# Derived categories and Fourier Mukai transforms in Algebraic Geometry

#### Margarida Melo

CMUC, Departamento de Matemática da Universidade de Coimbra

January 25, 2014

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1 Triangulated categories

2 Derived Categories

3 Derived categories in Algebraic Geometry

4 Hitchin fibration

# **Triangulated Categories**

A triangulated category  $\ensuremath{\mathcal{D}}$  is an additive category with

- an additive equivalence  $T: \mathcal{D} \to \mathcal{D}$ , called the *shift functor*;
- a set of distinguished triangles  $A \to B \to C \to T(A)$  subject to axioms TR1-TR4 below.

# **Triangulated Categories**

A triangulated category  $\ensuremath{\mathcal{D}}$  is an additive category with

- an additive equivalence  $T : \mathcal{D} \to \mathcal{D}$ , called the *shift functor*;
- a set of *distinguished triangles*  $A \to B \to C \to T(A)$  subject to axioms TR1-TR4 below.

Morphisms between triangles:

$$A \longrightarrow B \longrightarrow C \longrightarrow A[1] := T(A)$$

$$\downarrow f \qquad \qquad \downarrow g \qquad \qquad \downarrow h \qquad \qquad \qquad \downarrow f[1] := T(f)$$

$$A' \longrightarrow B' \longrightarrow C' \longrightarrow A'[1] := T(A')$$

# **Triangulated Categories**

A triangulated category  $\ensuremath{\mathcal{D}}$  is an additive category with

- an additive equivalence  $T : \mathcal{D} \to \mathcal{D}$ , called the *shift functor*;
- a set of distinguished triangles  $A \to B \to C \to T(A)$  subject to axioms TR1-TR4 below.

Morphisms between triangles:

isomorphisms: if f, g, and h are isomorphisms.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

# Axioms of triangulated categories

TR1:

- i)  $A \xrightarrow{id} A \longrightarrow 0 \longrightarrow A[1]$  is distinguished.
- ii) Triangles isomorphic to a distinguished triangles are distinguished.
- iii) Morphisms  $f : A \to B$  can be completed to distinguished triangles  $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Axioms of triangulated categories

TR2:

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]$$

is a distinguished triangle if and only if

$$B \xrightarrow{g} C \xrightarrow{h} A[1] \xrightarrow{-f[1]} B[1]$$

is a distinguished triangle.

## Axioms of triangulated categories

TR3: A commutative diagram of distinguished triangles



can be completed to a morphism of triangles.

# Axioms of triangulated categories

TR3: A commutative diagram of distinguished triangles

 $A' \longrightarrow B' \longrightarrow C' \longrightarrow A'[1] := T(A')$ 

can be completed to a morphism of triangles.

TR4: Octahedron axiom...

# Axioms of triangulated categories

TR3: A commutative diagram of distinguished triangles

 $\begin{array}{c} A \longrightarrow B \longrightarrow C \longrightarrow A[1] := T(A) \\ \downarrow f \qquad \downarrow g \qquad \downarrow h \qquad \qquad \downarrow f[1] := T(f) \\ A' \longrightarrow B' \longrightarrow C' \longrightarrow A'[1] := T(A') \end{array}$ 

can be completed to a morphism of triangles.

TR4: Octahedron axiom...

Remark

- TR1 + TR3 give that  $A \longrightarrow C$  is zero.
- If two among f, g, and h are isos, then so is the third.

・ロト・(中下・(中下・(日下・))

# Equivalence of triangulated categories

## Definition

An additive functor  $F: \mathcal{D} \longrightarrow \mathcal{D}'$  between triangulated categories  $\mathcal{D}$  and  $\mathcal{D}'$  is exact if:

- i) There exists a functor isomorphism  $F \circ T_{\mathcal{D}} \xrightarrow{\sim} T_{\mathcal{D}'} \circ F$ .
- ii) A distinguished triangle  $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]$  in  $\mathcal{D}$  is mapped to a distinguished triangle  $F(A) \xrightarrow{f} F(B) \xrightarrow{g} F(C) \xrightarrow{h} F(A)[1]$  in  $\mathcal{D}'$ , where F(A[1])is identified with F(A)[1] via the functor isomorphism in i).

# Equivalence of triangulated categories

## Definition

An additive functor  $F: \mathcal{D} \longrightarrow \mathcal{D}'$  between triangulated categories  $\mathcal{D}$  and  $\mathcal{D}'$  is exact if:

- i) There exists a functor isomorphism  $F \circ T_{\mathcal{D}} \xrightarrow{\sim} T_{\mathcal{D}'} \circ F$ .
- ii) A distinguished triangle  $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]$  in  $\mathcal{D}$  is mapped to a distinguished triangle  $F(A) \xrightarrow{f} F(B) \xrightarrow{g} F(C) \xrightarrow{h} F(A)[1]$  in  $\mathcal{D}'$ , where F(A[1])is identified with F(A)[1] via the functor isomorphism in i).

## Definition

Two triangulated categories  $\mathcal{D}$  and  $\mathcal{D}'$  are equivalent if there exists an exact equivalence  $F : \mathcal{D} \longrightarrow \mathcal{D}'$ . If D is triangulated, the set Aut(D) of isomorphism classes of equivalences  $F : \mathcal{D} \longrightarrow \mathcal{D}$  is the group of autoequivalences of D.

A D > A D > A D > A D >

## The category of complexes of an abelian category

Let  $\mathcal{A}$  be an abelian category. We define  $Kom(\mathcal{A})$ :

Objects are exact sequences

$$\ldots \longrightarrow A^{i-1} \xrightarrow{d^{i-1}} A^i \xrightarrow{d^i} A^{i+1} \xrightarrow{d^{i+1}} \ldots$$



If  $\mathcal{A}$  is abelian,  $Kom(\mathcal{A})$  is abelian again.

There is a shift functor T in  $Kom(\mathcal{A})$ :  $A^{\bullet}[1]$  is defined by  $(A^{\bullet}[1])^{i} := A^{i+1}$  and  $d^{i}_{A[1]} := -d^{i+1}_{A}$ ;  $f[1]^{i} := f^{i+1}$ . T is an equivalence of abelian categories.

There is a shift functor T in  $Kom(\mathcal{A})$ :  $A^{\bullet}[1]$  is defined by  $(A^{\bullet}[1])^i := A^{i+1}$  and  $d^i_{A[1]} := -d^{i+1}_A$ ;  $f[1]^i := f^{i+1}$ . T is an equivalence of abelian categories. However,  $Kom(\mathcal{A})$  is not triangulated.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

There is a shift functor T in  $Kom(\mathcal{A})$ :  $A^{\bullet}[1]$  is defined by  $(A^{\bullet}[1])^{i} := A^{i+1}$  and  $d^{i}_{A[1]} := -d^{i+1}_{A}$ ;  $f[1]^i := f^{i+1}.$ T is an equivalence of abelian categories. However,  $Kom(\mathcal{A})$  is not triangulated.

Can define cohomology  $H^i(A^{\bullet})$  of complexes,  $H^i(A^{\bullet}) := \frac{Ker(d^i)}{Im(d^{i-1})} \in \mathcal{A}.$ 

#### Definition

A morphism of complexes  $f: A^{\bullet} \longrightarrow B^{\bullet}$  is a quasi-isomorphism if for all  $i \in \mathbb{Z}$  the induced map  $H^i(A^{\bullet}) \to H^i(B^{\bullet})$  is an isomorphism.

## Theorem

Given an abelian category  $\mathcal{A},$  there is a category  $D(\mathcal{A})$  and a functor

$$Q: Kom(\mathcal{A}) \to D(\mathcal{A})$$

such that

- (i) If  $f : A^{\bullet} \to B^{\bullet}$  is a quasi-isomorphism, then Q(f) is an isomorphism in  $D(\mathcal{A})$ .
- (ii) D(A) is universal for categories endowed with a morphism satisfying (i).

#### Theorem

Given an abelian category  $\mathcal{A},$  there is a category  $D(\mathcal{A})$  and a functor

$$Q: Kom(\mathcal{A}) \to D(\mathcal{A})$$

such that

- (i) If  $f : A^{\bullet} \to B^{\bullet}$  is a quasi-isomorphism, then Q(f) is an isomorphism in  $D(\mathcal{A})$ .
- (ii)  $D(\mathcal{A})$  is universal for categories endowed with a morphism satisfying (i).
  - Objects of Kom(A) and D(A) are identified via Q;
  - There is a well defined cohomology of objects  $H^i(A^{\bullet})$  for  $A \in D(\mathcal{A})$ ;
  - $\mathcal{A}$  can be seen as the full subcategory of  $D(\mathcal{A})$  of complexes such that  $H^i(\mathcal{A}^{\bullet}) = 0$  for  $i \neq 0$ .
  - $D(\mathcal{A})$  is in general not abelian, but its triangulated!

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

## Derived categories of coherent sheaves

Let X be a scheme (or algebraic variety).

# Derived categories of coherent sheaves

Let X be a scheme (or algebraic variety).

#### Definition

The derived category of X is the bounded derived category of the abelian category Coh(X),

 $D^b(X) := D^b(Coh(X)).$ 

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

# Derived categories of coherent sheaves

Let X be a scheme (or algebraic variety).

#### Definition

The derived category of X is the bounded derived category of the abelian category Coh(X),

$$D^b(X) := D^b(Coh(X)).$$

Two k-schemes X and Y are derived equivalent if there exists a k-linear exact equivalence  $D^b(X) \sim D^b(Y)$ .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

Sac

# Bondal-Orlov's result

## Theorem (Bondal, Orlov)

Let X and Y be smooth projective varieties and assume that the (anti-)canonical bundle of X is ample. If there exists an exact equivalence  $D^b(X) \sim D^b(Y)$ , then X and Y are isomorphic.

・ロト ・四ト ・ヨト ・ヨト

nan

3

# Bondal-Orlov's result

## Theorem (Bondal, Orlov)

Let X and Y be smooth projective varieties and assume that the (anti-)canonical bundle of X is ample. If there exists an exact equivalence  $D^b(X) \sim D^b(Y)$ , then X and Y are isomorphic.

Is derived equivalence an interesting geometric notion (at least for smooth projective varieties)?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

# Fourier-Mukai transforms

Let  $\mathcal{P} \in D^b(X \times Y)$ . The induced Fourier-Mukai transform is

$$\begin{split} \Phi_{\mathcal{P}} : & D^b(X) \to D^b(Y), \\ & E^{\bullet} \mapsto \pi_{2*}({\pi_1}^* E^{\bullet} \otimes \mathcal{P}). \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Fourier-Mukai transforms

Let  $\mathcal{P} \in D^b(X \times Y)$ . The induced Fourier-Mukai transform is

$$\begin{split} \Phi_{\mathcal{P}} : & D^b(X) \to D^b(Y), \\ & E^{\bullet} \mapsto \pi_{2*}(\pi_1^* E^{\bullet} \otimes \mathcal{P}). \end{split}$$

Examples:

■ 
$$id: D^b(X) \to D^b(X)$$
 is  $\Phi_{\mathcal{O}_\Delta}$ ;  
■  $f: X \to Y$ ,  $f_* \sim \Phi_{\Gamma_f}$ ;  
■  $T: D^b(X) \to D^b(X)$  is  $\Phi_{\mathcal{O}_\Delta[1]}$ 

A D > A D > A D > A D >

Sac

3

## Proposition (Bondal, Orlov)

 $\Phi_P$  is fully faithful if and only if for any two closed points  $x, y \in X$ 

$$Hom(\Phi_P(k(x)), \Phi_P(k(y))[i]) = \begin{cases} k \text{ if } x = y \text{ and } i = 0\\ 0 \text{ if } x \neq y \text{ or } i < 0 \text{ or } i > dim(X). \end{cases}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

Sac

## Proposition (Bondal, Orlov)

 $\Phi_P$  is fully faithful if and only if for any two closed points  $x,y\in X$ 

$$Hom(\Phi_P(k(x)), \Phi_P(k(y))[i]) = \begin{cases} k \text{ if } x = y \text{ and } i = 0\\ 0 \text{ if } x \neq y \text{ or } i < 0 \text{ or } i > dim(X). \end{cases}$$

#### Proposition

If  $\Phi_{\mathcal{P}}: D^b(X) \to D^b(Y)$  is fully faithful, then  $\Phi_{\mathcal{P}}$  is an equivalence if and only if  $\Phi_{\mathcal{P}}(k(x)) \otimes \omega_Y \cong \Phi_{\mathcal{P}}(k(x))$  for every closed point  $x \in X$ .

## Proposition (Bondal, Orlov)

 $\Phi_P$  is fully faithful if and only if for any two closed points  $x, y \in X$ 

$$Hom(\Phi_P(k(x)), \Phi_P(k(y))[i]) = \begin{cases} k \text{ if } x = y \text{ and } i = 0\\ 0 \text{ if } x \neq y \text{ or } i < 0 \text{ or } i > dim(X). \end{cases}$$

#### Proposition

If  $\Phi_{\mathcal{P}}: D^b(X) \to D^b(Y)$  is fully faithful, then  $\Phi_{\mathcal{P}}$  is an equivalence if and only if  $\Phi_{\mathcal{P}}(k(x)) \otimes \omega_Y \cong \Phi_{\mathcal{P}}(k(x))$  for every closed point  $x \in X$ .

#### Theorem (Orlov)

If  $F: D^b(X) \to D^b(Y)$  is fully faithful and exact functor admitting right and left adjoint functors, then there exists a unique  $\mathcal{P} \in D^b(X \times Y): F \sim \Phi_{\mathcal{P}}.$ 

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

**Abelian Varieties** 

An **abelian variety** A is a projective connected algebraic k-group.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

## **Abelian Varieties**

An **abelian variety** A is a projective connected algebraic k-group. The *dual abelian variety*  $\hat{A}$  is the smooth projective variety  $Pic^0(A)$  that represents the Picard functor  $\mathcal{P}ic^0A$ , i.e.

$$Pic^0A \cong Hom(\ , \hat{A}),$$

where

 $\mathcal{P}ic^{0}A(S) := \{ M \in Pic(S \times A) | M_{s} \in Pic^{0}(A) \text{ for every closed } s \in S \}_{/\sim}$ 

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

# **Abelian Varieties**

An **abelian variety** A is a projective connected algebraic k-group. The *dual abelian variety*  $\hat{A}$  is the smooth projective variety  $Pic^0(A)$  that represents the Picard functor  $\mathcal{P}ic^0A$ , i.e.

$$Pic^0A \cong Hom(\ , \hat{A}),$$

where

 $\mathcal{P}ic^{0}A(S) := \{ M \in Pic(S \times A) | M_{s} \in Pic^{0}(A) \text{ for every closed } s \in S \}_{/\sim}$ 

 $\hat{A}$  is abelian as well.

# **Abelian Varieties**

An **abelian variety** A is a projective connected algebraic k-group. The *dual abelian variety*  $\hat{A}$  is the smooth projective variety  $Pic^0(A)$  that represents the Picard functor  $\mathcal{P}ic^0A$ , i.e.

$$Pic^0A \cong Hom(\ , \hat{A}),$$

where

 $\mathcal{P}ic^{0}A(S) := \{ M \in Pic(S \times A) | M_{s} \in Pic^{0}(A) \text{ for every closed } s \in S \}_{/\sim}$ 

 $\hat{A}$  is abelian as well. Let  $\mathcal{P} \in Pic(\hat{A})$  be the element corresponding to  $id_{\hat{A}} \in Hom(\hat{A}, \hat{A})$ :  $\mathcal{P}$  is called the *Poincaré bundle*.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

990

## Theorem (Mukai)

If  $\mathcal{P}$  is the Poincaré bundle on  $A \times \hat{A}$ , then

$$\Phi_P: D^b(\hat{A}) \to D^b(A)$$

is an equivalence.

∃ \0<</p>\0

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

## Theorem (Mukai)

If  $\mathcal{P}$  is the Poincaré bundle on  $A \times \hat{A}$ , then

$$\Phi_P: D^b(\hat{A}) \to D^b(A)$$

is an equivalence.

Mukai's result shows that derived equivalence is an interesting geometric notion!

## Theorem (Mukai)

If  $\mathcal{P}$  is the Poincaré bundle on  $A \times \hat{A}$ , then

$$\Phi_P: D^b(\hat{A}) \to D^b(A)$$

is an equivalence.

Mukai's result shows that derived equivalence is an interesting geometric notion!

When are two (smooth projective) varieties derived equivalent?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Sac

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ < ○ </p>

# Hitchin fibration

Given a curve X, let  $\mathcal{H}iggs$  be the moduli space of Higgs bundles, parametrising pairs  $(E, \theta)$ :

- E vector bundle (*G*-bundle) on *X*;
- $\theta: E \to E \otimes \omega_C$  Higgs field.

# Hitchin fibration

Given a curve X, let  $\mathcal{H}iggs$  be the moduli space of Higgs bundles, parametrising pairs  $(E,\theta)$ :

- E vector bundle (G-bundle) on X;
- $\theta: E \to E \otimes \omega_C$  Higgs field.

Theorem

There is a projective morphism (called the Hitchin fibration)

 $h: \mathcal{H}iggs \longrightarrow \mathbb{A}^r$ 

Sac

# Hitchin fibration

Given a curve X, let  $\mathcal{H}iggs$  be the moduli space of Higgs bundles, parametrising pairs  $(E, \theta)$ :

- E vector bundle (G-bundle) on X;
- $\theta: E \to E \otimes \omega_C$  Higgs field.

## Theorem

There is a projective morphism (called the Hitchin fibration)

 $h:\mathcal{H}iggs\longrightarrow \mathbb{A}^r$ 

## Classical limit of Geometric Langlands Conjecture

$$\begin{split} \exists D^b(\mathcal{H}iggs) \xrightarrow{\sim} D^b(\mathcal{H}iggs) \text{ equivalence of triangulated categories:} \\ \text{(i)} \ D^b(h^{-1}(a)) \xrightarrow{\sim} D^b(h^{-1}(a)); \end{split}$$

(ii) "intertwines" Hecke operators and translation operators.

・ロン ・雪 と ・ ヨ と

3

Sac

## Beauville-Narasimhan-Ramanan, Schaub correspondence

 $h^{-1}(a) \cong \overline{J}_X$ , a compactified (Picard) variety of  $Pic^0(\tilde{X}_a)$ , where  $\tilde{X}_a$  is the spectral curve of X (a possibly singular covering of X living in the total space of the Hitchin fibration).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

## Beauville-Narasimhan-Ramanan, Schaub correspondence

 $h^{-1}(a) \cong \overline{J}_X$ , a compactified (Picard) variety of  $Pic^0(\tilde{X}_a)$ , where  $\tilde{X}_a$  is the spectral curve of X (a possibly singular covering of X living in the total space of the Hitchin fibration).

If  $\tilde{X}_a$  is smooth CLGLC(i) follows from Mukai's result.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

## Beauville-Narasimhan-Ramanan, Schaub correspondence

 $h^{-1}(a) \cong \overline{J}_X$ , a compactified (Picard) variety of  $Pic^0(\tilde{X}_a)$ , where  $\tilde{X}_a$  is the spectral curve of X (a possibly singular covering of X living in the total space of the Hitchin fibration).

If  $\tilde{X}_a$  is smooth CLGLC(i) follows from Mukai's result. If  $\tilde{X}_a$  is singular,  $Pic^0(\tilde{X}_a)$  is a semiabelian variety and  $\overline{J}_X$  is a compactification of it: projective variety but not an algebraic group.

## Theorem (M, Rapagnetta, Viviani)

Let X be a reduced curve with planar singularities. Then there is a Poincaré sheaf  $\overline{P}$  on  $\overline{J}_X \times \overline{J}_X$  such that

$$\Phi^{\overline{P}}: D^b(\overline{J}_X) \to D^b(\overline{J}_X)$$

is an equivalence of categories.



## Theorem (M, Rapagnetta, Viviani)

Let X be a reduced curve with planar singularities. Then there is a Poincaré sheaf  $\overline{P}$  on  $\overline{J}_X \times \overline{J}_X$  such that

$$\Phi^{\overline{P}}: D^b(\overline{J}_X) \to D^b(\overline{J}_X)$$

is an equivalence of categories.

## Applications

- CLGLC(i);
- Study of the Hitchin fibration (e.g the study of the cohomology of the fibers of the Hitchin fibration in the singular locus was fundamental in Ngo's work);
- Kawamata's conjecture on derived equivalence being identified with birationality for CY varieties.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

# Further directions

- Derived categories seem to be appropriate to study birational aspects of algebro-geometric varieties (Kawamata's conjecture);
- Kontsevich homological mirror symmetry: mirror symmetry can be seen as an equivalence of the derived category of coherent sheaves of certain projective varieties with Fukaya categories associated to symplectic geometry of the mirror.

・ロト ・ 通 ト ・ 注 ト ・ 注 ・ つ へ ()・

# Thank you!