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OPTIMAL CONTROL OF PIEZOELECTRIC ANISOTROPIC PLATES

ISABEL NARRA FIGUEIREDO AND GEORG STADLER

ABSTRACT: This paper is concerned with the application of optimal control techniques to
a static piezoelectric anisotropic thin plate model. To take physical limitations into account,
the space of electric potential fields is restricted, i.e., control constraints are imposed. After
deriving the first-order necessary conditions for the problem, a primal-dual active set strat-
egy for its solution is presented. In a numerical study we consider a plate composed of two
layers of different piezoelectric materials. We investigate the abilities of our approach and
the influence of certain parameters.
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1.The anisotropic plate model
Piezoelectric materials deform when they are subject to an electricfield. This

property, known as the inverse piezoelectric effect can be used to design smart ma-
terials and structures, which are nowadays used in various areas such as mecha-
tronics and micro electro mechanical systems. We refer to [1, 2] for a general
introduction to piezoelectric materials.

In order to make these materials behave in the desired way, one can eithercom-
bine a large number of simulations with physical intuition, or utilize an optimization-
based method. We apply the latter approach to a model for piezoelectric anisotropic
plates derived in [3] (see also [4] for a similar model). To be precise, we formu-
late the problem as optimal control problem,i.e., we search for an applied electric
field that generates a deformation of the plate, which is as close as possible to a
given desired deformation.

The piezoelectric anisotropic plate model we use is deduced by an asymp-
totic expansion method from a three-dimensional model in [3]. While the three-
dimensional equations are coupled, in the asymptotic model, these equations be-
come splitted up into two parts. The first one establishes that the displacementis
a Kirchhoff-Love displacement, which is characterized by the solution of a lin-
ear two-dimensional partial differential equation in the middle plane of the plate.
The second part gives an explicit formula for the electric potential in the whole
plate. This is remarkable, since in the tree-dimensional equations the deformation
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and the electric potential are coupled by means of a partial differential equation.
The formula is given by a second order polynomial with respect to the thickness
variable. Moreover, it can be shown that for a laminated plate the polynomial’s co-
efficients depend on the transverse and tangential components of the displacement
and the material coefficients.

We now summarize the asymptotic piezoelectric model equations. Letω ⊂ IR2,
bounded, be the middle plane of a piezoelectric thin plate with thickness2h, h > 0
a small constant. The plate occupies the domainΩ := ω×(−h, h), and we denote
by u = (u1, u2, u3) ∈ VKL the displacement of the plate. Here,VKL denotes the
Kirchhoff-Love mechanical displacement space including the Dirichlet boundary
conditions (the plate is assumed to be clamped on a part of the boundary with
positive measure). The plate can be subject to volume forces inΩ and boundary
tractions on∂Ω, and, more interestingly, subject to electric potentials on its upper
and lower surface. Since in the asymptotic model equations only the difference
between upper and lower electric potential enters, we only introduce a variable
for this difference (defined on the middle plane of the plate) and denote it by
φ ∈ L2(ω), whereL2(ω) := {ϕ : ω → IR :

∫

ω
ϕ2 dx < ∞} is the space of

square integrable functions. For reasons of simplicity, in the sequel we refer to
φ as “electric potential”, but we always mean the difference between the electric
potentials applied to the upper and lower surface.

Then, the displacementu is characterized as the solution to the following vari-
ational problem

{

Findu ∈ VKL such that

a(u,v) = (ℓ1,v) + (ℓ2φ,v) for all v ∈ VKL.
(1)

Above, the bilinear forma(· , ·) involves the elastic, piezoelectric and dielectric
coefficients, see [3]. The linear form(ℓ1, ·) collects volume and surface forces,
while (ℓ2φ, ·) can be interpreted as an electric force induced by the electric poten-
tial φ (to be precise, the difference of the applied electric potentials on the upper
and lower surface of the plate). Note thatℓ2 again involves elastic, piezoelectric
and dielectric material parameters, and thatφ enters linearly intoℓ2φ.

It can be shown that the variational problem (1) admits a unique solution for
sufficiently smooth data, in particular for eachφ ∈ L2(ω). After having obtained
the displacementu from (1), one can derive the electric potential in the plate from
a second order polynomial (cf. [3]).
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2.The optimal control problem
In this section we formulate the optimal control problem, state basic properties

and derive the necessary optimality conditions. To deform the piezoelectric plate
in a desired way, we minimize a cost functional that involves the displacementu
and the electic potentialφ. It is, for (u, φ) ∈ VKL × L2(ω), defined by

J(u, φ) :=
1

2

∫

Ω

‖E(u − ud)‖
2 dx +

γ

2

∫

ω

|φ|2 dx. (2)

Here,‖ · ‖ denotes the Euclidean norm inIR3, andE ∈ IR3×3 a diagonal ma-
trix with nonnegative entries. The vector functionud is a given displacement one
would like to achieve by choosing an appropriate electric potentialφ. The para-
meter0 < γ ≪ 1 weights the control cost in (2) and makes the functional strictly
convex. To implement physical limitations in our problem formulation, we restrict
ourselves to the following set of admissible electric potentials:

Uad = {φ ∈ L2(ω) : a(x) ≤ φ(x) ≤ b(x) a.e. onω},

wherea, b ∈ L2(ω) with a(x) < b(x) almost everywhere are pointwise bounds
for the electric potential. Then, the optimal control problem under consideration
is

minimizeJ(u, φ) subject to the state equation (1) and(u, φ) ∈ VKL × Uad. (P )

It is standard to argue that the optimal control problem (P ) admits a solution.
Uniqueness of this solution follows from the linearity of the state equation (1) and
the strict convexity of the cost functional (2).

We are now prepared to derive the first-order necessary conditions for the prob-
lem (P ). Therefore, we introduce the functionale : VKL × L2(ω) → V ⋆

KL defined
by

〈e(u, φ),v〉 := a(u,v) − (ℓ1,v) − (ℓ2φ,v) for v ∈ VKL,

where〈· , ·〉 denotes the duality pairing betweenV ⋆
KL andVKL. Using this notation,

the weak form of the state equation (1) becomese(u, φ) = 0 in V ⋆
KL. To derive

the necessary optimality conditions, we use the Lagrangian functionalL : VKL×
L2(ω) × VKL → IR defined by

L (u, φ,p) := J(u, φ) + 〈e(u, φ),p〉.
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Since the gradiente′(u, φ) of e(u, φ) is surjective for all(u, φ) ∈ VKL × L2(ω),
there exists (see,e.g., [5]), p⋆ ∈ VKL such that

∂

∂u
L (u⋆, φ⋆,p⋆) = 0, (3a)

∂

∂p
L (u⋆, φ⋆,p⋆) = 0, (3b)

∂

∂φ
L (u⋆, φ⋆,p⋆)(φ − φ⋆) ≥ 0 for all φ ∈ Uad. (3c)

Evaluating (3), one obtains the optimality system that we summarize in the fol-
lowing theorem. For the proof we refer to [6], where a similar result is established.

Theorem 1. The solution(u⋆, φ⋆) of (P ) is characterized by the existence of
(p⋆, λ⋆

a, λ
⋆
b) ∈ VLK × (L2(ω))2 such that

a(u⋆,v) − (ℓ2φ
⋆,v) = (ℓ1,v) for all v ∈ VKL, (4a)

a(v,p⋆) + (v, E2
u

⋆) = (v, E2
ud) for all v ∈ VKL, (4b)

γφ⋆ + λ⋆
b − λ⋆

a − ℓ⋆
2p

⋆ = 0, (4c)

φ⋆ − a ≥ 0, λ⋆
a ≥ 0, (φ⋆ − a, λ⋆

a) = 0, (4d)

b − φ⋆ ≥ 0, λ⋆
b ≥ 0, (b − φ⋆, λ⋆

b) = 0. (4e)

We remark that the equations (4d), (4e) are the complementarity conditions
corresponding to the inequality constraints inUad. In the absence of these con-
straints,i.e., in the caseUad = L2(ω), only the equations (4a), (4b) and (4c) with
λ⋆

a = λ⋆
b = 0 have to be taken into account. Hence, in this case the optimality

system becomes linear.
However, in general the system (4) is nonlinear and therefore its solution re-

quires an iterative approach. To motivate the algorithm presented in the next sec-
tion we introduce

λ⋆ := λ⋆
b − λ⋆

a. (5)

Then, the equations (4d), (4e) can be rewritten as the following nonsmooth equa-
tion:

λ⋆ − max(0, λ⋆ + σ(φ⋆ − b)) − min(0, λ⋆ + σ(φ⋆ − a)) = 0 (6)

for arbitraryσ > 0. In fact, taking into account (5), it is an easy exercise to show
that (6) is equivalent to (4d), (4e).
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3.Solution algorithm for (P )
We now state our algorithm for the solution of the nonlinear optimality system

(4a)–(4e). The algorithm can either be seen as an active set strategy or as gener-
alized Newton method (see [7]). It derives in each iterationk estimatesAk

a andAk
b

for the active sets at the solution,i.e., for the sets where the inequality bounds in
Uad are active meaningφ⋆ = a or φ⋆ = b. These estimates are motivated by (7),
and for a current iterate(φk−1, λk−1) given by

A
k
a = {x ∈ ω : λk−1 + σ(φk−1 − a) < 0}, (7a)

A
k
b = {x ∈ ω : λk−1 + σ(φk−1 − b) > 0}. (7b)

The algorithm presented below only involvesφ andλ, since only these variables
occur in the nonlinearity of the optimality system (4). The displacementu de-
pends linearly on these variables.

Algorithm 1.

(1) Initialize (φ0, λ0), chooseσ > 0 and setk := 1.
(2) DetermineAk

a andAk
b according to (7) and derive the inactive setIk :=

ω \ (Ak
a ∪ Ak

b ).
(3) If k ≥ 2 andAk

a = Ak−1
a , Ak

b = A
k−1

b stop. Else,
(4) Solve the equations (4a)–(4c) with the settings

φk :=

{

a on Ak
a,

b on Ak
b ,

and λk := 0 on I
k,

setk := k + 1 and go to step 2.

We remark that the system in step 4 of Algorithm 1 is linear and admits a unique
solution. The above algorithm is easy to implemented, and it uses the simple stop-
ping criterion given in step 2 of Algorithm 1. Namely, the iteration is terminated
as soon as the estimates for the active sets coincide in two consecutive iterations.
Then, as can be seen easily, the last iterate is the solution of the problem.

The method can also be seen as a generalized Newton method (see [7]). This
interpretation allows to give the following local convergence result for the infinite-
dimensional algorithm.

Theorem 2. If σ = γ and the initializations(φ0, λ0) are chosen such that‖φ⋆ −
φ0‖L2 and‖λ⋆ − λ0‖L2 are sufficiently small, the iterates(φk, λk) of Algorithm 1
converge to(φ⋆, λ⋆) in L2(ω) × L2(ω) at a superlinear rate.
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Proof: The proof relies on the interpretation of Algorithm 1 as semismooth New-
ton method and uses the smoothing property of the control-to-state mapping,i.e.,
the mappingφ → u. For details we refer to [7].

Note that the above results hold in the infinite-dimensional function spaceL2(ω)×
L2(ω). Clearly, an analogous convergence result holds for appropriate discretiza-
tions of the optimality system (4) as well. However, besides a possible theoretical
interest in analyzing methods before discretizing them, an infinite-dimensional
approach might give more insight into the problem structure and allows one to
investigate,e.g., smoothing properties of the involved differential operators or
mesh-independence of the algorithm.

4.Numerical results
The problem (P ) is discretized by means of finite elements on a regular rectan-

gular mesh. To be more precise, for the tangential displacements(u1, u2) we use
Melosh finite elements (see,e.g., [8]). These elements only involve the displace-
ments, which results into 8 shape functions for both componentsu1, u2 on each
finite element. The discretization of the transverse displacementu3 is based on
Adini finite elements [8], which take into account the two first order derivatives.
This leads to 12 shape functions foru3 on each finite element. Our algorithm
is implemented in MATLAB and uses routines from the finite element toolbox
CALFEM [9].

4.1. Example 1. In this example, we consider a plate consisting of two laminas
with the same thickness. They are made of two different PZT ceramic materials,
whose piezoelectric, dielectric and elastic coefficients are taken from the Tables
VIII and XI of [10].

The plate’s middle surfaceω is given by[0, 1] × [0, 3] (the unit used here and
below is meter), its thickness is2×10−2 and it is clamped on the side[0, 1]×{0}.
Our finite element discretization uses 20 times 60 elements inx- andy-direction,
respectively. In this first example, we are only interested in controlling the trans-
verse component of the displacement. Therefore, we chooseE := diag(0, 0, 1)
resulting in a cost functionalJ , in which onlyu3 andφ occur. The three compo-
nents of the desired stateud are given byud,1 = ud,2 = 0, and

ud,3(x, y) = 2 × 10−4 ·











0 for 0 ≤ y ≤ 1,

−2(y − 1)3 + 3(y − 1)2 for 1 ≤ y ≤ 2,

1 for 2 ≤ y ≤ 3,



OPTIMAL CONTROL OF PIEZOELECTRIC ANISOTROPIC PLATES 7

0

0.5

1
0 1 2 3

−1

0

1

2

3
x 10

−4

FIGURE 1. Desired displacementud of the middle plane.

see Figure 1. We remark, that the transverse component of the deformation can
only be influenced by an electric potential since the plate consists of two different
lamina. For piezoelectric plates made from only one material with constant piezo-
electric, dielectric and elastic coefficients, the tangential and transverse displace-
ment in the asymptotic model are not coupled and thus the transverse displacement
is independent of the applied electric potential. Such a simplified model is con-
sidered in [11]. Since we are mainly interested in the inverse piezoelectric effect,
we assume the mechnical forces to be zero,i.e., ℓ1 = 0 in (1).

In the optimal control problem (P ) we choose the control weightγ = 10−15.
Such a small value forγ becomes necessary due to the different scaling of the vari-
ablesu andφ, which is due to the material parameters. For the present problem,φ

is of order102, while the displacementu is of order10−4. To avoid ill-conditioned
systems due to these different scales, in our numerical implementation we use
rescaled variables̃u andφ̃ instead ofu andφ.

First, we show the result obtained in the absence of control constraints,i.e., for
the caseUad = L2(ω). The left plot in Figure 2 shows the optimal electric potential
φ, while the right plot shows the displacement of the middle plane obtained by the
electric forces induced byφ. As can be seen from Figure 2, the optimal electric
field is relatively complicated, but it deforms the middle plane of the plate in the
desired way.

Next, we show the results for the case that constant control constraintsa ≡
−175V and b ≡ 175V (here,V means the SI unit Volt) have to be taken into
account. The resulting nonlinear optimality system is solved using Algorithm 1
with the parameterσ = 1. The method detects the solution after only 5 iteration
steps. Since the space of possible electric fields is restricted, the resulting dis-
placement is slightly worse (i.e., further away from the desired state). However,
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FIGURE 2. Optimal electric potentialφ for the case without control
constraints (left) and deformed middle plane (right).
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FIGURE 3. Optimal electric potentialφ in the presence of the control
constraintsa ≡ −175 and b ≡ 175 and deformed middle plane
(right).

the difference is so small that it cannot be seen from comparing the right plots of
the Figures 2 and 3.

4.2.Example 2. This example uses the same geometry and data as Example 1, but
a modified cost functional in order to show the flexibility of an optimization-based
approach. To motivate the modification, we show in the left plot of Figure 4 a top
view of the deformed middle plane of the plate that is subject to the unconstrained
optimal potential shown in Figure 2. For reasons of graphical representation, the
displacement has been multiplied by the factor104. As can be seen from Figure
4, the electric potential does not only influence the transverse displacement in
the desired way, it also affects the tangential displacement(u1, u2). Since this
might be an undesired behavior, one can try to keep the first componentu1 of the
tangential displacement small by choosingE = diag(1, 0, 1) in the cost functional
(2). This involvesu1 in the cost functional and acts as penalization ifu1 6= 0 (since
ud,1 = 0). This modified choice forE results in the displacement shown in the
middle plot of Figure 4. For the right plot, we further increased the weight for
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FIGURE 4. Top view of deformed plate for different choices of the
matrix E in the cost functional;E = diag(0, 0, 1) (left), E =
diag(1, 0, 1) (middle),E = diag(5, 0, 1) (right).
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FIGURE 5. Optimal electric potentialφ (left) and deformed middle
plane for the choiceE = diag(5, 0, 1) (right).

the first componentu1 by choosingE = diag(5, 0, 1). Now, it can clearly be seen
that this leads to a smaller deformation inx-direction. However, the transverse
displacement is still close to the desired one, as can be seen from Figure 5, where
the optimal electric potential and the resulting deformation forE = diag(5, 0, 1)
are shown.
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