A classification theorem for normal extensions

Mathieu Duckerts-Antoine with Tomas Everaert

Université Catholique de Louvain Institut de Recherche en Mathématique et Physique

Workshop on Categorical Methods in Algebra and Topology Coimbra, 24 - 26 January 2014

Outline

Galois structures and extensions

Normalisation functor as a pointwise Kan extension

A classification theorem for normal extensions

Outline

Galois structures and extensions

Normalisation functor as a pointwise Kan extension

A classification theorem for normal extensions

Definition

A Galois structure Γ is given by:

Definition

A Galois structure Γ is given by:

lacksquare ${\mathscr X}$ a full replete reflective subcategory of ${\mathscr C}$

$$\mathscr{X} \xrightarrow{\coprod} \mathscr{C};$$

Definition

A Galois structure Γ is given by:

 \blacktriangleright ${\mathscr X}$ a full replete reflective subcategory of ${\mathscr C}$

$$\mathscr{X} \overset{I}{\underbrace{\longrightarrow}} \mathscr{C};$$

 \blacktriangleright $\mathcal E$ a class of morphisms in $\mathscr C$ such that:

Definition

A Galois structure Γ is given by:

 $lacktriangleright \mathscr{X}$ a full replete reflective subcategory of \mathscr{C}

$$\mathscr{X} \xrightarrow{\underline{\downarrow}} \mathscr{C};$$

- \blacktriangleright $\mathcal E$ a class of morphisms in $\mathscr E$ such that:
 - \mathcal{E} contains the isomorphisms in \mathscr{C} ;

Definition

A Galois structure Γ is given by:

 \blacktriangleright ${\mathscr X}$ a full replete reflective subcategory of ${\mathscr C}$

$$\mathscr{X} \xrightarrow{\underline{\downarrow}} \mathscr{C};$$

- \blacktriangleright $\mathcal E$ a class of morphisms in $\mathscr C$ such that:
 - \triangleright \mathcal{E} contains the isomorphisms in \mathscr{C} ;
 - lacksim pullbacks of morphisms in $\mathcal E$ exists and are in $\mathcal E$;

Definition

A Galois structure Γ is given by:

 \blacktriangleright ${\mathscr X}$ a full replete reflective subcategory of ${\mathscr C}$

$$\mathscr{X} \xrightarrow{\stackrel{I}{\smile}} \mathscr{C};$$

- \blacktriangleright $\mathcal E$ a class of morphisms in $\mathscr C$ such that:
 - \triangleright \mathcal{E} contains the isomorphisms in \mathscr{C} ;
 - pullbacks of morphisms in \mathcal{E} exists and are in \mathcal{E} ;
 - $ightharpoonup \mathcal{E}$ is closed under composition;

Definition

A Galois structure Γ is given by:

lacksquare ${\mathscr X}$ a full replete reflective subcategory of ${\mathscr C}$

$$\mathscr{X} \xrightarrow{\coprod} \mathscr{C};$$

- \blacktriangleright $\mathcal E$ a class of morphisms in $\mathscr C$ such that:
 - \triangleright \mathcal{E} contains the isomorphisms in \mathscr{C} ;
 - pullbacks of morphisms in \mathcal{E} exists and are in \mathcal{E} ;
 - & is closed under composition;
 - $I(\mathcal{E}) \subseteq \mathcal{E}$;

Definition

A Galois structure Γ is given by:

lacksquare ${\mathscr X}$ a full replete reflective subcategory of ${\mathscr C}$

$$\mathscr{X} \xrightarrow{\coprod} \mathscr{C};$$

- \blacktriangleright $\mathcal E$ a class of morphisms in $\mathscr C$ such that:
 - \triangleright \mathcal{E} contains the isomorphisms in \mathscr{C} ;
 - pullbacks of morphisms in \mathcal{E} exists and are in \mathcal{E} ;
 - \triangleright \mathcal{E} is closed under composition;
 - $I(\mathcal{E}) \subseteq \mathcal{E};$
- ▶ $\eta \colon 1_{\mathscr{C}} \Rightarrow I$ a unit such that $\eta_C \colon C \to I(C)$ in \mathscr{E} for all C.

Definition

A Galois structure Γ is given by:

 $lacktriangleright \mathscr{X}$ a full replete reflective subcategory of \mathscr{C}

$$\mathscr{X} \xrightarrow{\stackrel{I}{\smile}} \mathscr{C};$$

- \blacktriangleright $\mathcal E$ a class of morphisms in $\mathscr E$ such that:
 - \triangleright \mathcal{E} contains the isomorphisms in \mathscr{C} ;
 - pullbacks of morphisms in \mathcal{E} exists and are in \mathcal{E} ;
 - & is closed under composition;
 - $I(\mathcal{E}) \subseteq \mathcal{E}$;
- ▶ $\eta: 1_{\mathscr{C}} \Rightarrow I$ a unit such that $\eta_C: C \to I(C)$ in \mathscr{E} for all C.

Notation

 $\operatorname{Ext}_{\mathcal{E}}(\mathscr{C})$: category of extensions.

We will only consider Galois structures of type (A), i.e. which satisfy:

We will only consider Galois structures of type (A), i.e. which satisfy:

▶ I preserves pullbacks

with g,h in $\mathcal E$ and g split epi;

We will only consider Galois structures of type (A), i.e. which satisfy:

▶ I preserves pullbacks

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow k & & \downarrow g \\
D & \xrightarrow{h} & C
\end{array}$$

with g,h in $\mathcal E$ and g split epi;

every extension is monadic and a regular epimorphism;

We will only consider Galois structures of type (A), i.e. which satisfy:

▶ I preserves pullbacks

with g, h in \mathcal{E} and g split epi;

- every extension is monadic and a regular epimorphism;
- enough projective objects w.r.t. ε;

We will only consider Galois structures of type (A), i.e. which satisfy:

▶ I preserves pullbacks

with g, h in \mathcal{E} and g split epi;

- every extension is monadic and a regular epimorphism;
- enough projective objects w.r.t. ε;

Notation

 $f \in \mathrm{Split}\mathcal{E}$ if $f \in \mathcal{E}$ and f is a split epimorphism (a split extension).

Definition

An extension $p \colon E \to B$ is monadic if

 $p^* \colon \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C} \downarrow_{\mathcal{E}} E$ is monadic

Definition

An extension $p \colon E \to B$ is monadic if

$$p^* \colon \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C} \downarrow_{\mathcal{E}} E$$
 is monadic

equivalently

$$K^p \colon \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C}^{\downarrow_{\mathcal{E}} \mathrm{Eq}(p)}$$
 is an equivalence

Definition

An extension $p \colon E \to B$ is monadic if

$$p^* \colon \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C} \downarrow_{\mathcal{E}} E$$
 is monadic

equivalently

 $K^p \colon \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C}^{\downarrow_{\mathcal{E}} \mathrm{Eq}(p)}$ is an equivalence

$$\operatorname{Eq}(p) \xrightarrow{\pi_1^p} E \xrightarrow{p} B.$$

Definition

An extension $p \colon E \to B$ is monadic if

$$p^* \colon \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C} \downarrow_{\mathcal{E}} E$$
 is monadic

equivalently

 $K^p \colon \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C}^{\downarrow_{\mathcal{E}} \mathrm{Eq}(p)}$ is an equivalence

$$E \times_B A \xrightarrow{p'} A$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Eq(p) \xrightarrow{\pi_1^p} E \xrightarrow{p} B.$$

Definition

An extension $p \colon E \to B$ is monadic if

$$p^* : \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C} \downarrow_{\mathcal{E}} E$$
 is monadic

equivalently

 $K^p \colon \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C}^{\downarrow_{\mathcal{E}} \mathrm{Eq}(p)}$ is an equivalence

$$\begin{array}{ccc}
\operatorname{Eq}(p') & \xrightarrow{\pi_1^{p'}} & E \times_B A & \xrightarrow{p'} & A \\
f'' & & f' & & \downarrow f \\
\downarrow & & & \pi_1^p & \downarrow & & \downarrow f \\
\operatorname{Eq}(p) & \xrightarrow{\pi_2^p} & E & \xrightarrow{p} & B.
\end{array}$$

Definition

An extension $p \colon E \to B$ is monadic if

$$p^* : \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C} \downarrow_{\mathcal{E}} E$$
 is monadic

equivalently

 $K^p \colon \mathscr{C} \downarrow_{\mathcal{E}} B \to \mathscr{C}^{\downarrow_{\mathcal{E}} \mathrm{Eq}(p)}$ is an equivalence

 $K^{p}(f) = (f', f'')$

Lemma

For

$$F \longrightarrow A \longrightarrow D$$

$$\downarrow \qquad (1) \qquad \downarrow f \qquad (2) \qquad \downarrow h$$

$$E \xrightarrow{p} B \longrightarrow C$$

with $p, f, h \in \mathcal{E}$ and (1)+(2) pullback:

Lemma

For

$$F \longrightarrow A \longrightarrow D$$

$$\downarrow \qquad (1) \qquad \downarrow f \qquad (2) \qquad \downarrow h$$

$$E \xrightarrow{p} B \longrightarrow C$$

with $p, f, h \in \mathcal{E}$ and (1)+(2) pullback:

(1) $pullback \Leftrightarrow (2) pullback$

Definition

An extension $f:A\to B$ is a trivial extension if

$$A \xrightarrow{\eta_A} I(E)$$

$$f \downarrow \qquad \qquad \downarrow_{I(f)}$$

$$B \xrightarrow{\eta_B} I(B)$$

is a pullback.

Definition

An extension $f:A\to B$ is a trivial extension if

$$A \xrightarrow{\eta_A} I(E)$$

$$f \downarrow \qquad \qquad \downarrow I(f)$$

$$B \xrightarrow{\eta_B} I(B)$$

is a pullback.

Notation

 $\mathrm{Triv}_{\Gamma}(\mathscr{C})$: category of trivial extensions.

For an extension $p \colon E \to B$.

Definition

An extension $f: A \to B$ is is split by p if in the pullback

$$E \times_B A \xrightarrow{p_2} A$$

$$\downarrow^{p_1} \downarrow \qquad \qquad \downarrow^f$$

$$E \xrightarrow{p} B$$

 p_1 is trivial.

For an extension $p \colon E \to B$.

Definition

An extension $f: A \to B$ is is split by p if in the pullback

$$E \times_B A \xrightarrow{p_2} A$$

$$\downarrow^{p_1} \downarrow \qquad \qquad \downarrow^f$$

$$E \xrightarrow{p} B$$

 p_1 is trivial.

Notation

 $\mathrm{Spl}_{\Gamma}(E,p)$: category of extensions split by p.

Definition

An extension $f \colon A \to B$ is a normal extension if in

$$\begin{array}{c|c} A \times_B A \xrightarrow{\pi_2} A \\ \downarrow^{\pi_1} & \downarrow^f \\ A \xrightarrow{f} B \end{array}$$

 π_1 and π_2 are trivial (i.e. if f is split by itself).

Definition

An extension $f \colon A \to B$ is a normal extension if in

$$\begin{array}{c|c} A \times_B A \xrightarrow{\pi_2} A \\ \downarrow^{\pi_1} & \downarrow^f \\ A \xrightarrow{f} B \end{array}$$

 π_1 and π_2 are trivial (i.e. if f is split by itself).

Notation

 $\operatorname{NExt}_{\Gamma}(\mathscr{C})$: category of normal extensions.

For

$$\overbrace{\mathrm{Gp}\, \underbrace{\bot}_{\supseteq} }^{\mathsf{ab}} \mathrm{Ab} \quad + \quad \mathrm{RegEpi}(\mathrm{Gp})$$

For

$$\operatorname{Gp}$$
 $\stackrel{\mathsf{ab}}{\underbrace{\hspace{1.5cm}}} \operatorname{Ab} + \operatorname{RegEpi}(\operatorname{Gp})$

A regular epimorphism $f \colon A \to B$ is trivial iff

For

$$\operatorname{Gp}$$
 $\stackrel{\mathsf{ab}}{\underbrace{\perp}} \operatorname{Ab} + \operatorname{RegEpi}(\operatorname{Gp})$

A regular epimorphism $f \colon A \to B$ is trivial iff

$$\begin{array}{c|c} [A,A] \longmapsto A \\ \cong & & \downarrow f \\ [B,B] \longmapsto B. \end{array}$$

A regular epimorphism $f: A \rightarrow B$ is normal iff

$$\operatorname{Ker} f \subseteq Z(A)$$
.

Lemma Let

be a pullback with $g,h\in\mathcal{E}$ and g a split epimorphism:

Lemma Let

be a pullback with $g,h\in\mathcal{E}$ and g a split epimorphism:

k trivial \Leftrightarrow g trivial

Lemma Let

be a pullback with $g,h\in\mathcal{E}$ and g a split epimorphism:

k trivial \Leftrightarrow g trivial

g trivial $\Leftrightarrow g$ normal

Proof: Consider:

Lemma Let

be a pullback with $g,h \in \mathcal{E}$ and k a split epimorphism:

Lemma Let

be a pullback with $g,h \in \mathcal{E}$ and k a split epimorphism:

k trivial \Leftrightarrow g normal

Proof: Consider:

Outline

Galois structures and extensions

Normalisation functor as a pointwise Kan extension

A classification theorem for normal extensions

Notation

 $\mathrm{SplitExt}_{\mathcal{E}}(\mathscr{C})$: category of split extensions.

Notation

 $\mathrm{SplitExt}_{\mathcal{E}}(\mathscr{C})$: category of split extensions.

 $\operatorname{SplitTriv}_{\Gamma}(\mathscr{C})$: category of split trivial extensions.

Notation

 $\mathrm{SplitExt}_{\mathcal{E}}(\mathscr{C})$: category of split extensions.

 $\operatorname{SplitTriv}_{\Gamma}(\mathscr{C})$: category of split trivial extensions.

For $f \colon A \to B$ in Split \mathcal{E} :

For $f \colon A \to B$ in Split \mathcal{E} :

Proof:

▶ For all f in $\operatorname{Ext}_{\mathcal{E}}(\mathscr{C})$, the comma category $K \downarrow f$

Proof:

▶ For all f in $\operatorname{Ext}_{\mathcal{E}}(\mathscr{C})$, the comma category $K \downarrow f$

$$\begin{array}{c|c} K\downarrow f & \longrightarrow 1 \\ & \downarrow^f & & \downarrow^f \\ \mathrm{SplitExt}_{\mathcal{E}}(\mathcal{C}) & \xrightarrow{K} \mathrm{Ext}_{\mathcal{E}}(\mathcal{C}) \end{array}$$

admits J_f

as a final subcategory (the inclusion functor $L_f\colon J_f\to K\downarrow f$ is final).

$$p_1^f \xrightarrow[\pi_2^q]{\pi_1^q} \pi_1^f \xrightarrow{q} f$$

$$p_1^f \xrightarrow[\pi_2^q = (p_2^f, \pi_2^f)]{} \xrightarrow[\pi_1^q = (p_2^f, \pi_2^f)]{} \pi_1^f \xrightarrow[g]{} q = (\pi_2^f, f) \\ f$$

$$\begin{array}{c|c} \operatorname{Eq}(\pi_2^f) & \xrightarrow{\tau} A \times_B A \xrightarrow{\pi_2^f} A \\ \downarrow^{p_1^f} & \pi_1^f & \downarrow^f \\ \operatorname{Eq}(f) & \xrightarrow{\pi_2^f} A \xrightarrow{f} B. \end{array}$$

$$p_1^f \xrightarrow[\pi_2^q = (r, \pi_1^f)]{} \pi_1^f \xrightarrow{q = (\pi_2^f, f)} f$$

$$Eq(\pi_2^f) \xrightarrow[p_2^f]{} A \times_B A \xrightarrow{\pi_2^f} A$$

$$p_1^f \xrightarrow[q \to f]{} \pi_1^f \xrightarrow{q} f$$

$$Eq(f) \xrightarrow[\pi_2^f]{} A \xrightarrow{} A$$

$$f = Colim(K \circ P^f \circ L_f)$$

$$\begin{split} p_1^f & \xrightarrow{\pi_1^q = (\tau, \pi_1^f)} \pi_1^f \xrightarrow{q = (\pi_2^f, f)} f \\ & \xrightarrow{\text{Eq}(\pi_2^f)} \xrightarrow{\xrightarrow{\tau}} A \times_B A \xrightarrow{\pi_2^f} A \\ & \xrightarrow{p_1^f} & \xrightarrow{\pi_1^f} & \downarrow f \\ & \text{Eq}(f) \xrightarrow{\pi_2^f} A \xrightarrow{\pi_2^f} A \xrightarrow{f} B. \end{split}$$

▶ Consequently, $K : \operatorname{SplitExt}_{\mathcal{E}}(\mathscr{C}) \to \operatorname{Ext}_{\mathcal{E}}(\mathscr{C})$ is dense.

• Equivalently, $1_{\operatorname{Ext}_{\mathcal{E}}(\mathscr{C})} = \operatorname{Lan}_K(K)$:

• Equivalently, $1_{\operatorname{Ext}_{\mathcal{E}}(\mathscr{C})} = \operatorname{Lan}_K(K)$:

▶ Consequently, if I_1 exists, $I_1 = \operatorname{Lan}_K(I_1 \circ K) = \operatorname{Lan}_K(\tilde{K} \circ T_1)$:

▶ Equivalently, $1_{\operatorname{Ext}_{\mathcal{E}}(\mathscr{C})} = \operatorname{Lan}_K(K)$:

▶ Consequently, if I_1 exists, $I_1 = \operatorname{Lan}_K(I_1 \circ K) = \operatorname{Lan}_K(\tilde{K} \circ T_1)$:

▶ One can show that there is an isomorphism

$$f \downarrow H_1 \cong \mathsf{Cocone}(\tilde{K} \circ T_1 \circ P^f)$$

▶ One can show that there is an isomorphism

$$f \downarrow H_1 \cong \mathsf{Cocone}(\tilde{K} \circ T_1 \circ P^f)$$

 I_1 exists iff $\mathrm{Lan}_K(\tilde{K}\circ T_1)$ exists, and they coincide!

▶ One can show that there is an isomorphism

$$f \downarrow H_1 \cong \mathsf{Cocone}(\tilde{K} \circ T_1 \circ P^f)$$

 I_1 exists iff $\operatorname{Lan}_K(\tilde{K} \circ T_1)$ exists, and they coincide!

Since

$$\mathsf{Cocone}(\tilde{K} \circ T_1 \circ P^f) = \mathsf{Cocone}(\tilde{K} \circ T_1 \circ P^f \circ L_f)$$

One can show that there is an isomorphism

$$f\downarrow H_1\cong \mathsf{Cocone}(\tilde{K}\circ T_1\circ P^f)$$

 I_1 exists iff $\operatorname{Lan}_K(\tilde{K} \circ T_1)$ exists, and they coincide!

Since

$$\mathsf{Cocone}(\tilde{K} \circ T_1 \circ P^f) = \mathsf{Cocone}(\tilde{K} \circ T_1 \circ P^f \circ L_f)$$

 I_1 exists if the coequalizer of

$$T_1(p_1^f) \xrightarrow{T_1(\pi_1^q)} T_1(\pi_1^f),$$

exists in $\operatorname{NExt}_{\Gamma}(\mathscr{C})$ for every f in $\operatorname{NExt}_{\Gamma}(\mathscr{C})$

► The normalisation functor exists!

► The normalisation functor exists!

Outline

Galois structures and extensions

Normalisation functor as a pointwise Kan extension

A classification theorem for normal extensions

Weakly universal normal extensions

Definition

A normal extension $p\colon E\to B$ is weakly universal if it factors through every other normal extension with the same codomain:

Construction of weakly universal normal extensions

Lemma

For all B in $\mathscr C$ one can construct a weakly universal normal extension of B.

Lemma

For all B in $\mathscr C$ one can construct a weakly universal normal extension of B.

Lemma

For all B in $\mathscr C$ one can construct a weakly universal normal extension of B.

$$P \xrightarrow{f} B$$

Lemma

For all B in $\mathscr C$ one can construct a weakly universal normal extension of B.

Lemma

For all B in $\mathscr C$ one can construct a weakly universal normal extension of B.

Lemma

For all B in $\mathscr C$ one can construct a weakly universal normal extension of B.

Lemma

For all B in $\mathscr C$ one can construct a weakly universal normal extension of B.

Theorem

Let Γ be a Galois structure of type (A):

$$\mathcal{X} \stackrel{I}{\underset{\subseteq}{\longleftarrow}} \mathcal{C} + \mathcal{E}$$

and

$$p \colon E \to B$$

a weakly universal normal extension of B. Then one has an equivalence of categories

$$\operatorname{NExt}_{\Gamma}(B) \cong \mathscr{X}^{\downarrow_{\operatorname{Split}} \varepsilon \operatorname{Gal}(E,p)}$$

where $\mathrm{Gal}(E,p)$ is the internal groupoid in $\mathscr X$

$$I(\operatorname{Eq}(p) \times_E \operatorname{Eq}(p)) \xrightarrow{I(p_1^p)} I(\operatorname{Eq}(p)) \xrightarrow{I(\pi_1^p)} I(E)$$

The classical categorical Galois theorem [G. Janelidze]

Theorem

Let Γ be an admissible Galois structure :

$$\mathscr{C} \stackrel{I}{\underbrace{\perp}} \mathscr{X} + \mathscr{E}$$

and

$$p \colon E \to B$$

a weakly universal normal extension of B. Then one has an equivalence of categories

$$\operatorname{Spl}_{\Gamma}(E,p) \cong \mathscr{X}^{\downarrow_{\mathcal{E}}\operatorname{Gal}(E,p)}$$

A non-classical example

Example

The Galois structure

$$Ab$$
 $\stackrel{I}{\underbrace{\perp}} Ab^* + RegEpi(Ab)$

where Ab^{\ast} is the full subcategory of Ab whose objects satisfy

$$4x = 0 \Rightarrow 2x = 0.$$

A non-classical example

Example

The Galois structure

$$Ab$$
 $\stackrel{I}{\underbrace{\perp}} Ab^* + RegEpi(Ab)$

where Ab^{\ast} is the full subcategory of Ab whose objects satisfy

$$4x = 0 \Rightarrow 2x = 0.$$

is not admissible but is of type (A).

The end

Thank you for your attention!