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Definition
A Galois structure I' is given by:

> 2 a full replete reflective subcategory of ¥

4 ¢ ;

» & a class of morphisms in % such that:

€ contains the isomorphisms in ¢;
pullbacks of morphisms in & exists and are in &;

€ is closed under composition;
1(€) C&;

vvyVvVvy

» n: 1¢ = I a unit such that ng: C — I(C) in € for all C.

Notation
Exte (€): category of extensions.
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Galois structures

We will only consider Galois structures of type (A), i.e. which satisfy:

» [ preserves pullbacks

A——B
DT>C

with g, h in € and g split epi;
> every extension is monadic and a regular epimorphism;

» enough projective objects w.r.t. &;

Notation
f € Split€ if f € & and f is a split epimorphism (a split extension).
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Definition
An extension f: A — B is a trivial extension if

A——I(FE)
fJ/ J{I(f)
B ——= I(B)
is a pullback.
Notation

Trivp(%): category of trivial extensions.
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Definition
An extension f: A — B is is split by p if in the pullback

p1 is trivial.

Notation
Spl(E, p): category of extensions split by p.
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Notation
NExtp(%): category of normal extensions.
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Extensions

For

ab
A

Gp L Ab + RegEpi(Gp)
Rf;/

A regular epimorphism f: A — B is trivial iff
[A Al >—> A
;

v
[B, B]>— B.

A regular epimorphism f: A — B is normal iff

Kerf C Z(A).
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Normalisation functor as a pointwise Kan extension
Proof:
» For all f in Exte (%), the comma category K | f

Klf————1

vl |

SplitExte (%) —= Exte (cg)

admits Jy

7rq

1
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p{ 4{1> 7T{
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\ /(waf7f)
f

as a final subcategory (the inclusion functor Ly: J; — K | fis
final).
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_ f
f g_(‘r’ﬂ-l) f q:(ﬂgaf) f

Pl ——m
nd=(p} i)

f = Colim(K o P/ o L) = Colim(K o PT)

> Consequently, K : SplitExte (4) — Exte (%) is dense.
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Normalisation functor as a pointwise Kan extension

» One can show that there is an isomorphism
f | Hy = Cocone(K o Ty o PT)

I, exists iff LanK(IN( o T1) exists, and they coincide!

» Since
Cocone(K o Ty o P¥) = Cocone(K o Ty o P o Ly)
I; exists if the coequalizer of

Ty (nf

Ty (p{) W Ty (Wf)a
1(md

exists in NExtr (%) for every f in NExtp (%)
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» The normalisation functor exists!

Eq(n]) I (EQ(jT 1))

NS
Ea(f) — I(Eq(f))

: vy

I e > I1(Eq(f))

\ do w7
/ APO
72 | " £ T1(71§'{) \\I(A)
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Normalisation functor as a pointwise Kan extension:
Summary

Ii=Lang (K)oT}
— T
Eth (%) 4 NEXtF(Cf)
(\_*___/

SplitExte (%) i SplitTrivp (%)
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Weakly universal normal extensions

Definition
A normal extension p: E — B is weakly universal if it factors through
every other normal extension with the same codomain:

F—2" . p

Ju O
V/ p’ normal

E
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A classification theorem for normal extensions

Theorem
Let T' be a Galois structure of type (A):

and
p: F— B

a weakly universal normal extension of B. Then one has an equivalence
of categories
NEXtF(B) o g lsplive Gal(E,p)

where Gal(E, p) is the internal groupoid in %

1(0)
I?) D’ 1(x})
I(Eq(p) x g Eq(p)) —I0—= I(Eq(p)) =—I0)—— I(E)

1(p3) I(r3)



A classification theorem for normal extensions

Proof: For (4, f) in NExtr(B):

Eq(p') I(Eq(p'))

N \
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A classification theorem for normal extensions

Proof: For (4, f) in NExtr(B):




The classical categorical Galois theorem [G. Janelidze]

Theorem
Let T" be an admissible Galois structure :

PEAN
¢ L Z + &
D SN
)
and

p: E— B

a weakly universal normal extension of B. Then one has an equivalence

of categories
Splp(E,p) & 27 teGaEr)
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where Ab* is the full subcategory of Ab whose objects satisfy

dr =0 = 2z = 0.

is not admissible but is of type (A).



The end

Thank you for your attention!



