Pre-Publicages do Departamento de Matatica
Universidade de Coimbra
Preprint Number 06-12

OPTIMAL CONTROL OF PIEZOELECTRIC ANISOTROPIC PLATES
ISABEL NARRA FIGUEIREDO AND GEORG STADLER

ABSTRACT. This paper is concerned with the application of optimal control techniques to
a static piezoelectric anisotropic thin plate model. To take physical limitations inbuatc

the space of electric potential fields is restricted, i.e., control constramimposed. After
deriving the first-order necessary conditions for the problem, a prinmalattive set strat-
egy for its solution is presented. In a numerical study we consider a plateased of two
layers of different piezoelectric materials. We investigate the abilities of gpnoach and

the influence of certain parameters.
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1.The anisotropic plate model

Piezoelectric materials deform when they are subject to an eldtidc This
property, known as the inverse piezoelectric effect can be used to desdgirsa-
terials and structures, which are nowadays used in various areas suetlzs m
tronics and micro electro mechanical systems. We refer to [1, 2] for arglene
introduction to piezoelectric materials.

In order to make these materials behave in the desired way, one carceitier
bine a large number of simulations with physical intuition, or utilize an optiropat
based method. We apply the latter approach to a model for piezoelectric anisotropi
plates derived in [3] (see also [4] for a similar model). To be precigefosmu-
late the problem as optimal control problee,, we search for an applied electric
field that generates a deformation of the plate, which is as close as poss@le t
given desired deformation.

The piezoelectric anisotropic plate model we use is deduced by an asymp-
totic expansion method from a three-dimensional model in [3]. While the three-
dimensional equations are coupled, in the asymptotic model, these equations be-
come splitted up into two parts. The first one establishes that the displacsment
a Kirchhoff-Love displacement, which is characterized by the solution ai-a li
ear two-dimensional partial differential equation in the middle plane of the.plat
The second part gives an explicit formula for the electric potential in the whole
plate. This is remarkable, since in the tree-dimensional equations the daetwrmat
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and the electric potential are coupled by means of a partial differentialiequat
The formula is given by a second order polynomial with respect to the thickness
variable. Moreover, it can be shown that for a laminated plate the polynsimaal
efficients depend on the transverse and tangential components of the displacement
and the material coefficients.

We now summarize the asymptotic piezoelectric model equations. LelR?,
bounded, be the middle plane of a piezoelectric thin plate with thicktiggs> 0
a small constant. The plate occupies the dortaia- w x (—h, h), and we denote
by u = (uy,us,u3) € Vi the displacement of the plate. Hefé,; denotes the
Kirchhoff-Love mechanical displacement space including the Dirichlet boundary
conditions (the plate is assumed to be clamped on a part of the boundary with
positive measure). The plate can be subject to volume forc@saind boundary
tractions oro(?, and, more interestingly, subject to electric potentials on its upper
and lower surface. Since in the asymptotic model equations only the difference
between upper and lower electric potential enters, we only introduce a ‘ariabl
for this difference (defined on the middle plane of the plate) and denote it by
¢ € L*(w), whereL*(w) := {¢ : w — R : [ p*dz < oo} is the space of
square integrable functions. For reasons of simplicity, in the sequel we cefer t
¢ as “electric potential”’, but we always mean the difference betweenl¢otrie
potentials applied to the upper and lower surface.

Then, the displacementis characterized as the solution to the following vari-
ational problem

Findu € Vi such that
{ (1)

a(u,v) = ({1,v) + (b, v) forall v € V.

Above, the bilinear formu(-, -) involves the elastic, piezoelectric and dielectric
coefficients, see [3]. The linear forfd,,-) collects volume and surface forces,
while (4,0, ) can be interpreted as an electric force induced by the electric poten-
tial ¢ (to be precise, the difference of the applied electric potentials on the upper
and lower surface of the plate). Note tlatagain involves elastic, piezoelectric
and dielectric material parameters, and thanters linearly intds¢.

It can be shown that the variational problem (1) admits a unique solution for
sufficiently smooth data, in particular for eaghe L?*(w). After having obtained
the displacement from (1), one can derive the electric potential in the plate from
a second order polynomial (cf. [3]).
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2.The optimal control problem

In this section we formulate the optimal control problem, state basic propertie
and derive the necessary optimality conditions. To deform the piezoeledite pl
in a desired way, we minimize a cost functional that involves the displantm
and the electic potential. Itis, for (u, ¢) € Vxr x L*(w), defined by

J(u, ¢) ::%/{;HE(U_Ud)H2dx+%/‘¢‘2daj. (2)

Here, | - | denotes the Euclidean norm iR?, and £ € IR**® a diagonal ma-
trix with nonnegative entries. The vector functiapis a given displacement one
would like to achieve by choosing an appropriate electric poteatidlhe para-
meter0 < v < 1 weights the control cost in (2) and makes the functional strictly
convex. To implement physical limitations in our problem formulation, we istr
ourselves to the following set of admissible electric potentials:

Uy = {¢ € L*(w) : a(z) < ¢(z) < b(x) a.e. onw},

wherea, b € L?(w) with a(z) < b(x) almost everywhere are pointwise bounds
for the electric potential. Then, the optimal control problem under consideration
IS

minimize J(u, ¢) subject to the state equation (1) ahd ¢) € Vi X Uug. (P)

It is standard to argue that the optimal control proble®) admits a solution.
Uniqueness of this solution follows from the linearity of the state equation (1) and
the strict convexity of the cost functional (2).

We are now prepared to derive the first-order necessary conditions for the prob-
lem (P). Therefore, we introduce the functional Vi x L*(w) — Vi, defined

by

(e(u, ¢)a V> = a(u, V) - (617 V) - (€2¢7 V) forv e VKL7
where(-, -) denotes the duality pairing betwe€p, andV . Using this notation,
the weak form of the state equation (1) becora@s ¢) = 0in V. To derive

the necessary optimality conditions, we use the Lagrangian functignal’y ;, x
L*(w) x Vkr, — R defined by

Z(u,¢,p) = J(u, o) + (e(u, @), p).
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Since the gradient' (u, ¢) of e(u, ¢) is surjective for all(u, ¢) € Vi1 x L*(w),
there exists (see,q, [5]), p* € Vi such that

0
a—uf(u*, ¢, p*) =0, (3a)
0
%‘Z(u*, o5, p*) =0, (3b)
a% L0, 6", p) (6 — ¢*) > 0forall ¢ € Uy, (3¢)

Evaluating (3), one obtains the optimality system that we summarize in the fol-
lowing theorem. For the proof we refer to [6], where a similar result slesthed.

Theorem 1. The solution(u*, ¢*) of (P) is characterized by the existence of
(p*, N5, X)) € Vig X (L*(w))? such that
(
(

Y a’

a(u*,v) — (l20*,v) = ({1,v) forall v e Vi, (4a)
a(v,p*) + (v, E2 u*) = (v, E%uy) forall v € Viy, (4b)
V"N — Ao~ 63p" =0, (4c)
o —a>0,A>0,(¢"—a,\)=0, (4d)
b—o*>0,A\ >0,(b— 9" \) =0. (4e)

We remark that the equations (4d), (4e) are the complementarity conditions
corresponding to the inequality constraintslipy,. In the absence of these con-
straints,i.e., in the casd/,; = L?(w), only the equations (4a), (4b) and (4c) with
Ar = A; = 0 have to be taken into account. Hence, in this case the optimality
system becomes linear.

However, in general the system (4) is nonlinear and therefore its solution re-
guires an iterative approach. To motivate the algorithm presented in theawext s
tion we introduce

A=A — AL (5)
Then, the equations (4d), (4e) can be rewritten as the following nonsmooth equa-
tion:
A —max(0, \* + o(¢* — b)) — min(0, \* + o(¢* —a)) =0 (6)

for arbitraryo > 0. In fact, taking into account (5), it is an easy exercise to show
that (6) is equivalent to (4d), (4e).
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3.Solution algorithm for (P)

We now state our algorithm for the solution of the nonlinear optimality system
(4a)—(4e). The algorithm can either be seen as an active set strategy oieas ge
alized Newton method (see [7]). It derives in each iterati@stimatess® and.A;
for the active sets at the solutiare., for the sets where the inequality bounds in
U,.q are active meaning* = a or ¢* = b. These estimates are motivated by (7),
and for a current iteratg@y*~!, \*=1) given by

A= frcw: MW 4o —a) <0}, (7a)

a

A = {rcw: AN o™ —b) >0} (7b)

The algorithm presented below only involvesnd )\, since only these variables
occur in the nonlinearity of the optimality system (4). The displacenmedé-
pends linearly on these variables.

Algorithm 1.

(1) Initialize (¢", \°), chooser > 0 and setk := 1.

(2) Determine4” and 4F according to (7) and derive the inactive gét:=
w\ (AF U AY).

(3) If k > 2andAk = 45—, 4F = 4! stop. Else,

(4) Solve the equations (4a)—(4c) with the settings

on AF
O = {Z on ,41?’ and X\ :=0 on 7",
b

setk := k + 1 and go to step 2.

We remark that the system in step 4 of Algorithm 1 is linear and admits a unique
solution. The above algorithm is easy to implemented, and it uses the simple stop-
ping criterion given in step 2 of Algorithm 1. Namely, the iteration isrgrated
as soon as the estimates for the active sets coincide in two consecerateis.

Then, as can be seen easily, the last iterate is the solution of the problem.

The method can also be seen as a generalized Newton method (see [7]). This
interpretation allows to give the following local convergence resultfernfinite-
dimensional algorithm.

Theorem 2. If ¢ = « and the initializationg ¢°, \°) are chosen such tha* —
¢°||r2 and || \* — \Y||;» are sufficiently small, the iteratég”, \*) of Algorithm 1
converge tq¢*, \*) in L?(w) x L*(w) at a superlinear rate.
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Proof: The proof relies on the interpretation of Algorithm 1 as semismooth New-
ton method and uses the smoothing property of the control-to-state mapeing,
the mapping» — u. For details we refer to [7]. |

Note that the above results hold in the infinite-dimensional function spHae x
L*(w). Clearly, an analogous convergence result holds for appropriate discretiza-
tions of the optimality system (4) as well. However, besides a possible tiedre
interest in analyzing methods before discretizing them, an infinite-dimensiona
approach might give more insight into the problem structure and allows one to
investigate,e.g, smoothing properties of the involved differential operators or
mesh-independence of the algorithm.

4.Numerical results

The problem P) is discretized by means of finite elements on a regular rectan-
gular mesh. To be more precise, for the tangential displacenmenis,) we use
Melosh finite elements (see.g, [8]). These elements only involve the displace-
ments, which results into 8 shape functions for both components, on each
finite element. The discretization of the transverse displacemeist based on
Adini finite elements [8], which take into account the two first order derreati
This leads to 12 shape functions fof on each finite element. Our algorithm
is implemented in MATLAB and uses routines from the finite element toolbox
CALFEM [9].

4.1. Example 1. In this example, we consider a plate consisting of two laminas
with the same thickness. They are made of two different PZT ceramic alateri
whose piezoelectric, dielectric and elastic coefficients are taken the Tables
VIl and Xl of [10].

The plate’s middle surface is given by[0, 1] x [0, 3] (the unit used here and
below is meter), its thickness2sx 1072 and it is clamped on the side, 1] x {0}.
Our finite element discretization uses 20 times 60 elements amdy-direction,
respectively. In this first example, we are only interested in contigptine trans-
verse component of the displacement. Therefore, we chBose diag(0,0, 1)
resulting in a cost functional, in which onlyuz and¢ occur. The three compo-
nents of the desired statg are given byu,; = u42 = 0, and

0 for0 <y <1,
ugs(,y) =2x 107" ¢ =2y — 1) +3(y — 1)> for1 <y <2,
1 for2 <y <3,
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FIGURE 1. Desired displacemeni; of the middle plane.

see Figure 1. We remark, that the transverse component of the deformation can
only be influenced by an electric potential since the plate consists of twoattffer
lamina. For piezoelectric plates made from only one material with consiezapi
electric, dielectric and elastic coefficients, the tangential antsu#erse displace-

ment in the asymptotic model are not coupled and thus the transverse displacement
is independent of the applied electric potential. Such a simplified model is con-
sidered in [11]. Since we are mainly interested in the inverse piezt# effect,

we assume the mechnical forces to be zeeq,/; = 0in (1).

In the optimal control problemK) we choose the control weight = 10~1°.

Such a small value foy becomes necessary due to the different scaling of the vari-
ablesu and¢, which is due to the material parameters. For the present problem,
is of order10?, while the displacement is of order10~*. To avoid ill-conditioned
systems due to these different scales, in our numerical implementationenve us
rescaled variableg and¢ instead ofu and¢.

First, we show the result obtained in the absence of control constriaent&or
the casé/,; = L*(w). The left plotin Figure 2 shows the optimal electric potential
¢, while the right plot shows the displacement of the middle plane obtained by the
electric forces induced by. As can be seen from Figure 2, the optimal electric
field is relatively complicated, but it deforms the middle plane of the platee
desired way.

Next, we show the results for the case that constant control constraists
—175V andb = 175V (here,VV means the Sl unit Volt) have to be taken into
account. The resulting nonlinear optimality system is solved using Algorithm 1
with the parametes = 1. The method detects the solution after only 5 iteration
steps. Since the space of possible electric fields is restricted, thénmgsiik-
placement is slightly worsa.€., further away from the desired state). However,
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FIGURE 2. Optimal electric potentiap for the case without control
constraints (left) and deformed middle plane (right).

x10

Vo

FIGURE 3. Optimal electric potentiat in the presence of the control
constraintsa = —175 andb = 175 and deformed middle plane

(right).

the difference is so small that it cannot be seen from comparing the right plots of
the Figures 2 and 3.

4.2.Example2. This example uses the same geometry and data as Example 1, but
a modified cost functional in order to show the flexibility of an optimization-based
approach. To motivate the modification, we show in the left plot of Figure 4 a top
view of the deformed middle plane of the plate that is subject to the unconstrained
optimal potential shown in Figure 2. For reasons of graphical representation, the
displacement has been multiplied by the fadtot. As can be seen from Figure

4, the electric potential does not only influence the transverse displacement in
the desired way, it also affects the tangential displacerwent.,). Since this
might be an undesired behavior, one can try to keep the first componehthe
tangential displacement small by choosiig= diag(1, 0, 1) in the cost functional

(2). Thisinvolvesu, in the cost functional and acts as penalizatian it£ 0 (since

uqg1 = 0). This modified choice foz results in the displacement shown in the
middle plot of Figure 4. For the right plot, we further increased the weight for
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FIGURE 4. Top view of deformed plate for different choices of the
matrix £ in the cost functional;Z = diag(0,0,1) (left), £ =
diag(1,0, 1) (middle), E = diag(5, 0, 1) (right).

x10"

FIGURE 5. Optimal electric potentiap (left) and deformed middle
plane for the choicé’ = diag(5, 0, 1) (right).

the first component; by choosingE = diag(5, 0, 1). Now, it can clearly be seen
that this leads to a smaller deformationardirection. However, the transverse
displacement is still close to the desired one, as can be seen from Figunerg, w
the optimal electric potential and the resulting deformationHo« diag(5, 0, 1)
are shown.
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