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Triangulated Categories

A triangulated category D is an additive category with

an additive equivalence T : D → D, called the shift functor ;

a set of distinguished triangles A→ B → C → T (A) subject
to axioms TR1-TR4 below.

Morphisms between triangles:

A //

f
��

B //

g

��

C //

h
��

A[1] := T (A)

f [1]:=T (f)
��

A′ // B′ // C ′ // A′[1] := T (A′)

isomorphisms: if f , g, and h are isomorphisms.
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Axioms of triangulated categories

TR1:

i) A
id−→ A −→ 0 −→ A[1] is distinguished.

ii) Triangles isomorphic to a distinguished triangles are
distinguished.

iii) Morphisms f : A→ B can be completed to distinguished

triangles A
f−→ B

g−→ C
h−→ A[1].

TR3: A commutative diagram of distinguished triangles

A //

f
��

B //

g

��

C //

h
��

A[1] := T (A)

f [1]:=T (f)
��

A′ // B′ // C ′ // A′[1] := T (A′)

can be completed to a morphism of triangles.

TR4: Octahedron axiom...

Remark

TR1 + TR3 give that A −→ C is zero.

If two among f, g, and h are isos, then so is the third.
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Axioms of triangulated categories
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Equivalence of triangulated categories

Definition

An additive functor F : D −→ D′ between triangulated categories
D and D′ is exact if:

i) There exists a functor isomorphism F ◦ TD
∼−→ TD′ ◦ F.

ii) A distinguished triangle A
f−→ B

g−→ C
h−→ A[1] in D is

mapped to a distinguished triangle

F (A)
f−→ F (B)

g−→ F (C)
h−→ F (A)[1] in D′, where F (A[1])

is identified with F (A)[1] via the functor isomorphism in i).

Definition

Two triangulated categories D and D′ are equivalent if there exists
an exact equivalence F : D −→ D′.
If D is triangulated, the set Aut(D) of isomorphism classes of
equivalences F : D −→ D is the group of autoequivalences of D.
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The category of complexes of an abelian category

Let A be an abelian category. We define Kom(A):

Objects are exact sequences

. . .−→Ai−1 di−1

−→ Ai di−→ Ai+1 di+1

−→ . . .

i.e., di ◦ di−1 = 0;

Morphisms: . . . // Ai−1
di−1
A //

f i−1

��

Ai
diA //

f i

��

Ai+1

f i+1

��

di+1
A // . . .

. . . // Bi−1

di−1
B

// Bi

diB

// Bi+1

di+1
B

// . . .

If A is abelian, Kom(A) is abelian again.
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There is a shift functor T in Kom(A):
A•[1] is defined by (A•[1])i := Ai+1 and diA[1] := −di+1

A ;

f [1]i := f i+1.
T is an equivalence of abelian categories.

However, Kom(A) is not triangulated.

Can define cohomology H i(A•) of complexes,

H i(A•) := Ker(di)
Im(di−1)

∈ A.

Definition

A morphism of complexes f : A• −→ B• is a quasi-isomorphism if
for all i ∈ Z the induced map H i(A•)→ H i(B•) is an
isomorphism.
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Theorem

Given an abelian category A, there is a category D(A) and a
functor

Q : Kom(A)→ D(A)

such that

(i) If f : A• → B• is a quasi-isomorphism, then Q(f) is an
isomorphism in D(A).

(ii) D(A) is universal for categories endowed with a morphism
satisfying (i).

Objects of Kom(A) and D(A) are identified via Q;

There is a well defined cohomology of objects H i(A•) for
A ∈ D(A);

A can be seen as the full subcategory of D(A) of complexes
such that H i(A•) = 0 for i 6= 0.

D(A) is in general not abelian, but its triangulated!
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Derived categories of coherent sheaves

Let X be a scheme (or algebraic variety).

Definition

The derived category of X is the bounded derived category of the
abelian category Coh(X),

Db(X) := Db(Coh(X)).

Two k-schemes X and Y are derived equivalent if there exists a
k-linear exact equivalence Db(X) ∼ Db(Y ).
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Bondal-Orlov’s result

Theorem (Bondal, Orlov)

Let X and Y be smooth projective varieties and assume that the
(anti-)canonical bundle of X is ample. If there exists an exact
equivalence Db(X) ∼ Db(Y ), then X and Y are isomorphic.

Is derived equivalence an interesting geometric notion (at least for
smooth projective varieties)?
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Fourier-Mukai transforms

Let P ∈ Db(X × Y ). The induced Fourier-Mukai transform is

ΦP :Db(X)→ Db(Y ),

E• 7→ π2∗(π1
∗E• ⊗ P).

Examples:

id : Db(X)→ Db(X) is ΦO∆
;

f : X → Y , f∗ ∼ ΦΓf
;

T : Db(X)→ Db(X) is ΦO∆[1].
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Proposition (Bondal, Orlov)

ΦP is fully faithful if and only if for any two closed points x, y ∈ X

Hom(ΦP (k(x)),ΦP (k(y))[i]) =

{
k if x = y and i = 0

0 if x 6= y or i < 0 or i > dim(X).

Proposition

If ΦP : Db(X)→ Db(Y ) is fully faithful, then ΦP is an
equivalence if and only if ΦP(k(x))⊗ ωY

∼= ΦP(k(x)) for every
closed point x ∈ X.

Theorem (Orlov)

If F : Db(X)→ Db(Y ) is fully faithful and exact functor admitting
right and left adjoint functors, then there exists a unique
P ∈ Db(X × Y ) : F ∼ ΦP .
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Abelian Varieties

An abelian variety A is a projective connected algebraic k-group.

The dual abelian variety Â is the smooth projective variety
Pic0(A) that represents the Picard functor Pic0A, i.e.

Pic0A ∼= Hom( , Â),

where

Pic0A(S) := {M ∈ Pic(S×A)|Ms ∈ Pic0(A) for every closed s ∈ S}/∼.

Â is abelian as well.
Let P ∈ Pic(Â) be the element corresponding to
idÂ ∈ Hom(Â, Â): P is called the Poincaré bundle.
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Outline Triangulated categories Derived Categories Derived categories in Algebraic Geometry Hitchin fibration

Abelian Varieties

An abelian variety A is a projective connected algebraic k-group.
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Theorem (Mukai)

If P is the Poincaré bundle on A× Â, then

ΦP : Db(Â)→ Db(A)

is an equivalence.

Mukai’s result shows that derived equivalence is an interesting
geometric notion!

When are two (smooth projective) varieties derived equivalent?
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Hitchin fibration

Given a curve X, let Higgs be the moduli space of Higgs bundles,
parametrising pairs (E, θ):

E vector bundle (G-bundle) on X;

θ : E → E ⊗ ωC Higgs field.

Theorem

There is a projective morphism (called the Hitchin fibration)

h : Higgs −→ Ar

Classical limit of Geometric Langlands Conjecture

∃Db(Higgs) ∼→ Db(Higgs) equivalence of triangulated categories:

(i) Db(h−1(a))
∼→ Db(h−1(a));

(ii) “intertwines” Hecke operators and translation operators.
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Beauville-Narasimhan-Ramanan, Schaub correspondence

h−1(a) ∼= JX , a compactified (Picard) variety of Pic0(X̃a), where
X̃a is the spectral curve of X (a possibly singular covering of X
living in the total space of the Hitchin fibration).

If X̃a is smooth CLGLC(i) follows from Mukai’s result.
If X̃a is singular, Pic0(X̃a) is a semiabelian variety and JX is a
compactification of it: projective variety but not an algebraic
group.
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Theorem (M, Rapagnetta, Viviani)

Let X be a reduced curve with planar singularities. Then there is a
Poincaré sheaf P on JX × JX such that

ΦP : Db(JX)→ Db(JX)

is an equivalence of categories.

Applications

CLGLC(i);

Study of the Hitchin fibration (e.g the study of the
cohomology of the fibers of the Hitchin fibration in the
singular locus was fundamental in Ngo’s work);

Kawamata’s conjecture on derived equivalence being identified
with birationality for CY varieties.
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Further directions

Derived categories seem to be appropriate to study birational
aspects of algebro-geometric varieties (Kawamata’s
conjecture);

Kontsevich homological mirror symmetry: mirror symmetry
can be seen as an equivalence of the derived category of
coherent sheaves of certain projective varieties with Fukaya
categories associated to symplectic geometry of the mirror.
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Thank you!
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