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Mal’tsev varieties and categories

Theorem (Mal’tsev, 1954)

For a variety X of universal algebras, the following are equivalent:

the composition of congruences on any object in X is
commutative

the algebraic theory of X contains a ternary term µ satisfying

µ(x , y , y) = x = µ(y , y , x)

A regular category is a Mal’tsev category if composition of
equivalence relations is commutative. (A. Carboni, J.
Lambeck and M. C. Pedicchio, 1990).
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Naturally Mal’tsev categories

What about internal Mal’tsev operations in a category X?

X × X × X
µ // X

X × X

(π1,π2,π2)

HH

(π2,π2,π1)

VV

π1
// X

A naturally Mal’tsev category (P. T. Johnstone, 1989) is a
category X where the identity functor 1X admits an internal
Mal’tsev operation µ in the functor category XX.

This turns out to be too strong (for example, the category of
groups is not a naturally Mal’tsev category).



Naturally Mal’tsev categories

What about internal Mal’tsev operations in a category X?

X × X × X
µ // X

X × X

(π1,π2,π2)

HH

(π2,π2,π1)

VV

π1
// X

A naturally Mal’tsev category (P. T. Johnstone, 1989) is a
category X where the identity functor 1X admits an internal
Mal’tsev operation µ in the functor category XX.

This turns out to be too strong (for example, the category of
groups is not a naturally Mal’tsev category).



Naturally Mal’tsev categories

What about internal Mal’tsev operations in a category X?

X × X × X
µ // X

X × X

(π1,π2,π2)

HH

(π2,π2,π1)

VV

π1
// X

A naturally Mal’tsev category (P. T. Johnstone, 1989) is a
category X where the identity functor 1X admits an internal
Mal’tsev operation µ in the functor category XX.

This turns out to be too strong (for example, the category of
groups is not a naturally Mal’tsev category).



Approximate Mal’tsev operations

Definition (D. Bourn and Z. Janelidze, 2008)

In a category C, a morphism µ : X 3 → A is an approximate
Mal’tsev operation with approximation α : X → A if the following
diagram commutes:

X × X × X
µ // A

X × X

(π1,π2,π2)

HH

(π2,π2,π1)

VV

π1
// X

α

OO



Approximate Mal’tsev co-operations

The dual notion is that of an approximate Mal’tsev
co-operation:

X + X + X

(ι1,ι2,ι2)
		

(ι2,ι2,ι1)
��

A

α
��

µ
oo

X + X X
ι1oo

D. Bourn and Z. Janelidze proved two characterisations of
Mal’tsev categories in terms of approximate Mal’tsev
(co-)operations.
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Characterisation of Mal’stev categories

Theorem (D. Bourn and Z Janelidze, 2008)

For a regular category X with binary coproducts, the following are
equivalent:

X is a Mal’tsev category

there exists an approximate Mal’tsev co-operation on 1X in
the functor category XX whose approximation α has every
component a regular epimorphism.



Characterisation of Mal’stev categories

In other words, every object X is part of the commutative diagram
below, with α a regular epi.

X + X + X

(ι1,ι2,ι2)
		

(ι2,ι2,ι1)
��

A

α
����

µ
oo

X + X X
ι1oo



Topological spaces

The dual of the category of topological spaces, Topop, is a
regular category with binary coproducts, and regular
epimorphisms there are precisely the embeddings of
topological spaces.

However, not every object in Top admits an approximate
Mal’tsev operation with α an embedding:

X × X × X
µ // A

X × X

(π1,π2,π2)

HH

(π2,π2,π1)

VV

π1
// X
� _

α

OO

Thus Topop is not a Mal’tsev category.
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Main result

Theorem

In the category of topological spaces, an object X admits an
approximate Mal’tsev operation µ with approximation α a regular
monomorphism if and only if it is an R1-space, i.e. it satisfies the
following condition:

(1) For any two points x,y in X , if there exists an open set A
such that x ∈ A but y /∈ A, then there exist disjoint open sets
B and C such that x ∈ B and y ∈ C .



Proof

Firstly, it is enough to consider the universal approximate Mal’tsev
operation on an object X,

i.e. µ and α in the diagram below,
where C is the colimit of the diagram:

X × X × X
µ // C

X × X

(π1,π2,π2)

HH

(π2,π2,π1)

VV

π1
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Proof

Lemma

A monomorphism f : X → Y in Top is an embedding if and only if
for every diagram of solid arrows below, there exists an arrow u
making the diagram commute (it is not necessarily unique), where
T is the Sierpinski space, i.e. the space T whose underlying set is
{0, 1} and open sets are {∅,T , {1}}.

X
t

  

f // Y

u
��

T



Proof

(It is easy to check that α is a monomorphism)

T

X × X × X
µ // C

u
77

X × X

(π1,π2,π2)

HH

(π2,π2,π1)

VV

π1
// X

t

KK

α

OO



Proof

Required to prove

(1) X is an R1-space.

(2) For every open set A in X , there exists an open set A′ in X 3

which satisfies the following condition:

x ∈ A⇔ ∀y∈X (x , y , y) ∈ A′ ⇔ ∀y∈X (y , y , x) ∈ A′



Proof

A′ = A3 ∪

 ⋃
x∈A,y /∈A

(A ∩ B(x ,y))× C(x ,y) × C(x ,y)


∪

 ⋃
x∈A,y /∈A

C(x ,y) × C(x ,y) × (A ∩ B(x ,y))





Proof
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Concluding remarks

It would be interesting to see what other conditions arising
from algebra have duals which which are well-known
conditions in topological spaces.

If we replace the diagram of an approximate Mal’tsev
operation with the one below, for an epimorphism ε : W → X ,
we can characterise R0 spaces in Top:

W × X ×W
µ // C

W ×W

(π1,επ2,π2)

HH

(π2,επ2,π1)

VV

επ1
// X

α

OO
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Thank you.


