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UNCERTAINTY PRINCIPLES FOR THE q-HANKEL
TRANSFORM
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Abstract: We prove two propositions related to the support of functions and their
q-Hankel transform. The first says that if a function f and its q-Hankel transform
both vanish at the points q−n, n = 1, 2, ... then f must vanish identically. The
second asserts that if f is supported at [0, T ] and its q-Hankel transform at [0, Ω]
then ΩT ≥ (q; q)2∞.
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1. Introduction
The Fourier transform of a L1(R) function supported on a finite interval

(a, b)

fˆ(ω) =
∫ b

a

f(t)e−ωitdt (1)

defines an entire function. Therefore, if fˆ itself has compact support, then
it must vanish identically since it vanishes on a set with an accumulation
point. By Fourier inversion f itself must vanish identically. This is the most
simple manifestation of the uncertainty principle of Fourier analysis which
says, in general, that a function and its transform cannot be simultaneously
small. The present note pretends to address the question of how to prove
such a statement if, instead of the Lebesgue measure, one is working with a
measure without an accumulation point outside the interval (a, b).

Consider a number q in the real interval (0, 1) . The prototype of the situ-
ation just described is the discrete Jackson q-integral

∫ ∞

0
f (t) dqt = (1− q)

∞∑
n=−∞

f (qn) qn. (2)

where the spectrum of the measure is {qn}∞n=−∞ which has zero as the only
accumulation point. Using the q-integral and a suitable chosen q-analogue of
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the Bessel function (which we will define in the next section), Koornwinder
and Swarttouw defined in [5] a q-analogue of the Hankel transform, Hν

q f ,
setting

(
Hν

q f
)

(x) =
∫ ∞

0
(xt)

1
2 J (3)

ν

(
xt; q2

)
f (t) dqt (3)

For the transform Hν
q f , we will prove that, in a convenient normalized space,

if f and Hν
q f vanish at all the points of the spectrum outside the interval

(0, 1), then f must vanish in the equivalent classes of the normalized space
considered. The presentation is organized as follows. In the next section we
introduce the notions about q-calculus to be used in the remaining of the
paper. In the third section we prove our main theorem and deduce from
it a proposition about uniqueness sets in a certain Hilbert space of entire
functions. In the last section we obtain some estimates on the kernel of the
integral transform and use them to conclude, from a general proposition due
to de Jeu [6], that the length of the support of f times the length of the
support of Hν

q f must be bigger than a certain positive quantity, paralleling
a classical result about Fourier transforms.

2. Basic definitions and facts
The third Jackson q-Bessel function or the Hahn-Exton q-Bessel function

is defined by

Jν (z; q) =
(qν+1; q)∞

(q; q)∞

∞∑
n=0

(−1)n qn(n+1)/2

(qν+1; q)n(q; q)n
z2n+ν (4)

The notation J
(3)
ν (z; q) is used to distinguish it from the other two known

q-Bessel functions. Since this is the only Bessel function appearing on the
text, we will drop the superscript for shortness of the notations and write
Jν (z; q) = J

(3)
ν (z; q). The symbols in the above definitions are

(a; q)n = (1− q) (1− aq) ...
(
1− aqn−1

)
(5)

with the zero and infinite cases as

(a; q)0 = 1 (6)

(a; q)∞ = lim
n→∞

(a; q)n =
∞∏

k=0

(1− aqn) (7)
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The infinite product above can be written in series form by means of the the
Euler formula:

(z; q)∞ =
∞∑

n=0

(−1)n q
n(n−1)

2

(q; q)n
xn (8)

The q−integral in the finite interval (0, a) is
∫ a

0
f (t) dqt = (1− q) a

∞∑
n=0

f (aqn) qn (9)

and in the interval (0,∞)
∫ ∞

0
f (t) dqt = (1− q)

∞∑
n=−∞

f (qn) qn (10)

We will denote by Lp
q(X) the Banach space induced by the norm

‖f‖p =

[∫

X

|f (t)|p dqt

] 1
p

. (11)

For entire indices, the functions Jn(x; q) are generated by the relation, valid
for |xt| < 1, (

qxt−1; q
)
∞

(xt; q)∞
=

∞∑
n=−∞

Jn(x; q)tn (12)

It was shown in [5] that the q-Hankel transform satisfies the inversion formula

f (t) =
∫ ∞

0
(xt)

1
2
(
Hν

q f
)

(x) Jν

(
xt; q2

)
dqx =

(
Hν

q

(
Hν

q f
))

(t) (13)

where t takes the values qk, k ∈ Z.

3. A vanishing theorem for the q-Hankel transform
The main tool in the proof of the main result in this section is the following

completeness criterion, derived in [2] as a consequence of the Phragmén-
Lindelöf principle for functions of order less than one.

Theorem A. Let f and g be defined by their power series expansions as
f(z) =

∑∞
n=0(−1)nanz

2n and g(z) =
∑∞

n=0(−1)nbnz
2n . Denote by λn the

nth zero of g. If the order of f is less than one, then the sequence {f(λnx)}
is complete Lq (0, 1) if, as n →∞,

an

bn
→ 0 (14)
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Now we formulate and proof our main result, which is an uncertainty prin-
ciple of a qualitative nature. Essentially it says that a L1

q(R
+) function and

its q-Hankel transform cannot be both simultaneously supported inside the
interval (0, 1).

Theorem 1. Let f ∈ L1
q(R

+) such that both f and its q-Hankel transform
vanish at the points q−n, n ∈ N0, then

f(qk) = 0, k ∈ Z. (15)

that is, f ≡ 0 almost everywhere in L1
q(R

+). If f is analytic then f must
vanish identically in the whole complex plane.

Proof . Let f ∈ L1
q(R

+). If f(q−n) = 0, n ∈ N0, then the q-Hankel trans-
form of f is

Hν
q f(ω) =

∫ 1

0
(ωt)

1
2 Jν

(
ωt; q2

)
f (t) dqt. (16)

Our second assumption says that

(Hν
q f)(q−n) = 0, n ∈ N0 (17)

therefore, setting ω = q−n in (16) gives
∫ 1

0

(
q−nt

) 1
2 Jν

(
q−nt; q2

)
f(t)dqt = 0, n ∈ N0 (18)

Now, in the set up of Theorem A take f(z) = Jν

(
z; q2

)
and g(z) = (z2; q2)∞.

Using (4) and (8) together with the trivial observation that {q−n} is the
sequence of zeros of g gives that, if ν > −1, the sequence {Jν

(
q−nx; q2

)} is
complete in L1

q (0, 1). This, together with (18) implies that f ≡ 0 in L1
q (0, 1),

that is,

f(qn) = 0, n ∈ N0 (19)

Combining this with the assumption f(q−n) = 0, n ∈ N0 gives

f(qk) = 0, k ∈ Z (20)

This proves that f ≡ 0 almost everywhere in L1
q(R

+). Since the set {qk, k ∈
Z} has an accumulation point, if f is analytic then it must be the null
function. ¤
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Following [1] we introduce the space

PW ν
q =

{
f ∈ L2

q

(
R+

)
: f (x) =

∫ 1

0
(tx)

1
2 Jν

(
xt; q2

)
u (t) dqt, u ∈ L2

q (0, 1)

}

(21)
This can be interpreted as a q-Bessel version of the Paley Wiener space of
bandlimited functions. Clearly, PW ν

q is a Hilbert space of analytic functions.
Observe also that, if

(
Hν

q f
)

(q−n) = 0, n ∈ N, then taking into account
definitions (9) and (2), f =

(
Hν

q

(
Hν

q f
))

is of the form required in (21).
Using these concepts, we have the following consequence of the vanishing
theorem:

Corollary 1. Γ = {q−n, n ∈ N} is a set of uniqueness for the space PW ν
q .

Proof . Take f ∈ PW ν
q such that f(q−n) = 0, n ∈ N. If f is of the

form required in (21) then f = Hν
q u∗ where u∗ ∈ L2

q (R+) is obtained from
u ∈ L2

q (0, 1) by prescribing u(q−n) = 0, n ∈ N. By the inversion formula
(13), u∗ = Hν

q f . We conclude that Hν
q f(q−n) = 0, n ∈ N. By Theorem 1,

f ≡ 0. ¤
Remark 1. Observe that we proved the following characterization of PW ν

q :

PW ν
q =

{
f ∈ L2

q

(
R+

)
:
(
Hν

q f
) (

q−n
)

= 0, n ∈ N
}

(22)

The property
(
Hν

q f
)

(q−n) = 0, n ∈ N can thus be seen as a sort of ”q-Hankel-
bandlimitedness”. It was shown in [1] that there are many features in this
space analogous to the classical Paley Wiener space, including a sampling
theorem and a reproducing kernel.

4. An uncertainty principle
With the purpose of extending the Donoho and Stark uncertainty principle

[3] to an abstract setting, de Jeu [6] obtained a very general proposition, from
which we just quote a special case.

Theorem B If there is a Plancherel theorem for the integral transform in
L2(X) whose kernel is K(x, t), then, if the support of f is T and the support
of (Kf)(x) =

∫
X K(x, t)f(t)dµ(t) is Ω, the following inequality holds:

‖1T×ΩK(x, t)‖L2(µ,X)×L2(µ,X) ≥ 1 (23)

In order to use Theorem B to extract more valuable information about the
size of the supports in our study of the q-Hankel transform, we must first
obtain bounds for its kernel.
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Lemma 1. If ν ≥ 0 and |x| < q−
1
2 , the inequality holds:

|Jν(x; q)| ≤ 1
(q; q)∞

(24)

Proof . If ν > 0, y > −1
2 and x ∈ R, the following q-analogue of the Sonine

integral was proved in [1]:

(q; q)∞
(qν; q)∞

x−νJy+ν(x; q) =
∫ 1

0
t

y
2

(tq; q)∞
(tqν; q)∞

Jy(xt
1
2 ; q)dqt (25)

Setting y = 0 in (25) and taking absolute values gives

|Jν(x; q)| ≤
∣∣∣∣xν (qν; q)∞

(q; q)∞

∣∣∣∣
∫ 1

0

∣∣∣∣
(tq; q)∞
(tqν; q)∞

J0(xt
1
2 ; q)

∣∣∣∣ dqt (26)

We need to estimate the integrand in (25). For the infinite product, observe
that if 0 < t < 1, then

(tq; q)∞
(tqν; q)∞

<
1

(qν; q)∞
(27)

Now we will show that, if t < 1 and |x| < q−
1
2 then∣∣∣J0(xt

1
2 ; q)

∣∣∣ ≤ 1 (28)

This can be seen using a generating function argument as follows. Substi-
tuting t by t−1q in (12) and multiplying the two resulting identities gives, if
|xq| < |t| < |x|−1 (which holds if |x| < q−

1
2 and |xt| < 1)

∞∑
n=−∞

∞∑
m=−∞

tn−mqmJn(x; q)Jm(x; q) = 1 (29)

Equating coefficients of t0 in (29) reveals that, if |x| < q−
1
2 ,

∑∞
k=−∞ qk [Jk(x; q)]2 =

1. In particular,
|Jk(x; q)| ≤ q−

k
2 , k = 0, 1, ... (30)

Now, if t < 1 and |x| < q−
1
2 we also have |xt| < q−

1
2 . Setting k = 0 in (30)

gives(28). Using this estimates in (26) together with (27) gives

|Jν(x; q)| ≤
∣∣∣∣xν 1

(q; q)∞

∣∣∣∣ . (31)

This proves the lemma. ¤
We can now state a proposition providing information of a quantitative

nature about the supports of f and Hν
q f .
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Theorem 2. Suppose that ν ≥ 0. If the support of f is contained in [0, T ]
and the support of Hν

q f is contained in [0, Ω], then

ΩT ≥ (q; q)2
∞ (32)

Proof . First observe that if ΩT ≥ 1 then the proposition is trivial, since
(q; q)∞ < 1. Thus we can assume without loss of generalization that ΩT < 1.
In this case we have |xt| < 1 in the square [0, T ]× [0, Ω] and the use of (24)
together with the definition of the q-integral gives
∥∥∥1T×Ω(x, t) (xt)

1
2 Jν

(
xt; q2

)∥∥∥
L2

q(X)×L2
q(X)

=
∫ Ω

0

[∫ T

0

[
(tx)

1
2 Jν

(
xt; q2

)]2
dqt

]
dqx

(33)

≤
∫ Ω

0

∫ T

0

[
1

(q; q)∞

]2

dqtdqx =
ΩT

(q; q)2∞
(34)

now observe that applying Theorem B to the q-Hankel transform gives

1 ≤
∥∥∥1T×Ω (xt)

1
2 Jν

(
xt; q2

)∥∥∥
L2

q(X)×L2
q(X)

(35)

and the result is proved. ¤
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