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Jǐŕı Velebil
Czech Technical University in Prague

joint work with

Alexander Kurz
University of Leicester, UK

AK & JV CMAT, Coimbra, 24 January 2014 1/20



Introduction
Regularity & Exactness

Recollection of Birkhoff’s Theorems (1935)

Quasi/varieties as closed subclasses of algebras for a given fixed
signature.

Varieties = HSP classes. Quasivarieties = SP classes.

Recognition Theorems (Linton/Lawvere/Duskin. . . 1960’s)

Quasi/varieties are abstract categories with certain properties.

Characterisations essentially of the form:

A category A is equivalent to a quasivariety/variety of finitary
one-sorted algebras iff A is regular/exact, cocomplete, and
has a nice generator.a

aI.e., an object that pretends to be a free algebra on one generator.
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What is regularity and exactness, roughly?

Regularity: congruences correspond to quotients.
Exactness: regularity + all congruences are nice.

Why do recognition theorems hold?

The base category Set is exact (and therefore regular).

1 Regularity of Set: surjections correspond to equivalence
relations.

2 Exactness of Set: every equivalence relation has the form
{(x ′, x) | f (x ′) = f (x)} for a suitable mapping f .

More details in:

M. Barr, P. A. Grillet, D. H. van Osdol, Exact categories and
categories of sheaves, LNM 236, Springer 1971
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The goal: Recognition theorems for ordered algebras

We want to characterise quasi/varieties of ordered algebras as
abstract categories.

A plethora of problems in the ordered world

1 What do we mean by an ordered algebra?

2 What are quasi/varieties of ordered algebras?

3 Are there Birkhoff-type theorems?

4 Can one use ordinary regularity and exactness?

NO: The (ordinary) category of posets and monotone
mappings is not exact (in the sense of M. Barr).

5 What are abstract congruences in the ordered world?
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Example (Kleene algebras)

A Kleene algebra A consists of a poset (A0,≤), together with
monotone operations

+, · : (A0,≤)× (A0,≤)→ (A0,≤), 0, 1 : 1→ (A0,≤),

(−)∗ : (A0,≤)→ (A0,≤)

subject to axioms that ((A0,≤), 0, 1,+, ·) is an ordered semiring
and such thata

x + x = x , 1 + x(x∗) ≤ x∗, 1 + (x∗)x ≤ x∗,

yx ≤ x ⇒ (y∗)x ≤ x , xy ≤ x ⇒ x(y∗) ≤ x
holds.
Homomorphisms are monotone maps preserving the operations.

aIntuition: x∗ =
∑∞

i=0 x i , had such infinite sums existed.
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Example (nice, but quite disturbing)

A set A is a poset (A0,≤) together with no operations subject to
axiom

x ≤ y ⇒ y ≤ x

Homomorphisms are monotone maps preserving the operations.

1 By the above, sets seem to form an ordered quasivariety.

2 But: sets seem to form an ordered variety if “strange” arities
are allowed:

Σ2 = {σ0 ≤ σ1}

Here 2 is the two-element chain.

Indeed, consider the equalities:

σ0(x , y) = y , σ1(x , y) = x
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We restrict ourselves to the easier situation

1 The base category for ordered algebras: the category Pos of
all posets and all monotone maps.

2 We pass from ordinary categories and functors to category
theory enriched over Pos.

1 X a category = hom-sets are posets, composition is
monotone.

2 F : X → Y a functor = it is a locally monotone functor (the
action on arrows is monotone).

3 Nice signatures that have only operations of nice arities: a
bounded signature is a functor Σ : |Setλ| → Pos, where λ is a
regular cardinal.
Here, Σn is the poset of all n-ary operations, n < λ.
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Algebras and homomorphisms

An ordered algebra for Σ is a poset A, together with a monotone
map [[σ]] : An → A, for every σ in Σn, n < λ.
Moreover, [[σ]] ≤ [[τ ]] holds pointwise, whenever σ ≤ τ in the poset
Σn.

A homomorphism from (A, [[−]]) to (B, [[−]]) is a monotone map
h : A→ B such that h([[σ]](ai )) = [[σ]](h(ai )) holds for all σ in Σn.

The category of ordered algebras and homomorphisms

All algebras for Σ and all homorphisms form a category Alg(Σ).

There is a (locally monotone) functor U : Alg(Σ)→ Pos.
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Ordered quasi/varieties (Steve Bloom & Jesse Wright)

An (enriched) category A , equivalent to a full subcategory of
Alg(Σ), spanned by algebras satisfying inequalities of the form

s(xi ) v t(yj )

is called an ordered variety.

If A is equivalent to a full subcategory of Alg(Σ), spanned by
algebras satisfying inequality-implications of the form

(
∧

j

sj (xji ) v tj (yji ))⇒ s(xi ) v t(yj )

then it is called an ordered quasivariety.

AK & JV CMAT, Coimbra, 24 January 2014 9/20



Introduction
Regularity & Exactness

Steve Bloom & Jesse Wright, 1976 and 1983

A is an ordered variety iff it is an HSP-class in Alg(Σ).

A is an ordered quasivariety iff it is an SP-class in Alg(Σ).

Notice: H means “monotone surjections”, S means “monotone
maps reflecting the order”, P means “order-enriched products”.
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Main results

1 A is an ordered variety iff it is exact, cocomplete and has a
nice generator.a

2 A is an ordered quasivariety iff it is regular, cocomplete and
has a nice generator.a

3 A is equivalent to a variety of one-sorted finitary algebras iif
A ' PosT for a strongly finitaryb monad T on Pos.
Moreover: Th(T)→ PosT is a free cocompletion under sifted
colimits, where Th(T) — the theory of T — is the full
subactegory of Kl(T) spanned by free algebras on finite
discrete posets.

Regularity & exactness must be taken in the enriched sense.

aIn the one-sorted case: an object that pretends to be a free algebra on one
generator.

bStrongly finitary = preserves (enriched) sifted colimits. A sifted colimit is
one weighted by a sifted weight.
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Convention

All categories, functors, etc. from now on are enriched in the
symmetric monoidal closed category Pos of posets and monotone
maps.a

aAnalogous notions/results can be stated for the enrichment in Cat — this is
essentially only more technical. But it certainly yields more applications.

Regularity and exactness of a category X

We need:

1 Finite (weighted) limits in X .a

2 A good factorisation (E ,M) system in X .

3 A notion of a congruence and its quotient.

aA standard reference is: G. M. Kelly, Structures defined by finite limits in
the enriched context I, Cahiers de Top. et Géom. Diff. XXIII.1 (1982), 3–42.
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The factorisation system

1 The “monos”: Say m : X → Y in X is order-reflecting (it is
in M), if the monotone map

X (Z ,m) : X (Z ,X )→X (Z ,Y )

reflects orders in Pos.

Hence, m : X → Y has to satisfy:

m · x ≤ m · y in X (Z ,Y ) implies x ≤ y in X (Z ,X )

for every x , y : Z → X .

2 The “epis” (members of E): via diagonalisation. They are
called surjective on objects.
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Congruences: a very rough idea

Replace = in
X1 = {(x ′, x) | f (x ′) = f (x)}

where f : X0 → Z is a map, by ≤ to obtain

X1 = {(x ′, x) | f (x ′) ≤ f (x)}

where f : X0 → Z is a monotone map.

This could work nicely for “kernels” of monotone maps. What are
the abstract properties of X1?
Most certainly, we are dealing with spans

X0 x ′

X1

d1 66

d0
))

(x ′, x)
*

d1 55

�
d0
))X0 x

of monotone maps.
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A somewhat better intuition behind a congruence

In a congruence on X0, one deals with formal squares of the form
x ′ � //

��

x

��
y ′ � // y

where:

1 The vertices are “objects” of X0.

2 The horizontal arrows are “specified inequalities”: objects of
X1.

3 The vertical arrows are “existing inequalities” in X0: they give
the order in X1.

4 The specified and existing inequalities interact nicely:
“path-lifting property” (discrete fibration in X ).

5 The squares can be pasted both horizontally and vertically
with no ambiguity (category object in X ).
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Definition

A congruence in X is a diagram

X2

d2
2 //

d2
1
//

d2
0

//
X1

d1
1 //

d1
0

//
X0i00

oo

such that

1 It is an internal category in X .

2 The span (d1
0 ,X1, d

1
1 ) is a two-sided discrete fibration.

3 The morphism 〈d1
0 , d

1
1 〉 : X1 → X0 × X0 is an M-morphism.

The quotient of the above congruence is a coinserter q : X0 → Q
of the pair d1

0 , d1
1 .
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The intuition behind a quotient

Given a congruence on X0, the coinserter of d1
0 and d1

1 imposes
inequalities of the form

a′ = a0 // a1 � // a2 // . . . // an−2 � // an−1 // an = a

Each of them has an unambiguous form

a′ � // a

since a congruence is a two-sided discrete fibration and an internal
category.

This allows proving that

1 In Pos, every congruence has the form ker(f ).

2 In Set, there are congruences not of the form ker(f ).
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Definiton (goes back to R. Street 1982)

A category X is called regular, if

1 X has finite limits.

2 X has (E ,M)-factorisations.

3 The E-morphisms are stable under pullback.

4 X has quotients of congruences.

If, in addition, congruences are effectivea in X , then X is called
exact.

aI.e., every congruence has the form ker(f ), where ker(f ) denotes the higher
kernel of f : X → Y in X .

Recent results (R. Garner and J. Bourke)

Regularity and exactness can also be captured by kernel-quotient
systems in enriched category theory.
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Examples

1 Set is regular but not exact. Hence Set cannot be an ordered
variety in any signature.

2 Every “presheaf” category [S op,Pos] is exact.

This includes [Posfp,Pos], i.e., finitary endofunctors of Pos.
This fact yields a good behaviour of inequational
presentations of finitary endofunctors of Pos. This is
important for relation lifting in coalgebraic logic.

3 The category Mndstrfin(Pos) of strongly finitary monads on
Pos is a (many-sorted) variety of ordered algebras.

This is important for “universal algebra over posets in the
clone form”.
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