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The context: unification of machine models

. The familiar non-deterministic machine models for language
recognition over an alphabet Σ in the Chomsky-hierarchy

− finite automata (FAs) for regular languages ( REG ),
− push-down automata (PDAs) for context-free languages ( CF ),
− Turing machines (TMs) for semi-decidable languages ( SD ),

display less of a family resemblance than the defining grammars.

. 2PDAs (with two stacks), long known to be Turing complete, could
rectify this, but never received much attention.

. But even deterministic 2PDAs with a single state suffice [Koslowski
2013], hence states and storage can be disentagled (impossible for
TMs). This allows a natural refinement of the Chomsky hierarchy, but
also raises questions about the true nature of states.

. We provide an elegant categorification of ss2PDAs that allows states to
be incorporated orthogonally to storage. The result bears strong
resemblance to the tile model of Gadducci and Montanari [2000] for
rewriting and abstract concurrent semantics.
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Categorical approaches to LTSs (0)

Most categorical approaches have focussed on labled transition systems
(LTSs), that form the core of FAs (disregarding initial/final states):

G 〈!, `〉 Σ (faithful graph morphism)

G0
s

t
G1

` Σ (jointly mono)

G0 × G0
〈s, t〉 G1

` Σ (jointly mono, relation G0 × G0 Σ)

G0
L Σ× G0 (non-obvious relation)G0
L (Σ× G0)P (coalgebra, Aczel and Mendler [1989])

G0 × Σ L G0 (non-obvious relation, textbook LTS?)G0 × Σ L G0P (textbook LTS!)

Σ L G0 × G0 (reversed obvious relation)Σ L (G0 × G0)P (this looks promising)Σ L (G0,G0)rel (hom-component of a graph morphism)

Σ L rel (“finitary” graph morphism)

where G = (G1
s

t
G0) is a finite graph, Σ is an alphabet, and

Σ = (Σ
!

!
1) is a single-node graph with hom-set Σ .
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Categorical approaches to LTSs (1)

Using the free monoid Σ? and categories K instead one obtains

K Σ? (fibre-small faithful functor)

(K0 × K0)P Σ?P (quantale-enriched category, Betti [1980])

Σ? (K0 × K0)P (lax homomorphism)

Σ? rel (lax functor, Rosenthal [1996])

. The bottom lines would seem to place our subject squarely into the
realm of categorical relational algebra.

. Morphisms of coalgebras G0
L (Σ× G0)P turn out to be functional

bisimulations, while spans are needed to model general bisimulations.

. Joyal, Winskel and Nielsen [1994] as well as Cockett and Spooner
[1997] approach bisimulations synthetically; in an enriched context this
has been done by Schmitt and Worytkiewicz [2006].
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Remarks

The outer bijection persists, when Σ / Σ? is replaced by an arbitrary
graph/category X , giving rise to a Grothendieck-type construction.

But not all intermediate stages admit a similar generalization, in
particular not coalgebra.

Oplax transformations as morphisms between lax functors into rel
translate into simulations between LTSs (JK, several talks since 2003,
Sobociński [2012]).

So far we have ignored initial/final states. We’d prefer a categorical
interpretation rather than selecting arbitrary subsets of states. But the
attempt to use simulations from, resp., into a special LTS fails.

Instead, one has to use modules rather than oplax natural transfor-
mations, from, resp., into the discrete lax functor Σ? D rel .
In the context of graphs this means that instead of Σ we need to
consider the reflexive graph Σ ε with hom-set Σ + {ε} .
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Moving up the Chomsky hierarchy: Walters’ approach

. Some approaches to describe at least real-time PDAs by coalgebraic
methods are presently under way, but they seem to be very intricate.

. Instead, we slightly extend Walters’ [1989] categorification of a certain
type of context-free grammars (CFGs), which functionally separates
terminals (= elements of Σ ) from variables,

rather than (classically)
lumping them together and forming a free monoid.

. Walters views morphisms G γ Σ ε between finite reflexive graphs as
regular grammars rather than as LTSs. Then morphsms between
suitable multi-graphs (edges have finitely many inputs and one output;
this yields bottom-up parsing) capture a class of CFGs (in Walters
Normal Form (WNF)) that generate all context-free languages.

. Walters wanted to illustrate his construction of the free category with
products over a multi-graph. However, a more direct way of extracting
the generated language becomes available with top-down parsing,
hence we revert to co-multi-graphs or cm-graphs, for short.
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Walters’ approach slightly generalized

Definition

(0) Any set Σ induces a cm-graph ΣIN with a single node H and
Σ + {ε} for all hom-sets [H,Hn] , n ∈ IN .

( ∅IN is terminal.)

(1) A CFG à la Walters (CFW) γ over Σ is a faithful cm-graph morphism
G γ ΣIN with G finite.

. Terminals (= elements of Σ ) label the edges of ΣIN , while the set B

of variables is the set of G -nodes.

. Classical CFG-productions X aY0Y1 . . .Yn−1 in ε -Greibach
normal form, that is, a ∈ Σ + {ε} , can be expressed by

(X ϕ Y0 . . .Yn−1)γ = (H a Hn)

or simply as X a Y0 . . .Yn−1, since γ is faithful.

Jürgen Koslowski (TU-BS) A categorical model for 2-PDAs with states cmat14, Coimbra 8 / 17



Walters’ approach slightly generalized

Definition

(0) Any set Σ induces a cm-graph ΣIN with a single node H and
Σ + {ε} for all hom-sets [H,Hn] , n ∈ IN .

( ∅IN is terminal.)
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. Terminals (= elements of Σ ) label the edges of ΣIN , while the set B

of variables is the set of G -nodes.

. Classical CFG-productions X aY0Y1 . . .Yn−1 in ε -Greibach
normal form, that is, a ∈ Σ + {ε} , can be expressed by

(X ϕ Y0 . . .Yn−1)γ = (H a Hn)

or simply as X a Y0 . . .Yn−1, since γ is faithful.
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Trees and words

. Instead of traditional node-labeled derivation trees, Poincaré duality
now yields trees with somewhat different building blocks:

X

Yn−1. . .Y1Y0a

vs. a

. . .

X

Y0 Y1 Yn−1

. for the language recognized by a G - node S , roughly speaking,

freely extend γ to a cm-functor γ? between “free cm-categories over
cm-graphs” (in analogy to forming free categories over a graphs);
consider the γ -image of the hom-set 〈S , ε〉G? in Σ?

IN ;
extract words over Σ from the resulting diagrams in Σ?

IN ; these
so-called yields constitute the string-language generated by γ and S .
Optionally, one can view ΣIN as a reflexive cm-graph, which results in a
somewhat simpler free cm-category Σ?

IN .

. As terminals are not limited to leaves, we need to switch from
positional ordering of trees to temporal ordering (rotation by π/2
indicates this), which requires some notion of current position.
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Strategy: towards 2PDAs

. CFGs with the constraint of only left-derivations being allowed
essentially are single state PDAs that accept by empty stack.

Hence
such pure PDAs may have been disregarded as uninteresting.

. Juxtaposing a second stack to the first one, the interface between
them determines the current position: from here the first element on
each side is visible, resp., the information that some stack is empty.

. We will employ two stack alphabets (= sets of variables) B and C ,
which à priori need not be disjoint. But to indicate the current position,
we use color-coded disjoint copies B and C for the lower/upper stack.
Their union makes up the set of G - nodes. Moreover, we require the
outputs of cm-edges to inherit the input’s color.

. Transitions take the form AB a Γ∆ with A , B not both empty
(acceptance by empty stack), a ∈ Σ + {ε} , and 〈Γ,∆〉 ∈ B? × C? .

. Left and right moves AB ε εAB and AB ε ABε just change the
current position.
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Example: MIX = {w ∈ {a, b, c}∗ : |w |a = |w |b = |w |c }

When using the initial stack ε S and the following transitions

εS a εSBC | εBC
ε S b εSCA | εCA
εS c εSAB | εAB

@A a @ε

@B b @ε

@C c @ε

A@ a ε@

B@ b ε@

C@ c ε@

@X ε @X ε

X@ ε εX@

moves!

with @ ∈ {A,B,C , ε} and X ∈ {A,B,C} .

The derivation of

bb aa bb cc cc aa bb cc aa

can take the form:

b a
b

c �
�

c
;

a
b c a

S S S C B B

A

B

B

A

B

CC

A

? current position? ? ? ?

?

? ?

?

? ? ?
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What’s wrong with this picture?

As the diagram above is not built from cm-edges of the proposed cm-graph
G , we need to re-interpret its components, e.g., by splitting them up. E.g.,

aB

A

E

D

C

? ?

could mean


ψ

ϕ

B

A

E

D

C

? ?

γ
a

a

H

H

H

H

H



. With G a disjoint union of a red and a blue component, any pairing
〈ϕ,ψ〉 with the same Σ - labels under γ would produce a valid
transition for the ss2PDA. Is this really what we want?

. Another problem is that at least here the current position does not
really move to a different region of the diagram.
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The missing ingredient

Instead of drawing, e.g.,

aA B

C

? ?

or a

B

A C

? ? or a

B D

A C

? ? (but not a

A C

B

? ? !)

where the region of the current position does not really change, let us
introduce explicit vertical separations,

aA B

C

? ? or

a

a
B

CA

? ? or

a

a
B D

A C

? ? (but not

a

a
A C

B

? ? !)
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Poincaré duality now yields, e.g.,

aA B

C

p
? ?

7→

•

• •

•

•

A

p

B

C

a and

a

a
B

A C

p? ? 7→

•

•

• •

•

•

B

A

p

C

(∗)a

a

The regions (=positions) have not yet been named. Notice the opposite
orientations of the red and blue vertical 1-cells. For moves this suggests

�A

A?

? 7→

•

• •

•
A Aε and ;

A

A?

?
7→

•

• •

•
A Aε

which resembles adjunctions. Vertical = -arrows are empty words (∗) , what
about the horizontal ones? The underlying graph has to be reflexiv!

Jürgen Koslowski (TU-BS) A categorical model for 2-PDAs with states cmat14, Coimbra 14 / 17
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Putting it all together (0)

. Instead of of a cm-graph we seem to need a 2-dimensional structure,
an “fc-cm-graph”, in analogy to Tom Leinster’s fc-multi-categories.

Objects are the positions, vertical arrows are finite sequences of stack
symbols, while horizontal arrows might be interpreted as “states”.

. So the framework for handling more than one state is alread in place;
states do not have to be grafted on artificially.

. While vertically the stack can grow and shrink and be traversed,
horizontally, history can only grow, one state at each tick of the clock.

. History need not be linear, but is distributed in as many threads as the
current stack size. The current state is visible from the current
position, changing the latter jumps to another history thread.

. There is some resemblance with Gadducci and Montanari’s tile model:

− for vertical arrows we have more freedom, as the horizontal codomain of
a tile can be a word of stack symbols, or the direction can flip;

− non-trivial horizontal arrows are constrained to vertical domains of tiles.
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Putting it all together (1)

. In principle, both states and stack symbols can be typed (by means of
positions).

The usefulness of this flexibility still needs to be exploited.

. The term “adjoints” was used delibertately, even though we are just
working with graphs. Just like the distinguished loops of a reflexive
graph are intended to become identities in the free category, the
distinguished cells are intended to become units, resp., counits of
adjuncions between vertical arrows in the free fc-cm-category:

•

• •

•

•

•
A A Aη ε =

•

• •

•
A Aid (and the dual)

. The corresponding fc-cm-graph generated by Σ has one position,
vertical arrows H and H , and no non-trivial horizontal arrows. The
unit/counit cells are only labeled by ε .
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The
unit/counit cells are only labeled by ε .
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To do

Does it make sense to have conditional moves?

The mechanism allows for the processing of pairs of input symbols,
what does that mean?

Perhaps transducers can be modeled?

Surely, other targets than Σ -induced fc-cm-graphs must make sense.

Formulate everything properly for fc-cm-categories.

How does the other side of the Gothendieck construction look like?

Dropping faithfulness requires the use of spn instaed of rel . Other
bicategories may be usable as well.
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