization of its exact completion $\mathcal{X}_{\text{ex/reg}}$, and $\mathcal{X}_{\text{ex/reg}}$ is protomodular.

(ロ) (同) (三) (三) (三) (○) (○)

Outline

Motivation

Semi-localizations of exact categories

An easy application : the Mal'tsev case

Semi-localizations of exact protomodular categories

The semi-abelian case

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

The semi-abelian case

In order to give the characterization of torsion-free subcategories we recall the following

Definition

In a protomodular category, a morphism $m: X \rightarrow Y$ is Bourn-normal when there exists an equivalence relation R and a discrete fibration

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Such a morphism $m: X \rightarrow Y$ is necessarily a monomorphism.

The semi-abelian case

In order to give the characterization of torsion-free subcategories we recall the following

Definition

In a protomodular category, a morphism $m: X \rightarrow Y$ is Bourn-normal when there exists an equivalence relation R and a discrete fibration

Such a morphism $m: X \rightarrow Y$ is necessarily a monomorphism.

The semi-abelian case

In order to give the characterization of torsion-free subcategories we recall the following

Definition

In a protomodular category, a morphism $m: X \rightarrow Y$ is Bourn-normal when there exists an equivalence relation R and a discrete fibration

Such a morphism $m: X \rightarrow Y$ is necessarily a monomorphism.

Remark

In a pointed category any normal monomorphism is Bourn-normal. The converse is not true, in general.

Definition A cokernel $q: B \rightarrow Q$ of a monomorphism $m: A \rightarrow B$ is stable if given any $f: D \rightarrow Q$ as in

with pullback

one has that $\pi_2 = \operatorname{coker}(\mathsf{m}')$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Remark

In a pointed category any normal monomorphism is Bourn-normal. The converse is not true, in general.

Definition

A cokernel $q: B \to Q$ of a monomorphism $m: A \to B$ is stable if, given any $f: D \to Q$ as in

with pullback

one has that $\pi_2 = \operatorname{coker}(\mathbf{m}')$.

Theorem

For a category \mathcal{X} , the following conditions are equivalent :

- (a) \mathcal{X} is a semi-localization of a semi-abelian category \mathcal{C} ;
- (b) \mathcal{X} is a torsion-free subcategory a semi-abelian category \mathcal{C} ;
- (c) \mathcal{X} is homological, and has binary coproducts and stable coequalizers of equivalence relations;
- (d) \mathcal{X} is homological, has binary coproducts, and stable cokernels of Bourn-normal monomorphisms;

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

(e) \mathcal{X} is homological, has binary coproducts, and every Bourn-normal monomorphism factorizes as a monomorphism with trivial cokernel followed by a normal monomorphism.
Let \mathbb{T} be a semi-abelian algebraic theory. This means that there is a unique constant 0, binary terms $\alpha_i(x, y)$ (for $i \in \{1, \dots, n\}$) and an (n + 1)-ary term β such that :

$$\alpha_i(\mathbf{x},\mathbf{x}) = \mathbf{0}$$

and

$$\beta(\alpha_1(x, y), \cdots, \alpha_n(x, y), y) = x.$$

As shown by F. Borceux and M.M. Clementino (Adv. Math, 2005), the category T(Top) is homological, and it has binary coproducts.

Furthermore, every Bourn-normal mono factorizes as a mono with trivial cokernel followed by a normal mono.

 $\mathbb{T}(\mathsf{Top})$ is then the semi-localization of a semi-abelian category.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let \mathbb{T} be a semi-abelian algebraic theory. This means that there is a unique constant 0, binary terms $\alpha_i(x, y)$ (for $i \in \{1, \dots, n\}$) and an (n + 1)-ary term β such that :

$$\alpha_i(\mathbf{x},\mathbf{x})=\mathbf{0}$$

and

$$\beta(\alpha_1(x, y), \cdots, \alpha_n(x, y), y) = x.$$

As shown by F. Borceux and M.M. Clementino (Adv. Math, 2005), the category T(Top) is homological, and it has binary coproducts.

Furthermore, every Bourn-normal mono factorizes as a mono with trivial cokernel followed by a normal mono.

 $\mathbb{T}(\mathsf{Top})$ is then the semi-localization of a semi-abelian category.

Let \mathbb{T} be a semi-abelian algebraic theory. This means that there is a unique constant 0, binary terms $\alpha_i(x, y)$ (for $i \in \{1, \dots, n\}$) and an (n + 1)-ary term β such that :

$$\alpha_i(\mathbf{x},\mathbf{x})=\mathbf{0}$$

and

$$\beta(\alpha_1(x, y), \cdots, \alpha_n(x, y), y) = x.$$

As shown by F. Borceux and M.M. Clementino (Adv. Math, 2005), the category T(Top) is homological, and it has binary coproducts.

Furthermore, every Bourn-normal mono factorizes as a mono with trivial cokernel followed by a normal mono.

 $\mathbb{T}(\mathsf{Top})$ is then the semi-localization of a semi-abelian category.

Let \mathbb{T} be a semi-abelian algebraic theory. This means that there is a unique constant 0, binary terms $\alpha_i(x, y)$ (for $i \in \{1, \dots, n\}$) and an (n + 1)-ary term β such that :

$$\alpha_i(\mathbf{x},\mathbf{x})=\mathbf{0}$$

and

$$\beta(\alpha_1(x, y), \cdots, \alpha_n(x, y), y) = x.$$

As shown by F. Borceux and M.M. Clementino (Adv. Math, 2005), the category T(Top) is homological, and it has binary coproducts.

Furthermore, every Bourn-normal mono factorizes as a mono with trivial cokernel followed by a normal mono.

 $\mathbb{T}(\mathsf{Top})$ is then the semi-localization of a semi-abelian category.

The category NormMono(C) of normal monomorphisms in a semi-abelian category C is a semi-localization of a semi-abelian category.

It turns out that

 $NormMono(\mathcal{C})_{ex/reg} = XMod(\mathcal{C}).$

Example

The category **RedRng** of reduced rings $(x^n = 0 \Rightarrow x = 0)$ is a semi-localization of a semi-abelian category.

In this case :

RedRng_{ex/reg} = CRng

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The category NormMono(C) of normal monomorphisms in a semi-abelian category C is a semi-localization of a semi-abelian category.

It turns out that

 $NormMono(\mathcal{C})_{ex/reg} = XMod(\mathcal{C}).$

Example

The category **RedRng** of reduced rings $(x^n = 0 \Rightarrow x = 0)$ is a semi-localization of a semi-abelian category.

In this case :

 $\text{RedRng}_{\text{ex/reg}} = \text{CRng}$

The category NormMono(C) of normal monomorphisms in a semi-abelian category C is a semi-localization of a semi-abelian category.

It turns out that

 $NormMono(\mathcal{C})_{ex/reg} = XMod(\mathcal{C}).$

Example

The category RedRng of reduced rings $(x^n = 0 \Rightarrow x = 0)$ is a semi-localization of a semi-abelian category.

In this case :

RedRng_{ex/reg} = CRng

The category NormMono(C) of normal monomorphisms in a semi-abelian category C is a semi-localization of a semi-abelian category.

It turns out that

 $NormMono(\mathcal{C})_{ex/reg} = XMod(\mathcal{C}).$

Example

The category RedRng of reduced rings $(x^n = 0 \Rightarrow x = 0)$ is a semi-localization of a semi-abelian category.

In this case :

$$RedRng_{ex/reg} = CRng$$

Remark 1

Our results can be used to characterize the hereditarily-torsion-free subcategories of semi-abelian categories.

Remark 2 The previous theorem implies in particular Rump's Theorem on almost abelian categories.

Remark 1

Our results can be used to characterize the hereditarily-torsion-free subcategories of semi-abelian categories.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark 2

The previous theorem implies in particular Rump's Theorem on almost abelian categories.

References

- S. Mantovani, Semilocalizations of exact and lextensive categories, Cah. Topol. Géom. Différentielle Catég. (1998)
- W. Rump, Almost abelian categories, Cah. Topol. Géom. Différentielle Catég. (2001)
- Z. Janelidze, Closedness Properties of Internal Relations III : Pointed Protomodular Categories, Appl. Categ. Structures (2007)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 M. Gran and S. Lack, Semi-localizations of semi-abelian categories, Preprint (2014)

Thank you for your attention !