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The Grothendieck group adjunction

&p
—_—
Mon _ L = Gp
mon
» Gp is not a subvariety of Mon

» M commutative monoid (perhaps better known: Z from N!)
gp(M) = (M x M)/
where (m,n) ~ (p,q) iff Ik:m+qg+k=p+n+k

> general case: F(M)

F(M) free group on M, and
N(M) <1 F(M) generated by words [m1][ma][m1m2]~*

> elements of gp(M) look like [m1][ma]=1[m3][m4] =L - - [m,]«()

» unit of the adjunction: 7y : M — gp(M): m +— [m]
» 1y need not be an injection or a surjection [Mal'tsev, 1937]
1 mn: N — Zis an injection, but

2 there exist non-trivial M for which gp(M) =0
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What are the central extensions?
Theorem
For any surjection of monoids g, the following are equivalent:
i g is a central extension;
ii g is anormal extension;

ii g is a special homogeneous surjection.

Proof (ii < iii). 1

_— 8
Eq(g) %;X%> Y

g is a normal extension < 7 is a trivial extension
< 7 is a special homogeneous surjection
< gis aspecial homogeneous surjection O
Corollary
Special homogeneous surjections are reflective amongst

regular epimorphisms of commutative monoids with cancellation.
Uanelidze & Kelly, 1997] [Everaert, 2013] [Bourn & Rodelo, 2012]
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We still didn’t capture centrality of monoid extensions via Galois theory:

» What happens when composing this adjunction with abelianisation?
What kind of central extensions does the adjunction

abogp
1~ Ab

Mon

have?

» Are there other “good” adjunctions?
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