Abstract characterisation of varieties and quasivarieties of ordered algebras

Jiří Velebil Czech Technical University in Prague

joint work with

Alexander Kurz University of Leicester, UK

AK & JV CMAT, Coimbra, 24 January 2014 1/20

Recollection of Birkhoff's Theorems (1935)

Quasi/varieties as closed subclasses of algebras for a given fixed signature.

Varieties = HSP classes. Quasivarieties = SP classes.

Recognition Theorems (Linton/Lawvere/Duskin...1960's) Quasi/varieties are abstract categories with certain properties. Characterisations essentially of the form:

A category \mathscr{A} is equivalent to a quasivariety/variety of finitary one-sorted algebras iff \mathscr{A} is regular/exact, cocomplete, and has a nice generator.^a

^al.e., an object that pretends to be a free algebra on one generator.

소리가 소문가 소문가 소문가

What is regularity and exactness, roughly?

Regularity: congruences correspond to quotients. Exactness: regularity + all congruences are nice.

Why do recognition theorems hold?

The base category Set is exact (and therefore regular).

- Regularity of Set: surjections correspond to equivalence relations.
- 2 Exactness of Set: every equivalence relation has the form $\{(x', x) | f(x') = f(x)\}$ for a suitable mapping f.

More details in:

M. Barr, P. A. Grillet, D. H. van Osdol, *Exact categories and categories of sheaves*, LNM 236, Springer 1971

(日) (部) (注) (注) (言)

The goal: Recognition theorems for ordered algebras We want to characterise quasi/varieties of ordered algebras as abstract categories.

A plethora of problems in the ordered world

- What do we mean by an ordered algebra?
- What are quasi/varieties of ordered algebras?
- In the second second
- Gan one use ordinary regularity and exactness?

NO: The (ordinary) category of posets and monotone mappings is not exact (in the sense of M. Barr).

What are abstract congruences in the ordered world?

Example (Kleene algebras)

A Kleene algebra A consists of a poset (A_0, \leq) , together with monotone operations

$$\begin{split} +,\cdot:(\mathcal{A}_0,\leq)\times(\mathcal{A}_0,\leq)\to(\mathcal{A}_0,\leq), \quad 0,1:\mathbb{1}\to(\mathcal{A}_0,\leq),\\ (-)^*:(\mathcal{A}_0,\leq)\to(\mathcal{A}_0,\leq) \end{split}$$

subject to axioms that $((A_0, \leq), 0, 1, +, \cdot)$ is an ordered semiring and such that^a

$$egin{aligned} x+x&=x, \quad 1+x(x^*)\leq x^*, \quad 1+(x^*)x\leq x^*, \ yx\leq x\Rightarrow (y^*)x\leq x, \quad xy\leq x\Rightarrow x(y^*)\leq x \end{aligned}$$

holds.

Homomorphisms are monotone maps preserving the operations.

^aIntuition: $x^* = \sum_{i=0}^{\infty} x^i$, had such infinite sums existed.

・ロン ・回 と ・ ヨ と ・ ヨ と

Example (nice, but quite disturbing)

A set A is a poset (A₀, \leq) together with no operations subject to axiom

$$x \le y \Rightarrow y \le x$$

Homomorphisms are monotone maps preserving the operations.

- By the above, sets seem to form an ordered quasivariety.
- But: sets seem to form an ordered variety if "strange" arities are allowed:

$$\Sigma 2 = \{\sigma_0 \le \sigma_1\}$$

Here 2 is the two-element chain.

Indeed, consider the equalities:

$$\sigma_0(x,y) = y, \quad \sigma_1(x,y) = x$$

We restrict ourselves to the easier situation

- The base category for ordered algebras: the category Pos of all posets and all monotone maps.
- We pass from ordinary categories and functors to category theory enriched over Pos.
 - $\ \, \mathscr{X} \ \, \text{a category} = \text{hom-sets are posets, composition is monotone.}$
 - *F* : *X* → *Y* a functor = it is a locally monotone functor (the action on arrows is monotone).
- Solution Nice signatures that have only operations of nice arities: a bounded signature is a functor Σ : $|Set_λ| → Pos$, where λ is a regular cardinal.

Here, Σn is the poset of all *n*-ary operations, $n < \lambda$.

Algebras and homomorphisms

An ordered algebra for Σ is a poset A, together with a monotone map $\llbracket \sigma \rrbracket : A^n \to A$, for every σ in Σn , $n < \lambda$. Moreover, $\llbracket \sigma \rrbracket \leq \llbracket \tau \rrbracket$ holds pointwise, whenever $\sigma \leq \tau$ in the poset Σn .

A homomorphism from $(A, \llbracket - \rrbracket)$ to $(B, \llbracket - \rrbracket)$ is a monotone map $h: A \to B$ such that $h(\llbracket \sigma \rrbracket(a_i)) = \llbracket \sigma \rrbracket(h(a_i))$ holds for all σ in Σn .

The category of ordered algebras and homomorphisms All algebras for Σ and all homorphisms form a category Alg(Σ). There is a (locally monotone) functor $U : Alg(\Sigma) \rightarrow Pos$.

Ordered quasi/varieties (Steve Bloom & Jesse Wright) An (enriched) category \mathscr{A} , equivalent to a full subcategory of Alg(Σ), spanned by algebras satisfying inequalities of the form

$$s(x_i) \sqsubseteq t(y_j)$$

is called an ordered variety.

If \mathscr{A} is equivalent to a full subcategory of $Alg(\Sigma)$, spanned by algebras satisfying inequality-implications of the form

$$(\bigwedge_j s_j(x_{ji}) \sqsubseteq t_j(y_{ji})) \Rightarrow s(x_i) \sqsubseteq t(y_j)$$

then it is called an ordered quasivariety.

Steve Bloom & Jesse Wright, 1976 and 1983 \mathscr{A} is an ordered variety iff it is an HSP-class in Alg(Σ). \mathscr{A} is an ordered quasivariety iff it is an SP-class in Alg(Σ).

Notice: H means "monotone surjections", S means "monotone maps reflecting the order", P means "order-enriched products".

Main results

- Is an ordered variety iff it is exact, cocomplete and has a nice generator.^a
- If is an ordered quasivariety iff it is regular, cocomplete and has a nice generator.^a
- A is equivalent to a variety of one-sorted finitary algebras iif
 A ≃ Pos^T for a strongly finitary^b monad T on Pos.
 Moreover: Th(T) → Pos^T is a free cocompletion under sifted colimits, where Th(T) the theory of T is the full subactegory of Kl(T) spanned by free algebras on finite discrete posets.

Regularity & exactness must be taken in the enriched sense.

^aIn the one-sorted case: an object that pretends to be a free algebra on one generator.

^bStrongly finitary = preserves (enriched) sifted colimits. A sifted colimit is one weighted by a sifted weight.

Convention

All categories, functors, etc. from now on are enriched in the symmetric monoidal closed category Pos of posets and monotone maps.^a

^aAnalogous notions/results can be stated for the enrichment in Cat — this is essentially only more technical. But it certainly yields more applications.

Regularity and exactness of a category $\mathscr X$

We need:

- Finite (weighted) limits in \mathscr{X} .^a
- **2** A good factorisation $(\mathcal{E}, \mathcal{M})$ system in \mathscr{X} .
- 3 A notion of a congruence and its quotient.

^aA standard reference is: G. M. Kelly, Structures defined by finite limits in the enriched context I, *Cahiers de Top. et Géom. Diff.* XXIII.1 (1982), 3–42.

The factorisation system

• The "monos": Say $m: X \to Y$ in \mathscr{X} is order-reflecting (it is in \mathcal{M}), if the monotone map

$$\mathscr{X}(Z,m):\mathscr{X}(Z,X)\to\mathscr{X}(Z,Y)$$

reflects orders in Pos.

Hence, $m: X \rightarrow Y$ has to satisfy:

 $m \cdot x \leq m \cdot y$ in $\mathscr{X}(Z, Y)$ implies $x \leq y$ in $\mathscr{X}(Z, X)$

for every $x, y : Z \to X$.

The "epis" (members of *E*): via diagonalisation. They are called surjective on objects.

(ロ) (同) (E) (E) (E)

Congruences: a very rough idea

Replace = in $X_1 = \{(x', x) \mid f(x') = f(x)\}$ where $f : X_0 \to Z$ is a map, by \leq to obtain

$$X_1 = \{ (x', x) \mid f(x') \le f(x) \}$$

where $f: X_0 \to Z$ is a monotone map.

This could work nicely for "kernels" of monotone maps. What are the abstract properties of X_1 ?

Most certainly, we are dealing with spans

of monotone maps.

14/20

A somewhat better intuition behind a congruence

In a congruence on X_0 , one deals with formal squares of the form

where:

- **1** The vertices are "objects" of X_0 .
- The horizontal arrows are "specified inequalities": objects of X₁.
- The vertical arrows are "existing inequalities" in X_0 : they give the order in X_1 .
- The specified and existing inequalities interact nicely: "path-lifting property" (discrete fibration in *X*).
- The squares can be pasted both horizontally and vertically with no ambiguity (category object in *X*).

イロン 不同と 不同と 不同と

Definition

A congruence in \mathscr{X} is a diagram

such that

1 It is an internal category in \mathscr{X} .

2 The span (d_0^1, X_1, d_1^1) is a two-sided discrete fibration.

• The morphism $\langle d_0^1, d_1^1 \rangle : X_1 \to X_0 \times X_0$ is an \mathcal{M} -morphism. The quotient of the above congruence is a coinserter $q : X_0 \to Q$ of the pair d_0^1, d_1^1 .

・ロン ・回 と ・ ヨ と ・ ヨ と

The intuition behind a quotient

Given a congruence on X_0 , the coinserter of d_0^1 and d_1^1 imposes inequalities of the form

$$a' = a_0 \longrightarrow a_1 \dashrightarrow a_2 \longrightarrow \ldots \longrightarrow a_{n-2} \dashrightarrow a_{n-1} \longrightarrow a_n = a$$

Each of them has an unambiguous form

 $a' \longrightarrow a$

since a congruence is a two-sided discrete fibration and an internal category.

This allows proving that

- **1** In Pos, every congruence has the form ker(f).
- **2** In Set, there are congruences not of the form ker(f).

Definiton (goes back to R. Street 1982)

A category ${\mathscr X}$ is called regular, if

- $\textcircled{0} \hspace{0.1in} \mathscr{X} \hspace{0.1in} \text{has finite limits.}$
- 2 \mathscr{X} has $(\mathcal{E}, \mathcal{M})$ -factorisations.
- **③** The \mathcal{E} -morphisms are stable under pullback.
- **④** \mathscr{X} has quotients of congruences.

If, in addition, congruences are effective^a in $\mathscr X$, then $\mathscr X$ is called <code>exact</code>.

^al.e., every congruence has the form ker(f), where ker(f) denotes the higher kernel of $f : X \to Y$ in \mathscr{X} .

Recent results (R. Garner and J. Bourke)

Regularity and exactness can also be captured by kernel-quotient systems in enriched category theory.

Examples

- Set is regular but not exact. Hence Set cannot be an ordered variety in any signature.
- **2** Every "presheaf" category [\mathscr{S}^{op} , Pos] is exact.

This includes $[Pos_{fp}, Pos]$, i.e., finitary endofunctors of Pos. This fact yields a good behaviour of inequational presentations of finitary endofunctors of Pos. This is important for relation lifting in coalgebraic logic.

The category Mnd_{strfin}(Pos) of strongly finitary monads on Pos is a (many-sorted) variety of ordered algebras.

This is important for "universal algebra over posets in the clone form".

イロト 不得 とくき とくき とうき

References

- S. L. Bloom, Varieties of ordered algebras, J. Comput. System Sci. 13.2 (1976), 200–212
- S. L. Bloom and J. B. Wright, P-varieties A signature independent characterization of varieties of ordered algebras, *J. Pure Appl. Algebra* 29 (1983), 13–58
- R. Garner and J. Bourke, Two dimensional regularity and exactness, to appear in J. Pure Appl. Algebra
- A. Kurz and J. Velebil, Quasivarieties and varieties of ordered algebras: Regularity and exactness, to appear in *Math. Structures Comput. Sci.*
- M. Shulman, 2-congruence, http://ncatlab.org/nlab/show/2-congruence
- R. Street, Two-dimensional sheaf theory, J. Pure Appl. Algebra 24 (1982), 251–270