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Abstract: We study twisted Jacobi manifolds, a concept that we had introduced
in a previous Note. Twisted Jacobi manifolds can be characterized using twisted
Dirac-Jacobi, which are sub-bundles of Courant-Jacobi algebroids. We show that
each twisted Jacobi manifold has an associated Lie algebroid with a 1-cocycle. We
introduce the notion of quasi-Jacobi bialgebroid and we prove that each twisted Ja-
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1. Introduction
Jacobi manifolds were introduced by Lichnerowicz [14] and Kirillov [8] as

smooth manifolds endowed with a bivector field Λ and a vector field E sat-
isfying some compatibility conditions. When the vector field E identically
vanishes, the Jacobi manifold is just a Poisson manifold. So, Poisson mani-
folds are particular cases of Jacobi manifolds. But there are other examples
of Jacobi structures on manifolds which are not Poisson, such as contact
structures and local conformally symplectic structures.

The notion of twisted Poisson manifold (or Poisson manifold with a 3-
form background) was introduced by Ševera and Weinstein [24], motivated
by the works of Klimčik and Strobl [9] on topological field theory and Park
[20] on string theory. Since Jacobi structures on manifolds generalize Poisson
structures, the introduction of the concept of a twisted Jacobi manifold seems
very natural. This task was achieved in the Note [19] where, besides we have
introduced that notion, we briefly presented some of its properties.
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Dirac structures on manifolds were introduced by Courant and Weinstein
[1] and developed in detail by Courant [2]. Dirac structures include presym-
plectic forms, Poisson structures and foliations. The first approach to extend
the theory of Dirac structures to Jacobi manifolds was done by Wade [25],
who introduced the E1(M)-Dirac structures as a natural extension of Dirac
bundles in the sense of Courant [2]. These E1(M)-Dirac structures, which we
call Dirac-Jacobi structures, include Jacobi manifolds and are sub-bundles
of the vector bundle (TM × IR) ⊕ (T ∗M × IR) over M , satisfying a certain
integrability condition. However, the vector bundle (TM × IR)⊕ (T ∗M × IR)
is not a Courant algebroid. This fact motivated a more general treatment,
proposed in [4, 18]. The concept of Courant-Jacobi algebroid was introduced,
independently, in [4] and [18], and the main example of this structure is the
double of a Jacobi bialgebroid [5, 3]. A Dirac structure for a Courant-Jacobi
algebroid E is defined as a sub-bundle of the vector bundle E over M satisfy-
ing an integrability condition. Dirac-Jacobi bundles arise then as a particular
case of these structures.

As we have already mentioned, twisted Poisson manifolds were introduced
by Ševera and Weinstein [24] who studied them in the framework of Courant
algebroids and Dirac structures. For the case of twisted Jacobi manifolds,
we use Dirac-Jacobi structures. More precisely, we use twisted Dirac-Jacobi
structures, which are sub-bundles of the Courant-Jacobi algebroid (TM ×
IR) ⊕ (T ∗M × IR) equipped with a “twisted bracket” on its space of sec-
tions. These Dirac-Jacobi bundles enable us to characterize twisted Jacobi
structures on manifolds.

On the other hand, Roytenberg [22] developed a theory of quasi-Lie bialge-
broids and used it to study twisted Poisson manifolds [23]. Namely, with each
twisted Poisson structure on a manifold M , a quasi-Lie bialgebroid structure
on (TM, T ∗M) can be associated. When we try to investigate what happens
in the Jacobi framework, we realize that things are different. First of all
because, in opposition to the Poisson case, one cannot, in general, define a
Lie algebroid structure on the cotangent bundle T ∗M of a Jacobi manifold
(M, Λ, E). Usually, only the vector bundle T ∗M × IR over M admits such
a structure [7]. Furthermore, with each Jacobi manifold, there exists an as-
sociated Jacobi bialgebroid [5, 3], while in the case of a Poisson manifold
it admits an associated Lie bialgebroid. Motivated by these facts, we intro-
duce the concept of a quasi-Jacobi bialgebroid, which is the one that fits in
our theory. We prove that each twisted Jacobi manifold has an associated
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quasi-Jacobi bialgebroid and that the double of a quasi-Jacobi bialgebroid is
a Courant-Jacobi algebroid.

The paper is divided into eight sections. In section 2 we recall some facts
on Jacobi manifolds and their relation with Lie algebroid theory. In section 3
we study the main properties of a twisted Jacobi manifold, we present some
examples and we show that if M is equipped with a twisted Jacobi struc-
ture, then there exists a twisted exact homogeneous Poisson structure on
M × IR. Section 4 is devoted to twisted Dirac-Jacobi structures and we char-
acterize twisted Jacobi manifolds using these structures. Several examples
of twisted Dirac-Jacobi bundles are presented, including graphs of sections
of

∧2(T ∗M × IR) and twisted locally conformal presymplectic structures.
We also relate twisted Dirac-Jacobi bundles and Dirac bundles in the sense
of Courant. In Section 5 we see how gauge transformations act on twisted
Dirac-Jacobi structures. In section 6 we construct a Lie algebroid with a
1-cocycle associated with each twisted Jacobi manifold. The notion of quasi-
Jacobi bialgebroid is introduced in section 7 and we prove that its double is
a Courant-Jacobi algebroid. In section 8 we show that each twisted Jacobi
manifolds admits an associated quasi-Jacobi bialgebroid.

Notation : In this paper, M is a C∞-differentiable manifold of finite dimen-
sion. We denote by TM and T ∗M , respectively, the tangent and cotangent
bundles over M and by C∞(M, IR) the space of all real C∞-differentiable
functions on M . For the Schouten bracket and the interior product of a form
with a multivector field, we use the convention of sign indicated by Koszul
[12], (see also [17]).

2. Jacobi manifolds
A Jacobi manifold is a differentiable manifold M equipped with a bivector

field Λ and a vector field E such that

[Λ, Λ] = −2E ∧ Λ and [E, Λ] = 0, (1)

where [·, ·] denotes the Schouten bracket [12]. In this case, (Λ, E) defines a
bracket on C∞(M, IR) which is called the Jacobi bracket and is given, for all
f, g ∈ C∞(M, IR), by

{f, g} = Λ(df, dg) + f(E.g) − g(E.f). (2)
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The Jacobi bracket endows C∞(M, IR) with a local Lie algebra structure
in the sense of Kirillov [8]. Reciprocally, a local Lie algebra structure on
C∞(M, IR) induces on M a Jacobi structure.

When the vector field E identically vanishes on M , the Jacobi structure
reduces to a Poisson structure on the manifold. However, there are other
examples of Jacobi manifolds either than Poisson manifolds, such as contact
and locally conformal symplectic manifolds, [14].

There are some well-known results concerning Jacobi structures on mani-
folds that we briefly recall.

Let (M, Λ, E) be a Jacobi manifold. Then, the pair (Λ, E) defines the
homomorphism of C∞(M, IR)-modules (Λ, E)# : Γ(T ∗M×IR) → Γ(TM×IR)
given, for any section (α, f) of T ∗M × IR, by

(Λ, E)#(α, f) = (Λ#(α) + fE,−iEα), (3)

and, with each f ∈ C∞(M, IR), we can associate the vector field Xf =
Λ#(df) + fE, called the hamiltonian vector field of f . We have that

Xf = π((Λ, E)#(df, f)),

where π : TM × IR → TM denotes the projection over the first factor.
Moreover, for all f, g ∈ C∞(M, IR),

[Xf , Xg] = X{f,g}. (4)

Also, the vector bundle T ∗M × IR over M endowed with the anchor map
π ◦ (Λ, E)# : T ∗M × IR → TM and the Lie algebra bracket {·, ·} on the space
of its sections, given, for all (α, f), (β, g) ∈ Γ(T ∗M × IR), by

{(α, f), (β, g)} = (γ, r), (5)

where

γ = LΛ#(α)β − LΛ#(β)α − d(Λ(α, β)) + fLEβ − gLEα − iE(α ∧ β),

r = −Λ(α, β) + Λ(α, dg) − Λ(β, df) + fE(g) − gE(f),

is a Lie algebroid over M [7]. The associated exterior derivative d∗ on

Γ(
∧

(TM × IR)) = ⊕k∈ZZΓ(
∧k(TM × IR)) is given [13], for all (P, Q) ∈

Γ(
∧k(TM × IR)) ∼= Γ(

∧k(TM)) ⊕ Γ(
∧k−1(TM)), by

d∗(P, Q) = ([Λ, P ] + kE ∧P + Λ∧Q,−[Λ, Q] + (1− k)E ∧Q + [E, P ]). (6)

It is well known that, given a Lie algebroid (A, [·, ·], a) over a differentiable
manifold M with a 1-cocycle φ ∈ Γ(A∗) in the Lie algebroid cohomology
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complex with trivial coefficients [16], we can modify the usual representation
of the Lie algebra (Γ(A), [·, ·]) on C∞(M, IR) by defining a new representation
aφ : Γ(A) × C∞(M, IR) → C∞(M, IR) as

aφ(X, f) = a(X)f + (iXφ)f, ∀ (X, f) ∈ Γ(A) × C∞(M, IR). (7)

Therefore, we obtain a new cohomology operator dφ on Γ(
∧

A∗) = ⊕k∈ZZΓ(
∧k

A∗)
given by

dφ(β) = dβ + φ ∧ β, ∀ β ∈ Γ(
∧k

A∗), (8)

where d is the cohomology operator defined by ([·, ·], a) on Γ(
∧

A∗), and

a new Lie derivative operator of forms with respect to X ∈ Γ(A), Lφ
X =

dφ ◦ iX + iX ◦ dφ, that can be expressed in terms of the usual Lie derivative
LX = d ◦ iX + iX ◦ d, as

Lφ
X(β) = LXβ + (iXφ)β, ∀ β ∈ Γ(

∧k
A∗). (9)

Using φ, it is also possible to modify the Schouten bracket [·, ·] on the graded

algebra Γ(
∧

A) = ⊕k∈ZZΓ(
∧k

A) to the φ-Schouten bracket [·, ·]φ on Γ(
∧

A)
defined, for any P ∈ Γ(

∧p
A) and Q ∈ Γ(

∧q
A), by

[P, Q]φ = [P, Q] + (p − 1)P ∧ (iφQ) + (−1)p(q − 1)(iφP ) ∧ Q, (10)

where iφQ and iφP can be interpreted as the usual contraction of a multi-
vector field with a 1-form. A differential calculus using aφ, dφ, Lφ and [·, ·]φ

can be developed. The formulae obtained are similar, but adapted, to the
case of a Lie algebroid [5], [3].

A pair (A, φ) formed by a Lie algebroid A and a 1-cocycle φ of A, is called
a Jacobi algebroid in the terminology of [3].

A trivial example of a Jacobi algebroid over M is the vector bundle TM ×
IR → M equipped with the bracket

[(X, f), (Y, g)] = ([X, Y ], X.g−Y.f), ∀ (X, f), (Y, g) ∈ Γ(TM×IR), (11)

the vector bundle map π : TM × IR → TM , that is the projection over the
first factor, and the section (0, 1) of T ∗M × IR. The associated exterior
derivative on Γ(

∧
(T ∗M × IR)) is the operator d = (d,−d) and (0, 1) is

a 1-cocycle in the cohomology complex with trivial coefficients of (TM ×
IR, [·, ·], π, d). In the sequel, we will denote by d(0,1) the differential operator
on Γ(

∧
(T ∗M × IR)) modified by (0, 1), as in (8).
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The notion of generalized Lie bialgebroid and the equivalent one of Jacobi
bialgebroid were introduced, respectively, by D. Iglesias and J.C. Marrero in
[5] and by J. Grabowski and G. Marmo in [3] in such a way that a Jacobi
manifold has a Jacobi bialgebroid canonically associated and conversely. A
Jacobi bialgebroid over M is a pair (A, A∗) of Lie algebroids over M , in
duality, with differentials d and d∗, respectively, endowed with a 1-cocycle
φ ∈ Γ(A∗) of (A, d) and a 1-cocycle W ∈ Γ(A) of (A∗, d∗), such that, for
every P ∈ Γ(

∧p
A) and Q ∈ Γ(

∧
A), the following condition holds :

dW
∗ [P, Q]φ = [dW

∗ P, Q]φ + (−1)p+1[P, dW
∗ Q]φ.

The pair formed by the Jacobi algebroid (TM×IR, [·, ·], π, (0, 1)), presented
above, together with the Lie algebroid (T ∗M × IR, {·, ·}, π ◦ (Λ, E)#) and the
1-cocycle (−E, 0) ∈ Γ(TM × IR) on it, is a Jacobi bialgebroid over the Jacobi
manifold (M, Λ, E), [5].

Finally, let us recall [5] that a section (Λ, E) of
∧2(TM × IR) defines a

Jacobi structure on the manifold M if and only if

[(Λ, E), (Λ, E)](0,1) = (0, 0). (12)

3. Twisted Jacobi manifolds
In [19] we introduced the concept of twisted Jacobi manifold and we pre-

sented some of its properties. Now, in this section, we will review and com-
plete the results announced in [19].

We start by recalling that, given a bivector field Λ on a differentiable
manifold M , the associated vector bundle map Λ# : T ∗M → TM induces a
homomorphism of C∞(M, IR)-modules Λ# : Γ(T ∗M) → Γ(TM),

〈β, Λ#(α)〉 = Λ(α, β), ∀α, β ∈ Γ(T ∗M),

that can be extended to a homomorphism, also denoted by Λ#, from
Γ(

∧k(T ∗M)) onto Γ(
∧k(TM)), k ∈ IN, as follows:

Λ#(f) = f and (Λ#η)(α1, . . . , αk) = (−1)kη(Λ#(α1), . . . , Λ
#(αk)), (13)

for all f ∈ C∞(M, IR), η ∈ Γ(
∧k(T ∗M)) and α1, . . . , αk ∈ Γ(T ∗M). Analo-

gously, with each section (Λ, E) of
∧2(TM × IR), we can associate a homo-

morphism of C∞(M, IR)-modules

(Λ, E)# : Γ(
∧k

(T ∗M × IR)) → Γ(
∧k

(TM × IR)), k ∈ IN,
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by setting, for all f ∈ C∞(M, IR), (η, ξ) ∈ Γ(
∧k(T ∗M × IR)) and (α1, f1), . . . ,

(αk, fk) ∈ Γ(T ∗M × IR),

(Λ, E)#(f) = f

and

(Λ, E)#(η, ξ)((α1, f1), . . . , (αk, fk))

= (−1)k(η, ξ)((Λ, E)#(α1, f1), · · · , (Λ, E)#(αk, fk)). (14)

We remark that for k = 1, we recover (3).

Let us introduce some notation, following [24]. Let Λ be a bivector field
on M and ϕ a 3-form on M . We denote by (Λ# ⊗ 1)(ϕ) the section of
(
∧2

TM) ⊗ T ∗M that acts on multivector fields by contraction with the
factor in T ∗M . For any f ∈ C∞(M, IR), X ∈ Γ(TM) and α, β ∈ Γ(T ∗M),

(Λ# ⊗ 1)(ϕ)(f) = 0 and (Λ# ⊗ 1)(ϕ)(α, β)(X) = −ϕ(Λ#(α), Λ#(β), X).
(15)

Similarly, if ω is a 2-form on M , then, for any X ∈ Γ(TM) and α ∈ Γ(T ∗M),

(Λ# ⊗ 1)(ω)(α)(X) = ω(Λ#(α), X).

In what follows, we consider the Jacobi algebroid (TM × IR, [·, ·], π, (0, 1))
and we are mainly interested in the vector bundle map defined by (14) for
k = 3.

Proposition 3.1. Let (Λ, E) be a section of
∧2(TM × IR) and (ϕ, ω) a

section of
∧3(T ∗M × IR). Then,

[(Λ, E), (Λ, E)](0,1) = 2(Λ, E)#(ϕ, ω)

if and only if

[Λ, Λ] + 2E ∧ Λ = 2Λ#(ϕ) + 2(Λ#ω) ∧ E (16)

and

[E, Λ] = (Λ# ⊗ 1)(ϕ)(E) − ((Λ# ⊗ 1)(ω)(E)) ∧ E. (17)
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Proof : Let (α, f), (β, g), (γ, h) be three arbitrary sections of T ∗M × IR. We
have,

[(Λ, E), (Λ, E)](0,1)((α, f), (β, g), (γ, h))

= ([Λ, Λ] + 2E ∧ Λ, 2[E, Λ])((α, f), (β, g), (γ, h))

= ([Λ, Λ] + 2E ∧ Λ)(α, β, γ) + 2f [E, Λ](β, γ) − 2g[E, Λ](α, γ)

+2h[E, Λ](α, β). (18)

On the other hand,

2(Λ, E)#(ϕ, ω)((α, f), (β, g), (γ, h))

= 2(Λ#ϕ)(α, β, γ) + 2((Λ#ω) ∧ E)(α, β, γ)

−2
(
ϕ(Λ#(β), Λ#(γ), fE) − ϕ(Λ#(α), Λ#(γ), gE) + ϕ(Λ#(α), Λ#(β), hE)

)

−2((iEα)[ω(Λ#(γ), gE) − ω(Λ#(β), hE)] − (iEβ)[ω(Λ#(γ), fE)

−ω(Λ#(α), hE)] + (iEγ)[ω(Λ#(β), fE) − ω(Λ#(α), gE)])

= 2
(
(Λ#ϕ) + ((Λ#ω) ∧ E), (Λ# ⊗ 1)(ϕ)(E)

−((Λ# ⊗ 1)(ω)(E) ∧ E)
)
((α, f), (β, g), (γ, h)). (19)

Comparing the terms on trivector fields and bivector fields of (18) and (19),
we obtain, respectively, the formulæ (16) and (17).

The sections of
∧3(T ∗M×IR) that are closed with respect to the differential

operator d(0,1) will have a special role hereafter. We will call them d(0,1)-
closed.

Lemma 3.2. A section (ϕ, ω) of
∧3(T ∗M×IR) is d(0,1)-closed, i.e. d(0,1)(ϕ, ω) =

(0, 0), if and only if ϕ = dω.

Thus, we shall denote any d(0,1)-closed section (ϕ, ω) of
∧3(T ∗M × IR) by

(dω, ω), with ω a 2-form on M .

Definition 3.3. A twisted Jacobi structure on a differentiable manifold M

is defined by choosing a bivector field Λ, a vector field E and a 2-form ω on
M such that

[(Λ, E), (Λ, E)](0,1) = 2(Λ, E)#(dω, ω). (20)

A manifold equipped with such a structure is called a twisted Jacobi manifold
or a ω-Jacobi manifold and it is denoted by the triple (M, (Λ, E), ω).
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Hence, according to Proposition 3.1, we may define a twisted Jacobi man-
ifold as a manifold M equipped with a section (Λ, E) of

∧2(TM × IR) and a
2-form ω on M satisfying conditions (16) and (17), for ϕ = dω.

Examples 3.4.

1. Jacobi manifolds: Any Jacobi manifold (M, Λ, E) endowed with a 2-
form ω satisfying (Λ, E)#(dω, ω) = (0, 0) can be viewed as a twisted Jacobi
manifold.

2. Twisted locally conformal symplectic manifolds: A twisted locally con-
formal symplectic manifold is a 2n-dimensional differentiable manifold M

equipped with a non-degenerate 2-form Θ, a closed 1-form ϑ, called the Lee
1-form, and a 2-form ω such that

d(Θ + ω) + ϑ ∧ (Θ + ω) = 0.

Let E be the unique vector field and Λ the unique bivector field on M which
are defined by

i(E)Θ = −ϑ and i(Λ#(α))Θ = −α, for all α ∈ Γ(T ∗M). (21)

If we also denote by Λ# the extension (13) of the isomorphism Λ# : Γ(T ∗M) →
Γ(TM) given by (21), we obtain

E = Λ#(ϑ) and Λ = Λ#(Θ).

By a simple, but very long computation, we prove that the pair ((Λ, E), ω)
satisfies the relations (16) and (17), for ϕ = dω. Whence, ((Λ, E), ω) endows
M with a twisted Jacobi structure.

3. A trivial example in local coordinates: Let (x0, x1, x2, x3, x4) be a system
of local coordinates in IR5. Let us consider a bivector field Λ, a vector field
E and a 2-form ω on IR5 given, in these coordinates, by

Λ =
∂

∂x1
∧

∂

∂x3
+

∂

∂x2
∧

∂

∂x4
+ x4

∂

∂x0
∧

∂

∂x4
, E =

∂

∂x0
, ω = dx1 ∧ dx3.

A simple computation gives

[Λ, Λ] + 2E ∧ Λ = 2
∂

∂x1
∧

∂

∂x3
∧

∂

∂x0
and [E, Λ] = 0.

Since

Λ#(ω) =
∂

∂x1
∧

∂

∂x3
and (Λ# ⊗ 1)(ω)(E) = 0,



10 J.M. NUNES DA COSTA AND F. PETALIDOU

we have

[Λ, Λ] + 2E ∧ Λ = 2Λ#(ω) ∧ E and [E, Λ] = −(Λ# ⊗ 1)(ω)(E) ∧ E.

According to Proposition 3.1, with ϕ = dω = 0, ((Λ, E), ω) defines a twisted
Jacobi structure on the manifold IR5.

Given a twisted Jacobi structure ((Λ, E), ω) on M , (Λ, E) defines on C∞(M, IR)
an internal composition law {·, ·} just as in the case of Jacobi structure: For
all f, g ∈ C∞(M, IR),

{f, g} = Λ(df, dg) + fE(g) − gE(f). (22)

Since (12) does not hold, this bracket fails the Jacobi identity and is no more
a Lie bracket.

Proposition 3.5. Let (M, (Λ, E), ω) be a twisted Jacobi manifold. Then, for
all f, g, h ∈ C∞(M, IR),

{f, {g, h}} + c.p. = −(dω, ω)((Λ, E)#(df, f), (Λ, E)#(dg, g), (Λ, E)#(dh, h)),

where c.p. denotes sum after circular permutation.

Proof : The result follows directly from (14) for k = 3 and (20), taking into
account that, for any f, g, h ∈ C∞(M, IR),

1

2
[(Λ, E), (Λ, E)](0,1)((df, f), (dg, g), (dh, h)) = {f, {g, h}} + p.c.

Let us now examine some relations between twisted Jacobi manifolds and
twisted Poisson manifolds.

We recall that a twisted Poisson manifold [24] is a differentiable manifold
M endowed with a bivector field Λ and a closed 3-form ϕ on M such that
[Λ, Λ] = 2Λ#(ϕ). When ϕ is exact, i.e. ϕ = dω with ω ∈ Γ(

∧2
T ∗M), we say

that (M, Λ, ϕ) is a twisted exact Poisson manifold. A twisted Jacobi manifold
(M, (Λ, E), ω), with E = 0, defines a twisted exact Poisson structure on M ,
since

[(Λ, 0), (Λ, 0)](0,1) = 2(Λ, 0)#(dω, ω) ⇒ [Λ, Λ] = 2Λ#(dω).

Furthermore, it is well known that there exists a close relationship which
links homogeneous Poisson manifolds with Jacobi manifolds [14]. Namely,
to each Jacobi manifold (M, Λ, E), we can associate a homogeneous Poisson
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manifold (M̃, Λ̃,
∂

∂t
), called the Poissonization of (M, Λ, E), with M̃ = M×IR

and Λ̃ = e−t(Λ +
∂

∂t
∧ E), t being the canonical coordinate on IR. For the

twisted exact Poisson structures, we introduce the following definition.

Definition 3.6. A homogeneous twisted exact Poisson structure on a man-
ifold M is defined by a triple (Λ, Z, ω), where Λ is a bivector field on M , Z

is a vector field on M and ω is a 2-form on M , such that

[Λ, Λ] = 2Λ#(dω), [Z, Λ] = −Λ, LZω = ω.

Proposition 3.7. Let (M, (Λ, E), ω) be a twisted Jacobi manifold. We set

M̃ = M × IR and we consider on M̃ the tensor fields Λ̃ = e−t(Λ +
∂

∂t
∧ E)

and ω̃ = etω, t being the canonical coordinate on the factor IR. Then, the

triple (Λ̃,
∂

∂t
, ω̃) defines an homogeneous twisted exact Poisson structure on

M̃ .

Proof : We have [
∂

∂t
, Λ̃] = −Λ̃ and L∂/∂tω̃ = ω̃. So, according to Definition

3.6, it remains to prove that [Λ̃, Λ̃] = 2Λ̃#(dω̃). From the definition of Λ̃, we
compute

[Λ̃, Λ̃] = e−2t([Λ, Λ] + 2E ∧ Λ) + 2e−2t(
∂

∂t
∧ [E, Λ])

and, since (M, (Λ, E), ω) is a twisted Jacobi manifold, from (16) and (17),
we can write

[Λ̃, Λ̃] = 2e−2t
(
Λ#(dω) + Λ#(ω) ∧ E

+
∂

∂t
∧

(
(Λ# ⊗ 1)(dω)(E) − ((Λ# ⊗ 1)(ω)(E)) ∧ E

)
)

. (23)

On the other hand,

Λ̃#(dω̃) = etΛ̃#(dω + dt ∧ ω). (24)

But,

Λ̃#(dω) = e−3t

(

Λ#(dω) +
∂

∂t
∧ (Λ# ⊗ 1)(dω)

)

(25)

and

Λ̃#(dt ∧ ω) = e−3t

(

Λ#(ω) −
∂

∂t
∧ ((Λ# ⊗ 1)(ω)(E))

)

∧ E. (26)
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From equations (23)-(26) we obtain [Λ̃, Λ̃] = 2Λ̃#(dω̃).

4. Twisted Dirac-Jacobi structures
The notions of Courant-Jacobi algebroid and the equivalent one of gener-

alized Courant algebroid were introduced in [4] and [18], respectively, as a
generalization of the definition of Courant algebroid [15, 22].

Definition 4.1. ([18]) A generalized Courant algebroid or a Courant-Jacobi
algebroid on a differentiable manifold M is a vector bundle E over M equipped
with a nondegenerate symmetric bilinear form (·, ·) on the bundle, a skew-
symmetric bracket [·, ·] on Γ(E), a bundle map ρθ : E → TM × IR and a
section θ of E∗ such that, for any e1, e2 ∈ Γ(E), the condition 〈θ, [e1, e2]〉 =
ρ(e1)〈θ, e2〉 − ρ(e2)〈θ, e1〉 holds, ρ being the bundle map from E onto TM

induced by ρθ, satisfying, for all e, e1, e2, e3 ∈ Γ(E) the following properties:

i) [[e1, e2], e3] + [[e2, e3], e1] + [[e3, e1], e2] = DθT (e1, e2, e3),
where T (e1, e2, e3) = 1

3([e1, e2], e3) + c.p. and Dθ : C∞(M, IR) → Γ(E)

is the first-order differential operator given by (Dθf, e) = 1
2ρ

θ(e)f ;

ii) ρθ([e1, e2]) = [ρθ(e1), ρ
θ(e2)],

where the bracket on the right-hand side is the Lie bracket (11) on
Γ(TM × IR);

iii) ρθ(e)(e1, e2) = ([e, e1] + Dθ(e, e1), e2) + (e1, [e, e2] + Dθ(e, e2));
iv) for any f, g ∈ C∞(M, IR), (Dθf,Dθg) = 0.

A Dirac structure for the generalized Courant algebroid (E, θ) is a sub-
bundle L of E which is closed under the bracket [·, ·] and is maximally
isotropic with respect to the symmetric bilinear form (·, ·). In this case
(L, ρ|L, [·, ·]|L) is a Lie algebroid over M .

An important example of a Courant-Jacobi algebroid is the double A⊕A∗

of a Jacobi bialgebroid ((A, φ), (A∗, W )) over M [4, 18]. The bracket on the
space Γ(A⊕A∗) of its sections is given, for all e1 = X1 + α1, e2 = X2 + α2 ∈
Γ(A ⊕ A∗), by

[[X1 + α1, X2 + α2]] =
(
[X1, X2]

φ + LW
∗α1

X2 − LW
∗α2

X1 − dW
∗ (e1, e2)−

)

+
(

[α1, α2]
W
∗ + Lφ

X1
α2 − Lφ

X2
α1 + dφ(e1, e2)−

)

, (27)

where (e1, e2)− = 1
2(iX2

α1 − iX1
α2). Moreover, θ = φ + W , ρ is the sum of

the anchor maps of A and A∗, the symmetric bilinear form on A ⊕ A∗ is
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the canonical one, i.e. (e1, e2) = (e1, e2)+ = 1
2(iX2

α1 + iX1
α2), D = (d∗ +

d)|C∞(M,IR) and Dθ = (dW
∗ + dφ)|C∞(M,IR).

For the case of the Jacobi bialgebroid ((TM×IR, (0, 1)), (T ∗M×IR, (0, 0))),
where T ∗M × IR is equipped with the null Lie algebroid structure, the
Courant-Jacobi structure defined on its double E1(M) = (TM×IR)⊕(T ∗M×
IR) corresponds to the following bracket on the space Γ(E1(M)), defined in
[25] as a direct generalization of the Courant bracket on Γ(TM ⊕ T ∗M) [2],
as follows: for all e1 = (X1, f1)+(α1, g1), e2 = (X2, f2)+(α2, g2) ∈ Γ(E1(M)),

[[e1, e2]] = [[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]]

= [(X1, f1), (X2, f2)]
(0,1)

+
(

L
(0,1)
(X1,f1)

(α2, g2) − L
(0,1)
(X2,f2)

(α1, g1) + d(0,1)(e1, e2)−

)

with

(e1, e2)− =
1

2
(iX2

α1 − iX1
α2 + f2g1 − f1g2).

Dirac structures for the Courant-Jacobi algebroid (E1(M), (0, 1)+(0, 0)) will
be called Dirac-Jacobi structures.

Let us now “twist” the bracket [[·, ·]] on Γ(E1(M)) with a section (ϕ, ω) of
∧3(T ∗M × IR) by setting

[e1, e2](ϕ,ω) = [[e1, e2]] + (ϕ, ω)((X1, f1), (X2, f2), ·).

Proposition 4.2. The pair (E1(M), (0, 1) + (0, 0)) equipped with the bracket
[·, ·](ϕ,ω) on Γ(E1(M)), the canonical bilinear symmetric form (·, ·)+ on the
bundle∗ and the bundle map ρ = π + 0, is a Courant-Jacobi algebroid over
M if and only if d(0,1)(ϕ, ω) = 0.

We denote this new Courant-Jacobi algebroid by (E1(M)(dω,ω), (0, 1)+(0, 0))
or simply by (E1(M)ω, (0, 1) + (0, 0)).

Proof : We know that (E1(M), (0, 1)+(0, 0)) equipped with ([[·, ·]], ρ, (·, ·)+) is
a Courant-Jacobi algebroid [18]. Hence, we only have to check the effect of
adding the term (ϕ, ω)((X1, f1), (X2, f2), ·) to the bracket [[·, ·]] on Γ(E1(M)).
Let us set θ = (0, 1) + (0, 0). Then, for any e1 = (X1, f1) + (α1, g1), e2 =
(X2, f2) + (α2, g2) ∈ Γ(E1(M)), we compute

ρθ([e1, e2](ϕ,ω)) = ρθ([[e1, e2]]) + ρθ((ϕ, ω)((X1, f1), (X2, f2), ·))

= [ρθ(e1), ρ
θ(e2)],

∗(e1, e2)+ = 1

2
(iX2

α1 + iX1
α2 + f2g1 + f1g2)
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and ii) of Definition 4.1 holds. Moreover, for any e = (X, f) + (α, g) ∈
Γ(E1(M)), condition iii) holds if and only if

((ϕ, ω)((X, f), (X1, f1), ·), (X2, f2) + (α2, g2))+

+ ((X1, f1) + (α1, g1), (ϕ, ω)((X, f), (X2, f2), ·))+ = 0,

that is, if and only if

((ϕ(X, X1, ·) + ω(fX1 − f1X, ·), ω(X, X1)), (X2, f2) + (α2, g2))+

+ ((X1, f1) + (α1, g1), (ϕ(X, X2, ·) + ω(fX2 − f2X, ·), ω(X, X2))+ = 0,

which can be proved by a simple computation. Finally, by a long but straight-
forward computation, we obtain

[[e1, e2](ϕ,ω), e3](ϕ,ω) + c.p. = d(0,1)(T(ϕ,ω)(e1, e2, e3))

− (d(0,1)(ϕ, ω))((X1, f1), (X2, f2), (X3, f3), ·)

with T(ϕ,ω)(e1, e2, e3) = 1
3([e1, e2](ϕ,ω), e3)+ + c.p.. Thus, condition i) of Defini-

tion 4.1 holds if and only if d(0,1)(ϕ, ω) = (0, 0) and the proof is complete.

Definition 4.3. A Dirac sub-bundle L for the Courant-Jacobi algebroid
(E1(M)ω, (0, 1) + (0, 0)) over M is called an ω-Dirac-Jacobi structure or a
twisted Dirac-Jacobi structure.

Obviously, if L is a twisted Dirac-Jacobi structure, then (L, [·, ·](dω,ω)|L, ρ|L)
is a Lie algebroid over M .

The next result enables us to characterize twisted Jacobi manifolds in terms
of twisted Dirac-Jacobi structures. Hereafter, in order to simplify the nota-
tion, we will denote the bracket [·, ·](dω,ω) by [·, ·]ω, whenever is clear to which
bracket we refer to.

Proposition 4.4. Let ω be a 2-form on M and (Λ, E) a section of
∧2(TM×

IR). Then, graph(Λ, E)# is a ω-Dirac-Jacobi structure if and only if

[(Λ, E), (Λ, E)](0,1) = 2(Λ, E)#(dω, ω).

Proof : For any (α, f), (β, g) ∈ Γ(T ∗M × IR), we have

[(Λ, E)#(α, f) + (α, f), (Λ, E)#(β, g) + (β, g)]ω

= [(Λ, E)#(α, f), (Λ, E)#(β, g)] + {(α, f), (β, g)}

+(dω, ω)((Λ, E)#(α, f), (Λ, E)#(β, g), ·),
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where {·, ·} is the bracket (5). So, graph(Λ, E)# is closed under the bracket
[·, ·]ω if and only if

[(Λ, E)#(α, f), (Λ, E)#(β, g)] =

= (Λ, E)#({(α, f), (β, g)} + (dω, ω)((Λ, E)#(α, f), (Λ, E)#(β, g), ·)).(28)

But (28) is equivalent to [(Λ, E), (Λ, E)](0,1) = 2(Λ, E)#(dω, ω) (see, e.g.
[10]).

Corollary 4.5. The triple (M, (Λ, E), ω) is a twisted Jacobi manifold if and
only if graph(Λ, E)# is a ω-Dirac-Jacobi structure.

Let (η, γ) be a section of
∧2(T ∗M × IR). We denote by (η, γ)♭ : TM × IR →

T ∗M × IR the associated vector bundle morphism that induces on the spaces
of sections a map, that we also denote by (η, γ)♭, which is given, for any
(X, f) ∈ Γ(TM × IR), by

(η, γ)♭(X, f) = (iXη + fγ,−iXγ).

Proposition 4.6. Let (η, γ) be a section of
∧2(T ∗M×IR). Then, graph(η, γ)♭

is a ω-Dirac-Jacobi structure if and only if d(0,1)(η, γ) + (dω, ω) = (0, 0).

Proof : We start by remarking that

d(0,1)(η, γ) + (dω, ω) = (0, 0) ⇔ η = dγ − ω.

The vector bundle graph(η, γ)♭ over M , whose space of sections is given by

Γ(graph(η, γ)♭) = {(X, f) + (iXη + fγ,−iXγ) | (X, f) ∈ Γ(TM × IR)},

is a maximally isotropic sub-bundle of E1(M) with respect to the symmetric
bilinear form (·, ·)+. Now, let ei = (Xi, fi) + (iXi

η + fiγ,−iXi
γ), i = 1, 2, be

two sections of graph(η, γ)♭. Then,

[e1, e2]ω = ([X1, X2], X1(f2) − X2(f1))

+L
(0,1)
(X1,f1)

(iX2
η + f2γ,−iX2

γ) − i(X2,f2)d
(0,1)(iX1

η + f1γ,−iX1
γ)

+(dω, ω)((X1, f1), (X2, f2), ·)

and [e1, e2]ω ∈ Γ(graph(η, γ)♭) if and only if

L
(0,1)
(X1,f1)

(iX2
η + f2γ,−iX2

γ) − i(X2,f2)d
(0,1)(iX1

η + f1γ,−iX1
γ)

+(dω, ω)((X1, f1), (X2, f2), ·)

= (i[X1,X2]η + (X1(f2) − X2(f1))γ,−i(X1,X2]γ). (29)
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A simple computation shows that (29) is equivalent to η = dγ − ω.

Let us now look at some other examples of twisted Dirac-Jacobi structures.
Recall that a sub-bundle L of the vector bundle TM⊕T ∗M over M is a Dirac
structure in the sense of Courant [2] if L is maximally isotropic with respect
to the symmetric canonical bilinear form on TM ⊕ T ∗M and Γ(L) closes
under the Courant bracket, which is given, for any sections X + α, Y + β of
TM ⊕ T ∗M , by

[X + α, Y + β]C = [X, Y ] + LXβ − LY α +
1

2
d(iY α − iXβ). (30)

Example 4.7. Let L be a sub-bundle of TM ⊕ T ∗M , ω a 2-form on M and
consider the sub-bundle Lω of E1

ω(M) whose fiber at a point x ∈ M is given
by

Lω(x) = {(X, 0)x + (α − iXω, f)x | (X + α)x ∈ Lx}.

Then, Lω is a ω-Dirac-Jacobi structure if and only if L is a Dirac structure in
the sense of Courant. It is immediate to verify that Lω is maximally isotropic
with respect to symmetric canonical bilinear form on E1

ω(M) if and only if L

is maximally isotropic with respect to symmetric canonical bilinear form on
TM ⊕ T ∗M . Moreover, if (X, 0) + (α− iXω, f) and (Y, 0) + (β − iY ω, g) are
any two sections of Lω, then

[(X, 0) + (α − iXω, f), (Y, 0) + (β − iY ω, g)]ω = ([X, Y ], 0)+

+(LXβ − LY α +
1

2
d(iY α − iXβ) − i[X,Y ]ω, X.g − Y.f +

1

2
d(iY α − iXβ)).

So, the sections of Lω close under the bracket [·, ·]ω if and only if the sections
of L close under the Courant bracket on TM ⊕ T ∗M .

For the next example we need the following definition.

Definition 4.8. A twisted locally conformal presymplectic structure on a
manifold M is a pair ((Θ, ϑ), ω), where Θ and ω are two 2-forms on M and
ϑ is a closed 1-form on M such that

d(Θ + ω) + ϑ ∧ (Θ + ω) = 0.

If M is even dimensional and Θ is non-degenerate, (M, (Θ, ϑ), ω) is a twisted
locally conformal symplectic manifold (cf. Example 3.4.2).
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Example 4.9. Let Θ and ω be two 2-forms on a manifold M and ϑ be a
1-form on M . Consider the sub-bundle L((Θ,ϑ),ω) of E1

ω(M) whose fiber at a
point x ∈ M is given by

L((Θ,ϑ),ω)(x) = {(X, iXϑ)x + (iXΘ − fϑ, f)x | (X, f)x ∈ (TM × IR)x}. (31)

Then, L((Θ,ϑ),ω) is a twisted Dirac-Jacobi structure if and only if ((Θ, ϑ), ω) is a
twisted locally conformal presymplectic structure on M . Effectively, it is easy
to check that L((Θ,ϑ),ω) is a maximally isotropic sub-bundle of E1

ω(M), with
respect to the bilinear symmetric form (·, ·)+. Let (X, iXϑ) + (iXΘ − fϑ, f)
and (Y, iY ϑ) + (iY Θ − gϑ, g) be two sections of L((Θ,ϑ),ω). We compute

[(X, iXϑ) + (iXΘ − fϑ, f), (Y, iY ϑ) + (iY Θ − gϑ, g)]ω

= ([X, Y ], i[X,Y ]ϑ + dϑ(X, Y )) +

+(i[X,Y ]Θ − giXdϑ + fiY dϑ + dΘ(X, Y, ·) + dω(X, Y, ·)

+(ϑ ∧ Θ)(X, Y, ·) + (ϑ ∧ ω)(X, Y, ·)

−{X.g − Y.f − (iXϑ)g + (iY ϑ)f + Θ(X, Y ) + ω(X, Y )}ϑ,

X.g − Y.f − (iXϑ)g + (iY ϑ)f + Θ(X, Y ) + ω(X, Y ));

so, the space Γ(L((Θ,ϑ),ω)) is closed under the bracket [·, ·]ω if and only if
dϑ = 0 and d(Θ + ω) + ϑ ∧ (Θ + ω) = 0.

Example 4.10. Let Λ be a bivector filed on M , Z a vector field on M and ω

a 2-form on M . We denote by L(Λ,Z,ω) the sub-bundle of E1
ω(M) whose fiber

at a point x ∈ M is given by

L(Λ,Z,ω)(x) = {(Λ#(α) − fZ, f)x + (α, iZα)x | (α, f)x ∈ (T ∗M × IR)x}.

Then, L(Λ,Z,ω) is a twisted Dirac-Jacobi structure if and only if (Λ, Z, ω)
defines an homogeneous twisted exact Poisson structure on M (cf. Defini-
tion 3.6). An easy computation shows that L(Λ,Z,ω) is a maximally isotropic
sub-bundle of E1(M), with respect to symmetric bilinear form (·, ·)+. Let
(Λ#(α)− fZ, f) + (α, iZα) and (Λ#(β)− gZ, g) + (β, iZβ) be two sections of
L(Λ,Z,ω). Then, if (Λ, Z, ω) is a twisted exact homogeneous Poisson structure,
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we compute

[(Λ#(α) − fZ, f) + (α, iZα), (Λ#(β) − gZ, g) + (β, iZβ)]ω

=
(
Λ#

(
LΛ#(α)β − LΛ#(β)α − d(Λ(α, β)) + g(LZα − α) − f(LZβ − β)

+ dω(Λ#(α), Λ#(β), ·)
)
−

(
(Λ#(α)).g − (Λ#(β)).f + g(Z.f) − f(Z.g)

)
Z ,

(Λ#(α)).g − (Λ#(β)).f + g(Z.f) − f(Z.g)
)

+

+
(
LΛ#(α)β − LΛ#(β)α − d(Λ(α, β)) + g(LZα − α) − f(LZβ − β)

+dω(Λ#(α), Λ#(β), ·)

−dω(Λ#(α), gZ, ·) + dω(Λ#(β), fZ, ·) − ω(gΛ#(α), ·) + ω(fΛ#(β), ·)
︸ ︷︷ ︸

=0

,

iZ
(
LΛ#(α)β − LΛ#(β)α − d(Λ(α, β)) + g(LZα − α) − f(LZβ − β)

+dω(Λ#(α), Λ#(β), ·)
))

and we conclude that the space of sections of L(Λ,Z,ω) is closed under the
bracket [·, ·]ω. Thus, L(Λ,Z,ω) is a ω-Dirac-Jacobi structure. A similar compu-
tation shows that, conversely, if L(Λ,Z,ω) is a ω-Dirac-Jacobi structure, then
the triple (Λ, Z, ω) defines an homogeneous twisted exact Poisson structure
on M .

Let ϕ be a closed 3-form on M and L a sub-bundle of TM ⊕ T ∗M . We
recall that L is called a ϕ-Dirac structure (in the sense of Courant) [24] if it
is maximally isotropic with respect to the canonical bilinear symmetric form
on TM ⊕ T ∗M , and its space of sections is closed under the bracket [·, ·]Cω

which is given, for any sections X + α and Y + β of TM ⊕ T ∗M , by

[X + α, Y + β]Cω
= [X + α, Y + β]C + ϕ(X, Y, ·),

where [·, ·]C is the Courant bracket given by (30). In [21], we proved that
there exists a correspondence between Dirac-Jacobi structures L ⊂ E1(M)
and Dirac structures L̃ ⊂ T (M × IR) ⊕ T ∗(M × IR) in the sense of Courant
(see also [6]).

For twisted Dirac-Jacobi structures we can establish the following.

Proposition 4.11. Let L be a sub-bundle of E1
ω(M). Then,

(1) the sub-bundle L̃ω ⊂ T (M × IR) ⊕ T ∗(M × IR) given by

L̃ω = {(X + f
∂

∂t
) + et(α + iXω + gdt) | (X, f) + (α, g) ∈ L}
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is a Dirac structure (in the sense of Courant) if and only if L is an
ω-Dirac-Jacobi structure;

(2) the sub-bundle L̃ ⊂ T (M × IR) ⊕ T ∗(M × IR) given by

L̃ = {(X + f
∂

∂t
) + et(α + gdt) | (X, f) + (α, g) ∈ L}

is a d(etω)-Dirac structure (in the sense of Courant)if and only if L

is an ω-Dirac-Jacobi structure.

Proof : A simple computation proves that each one of the sub-bundles L̃ω

and L̃ of T (M × IR)⊕T ∗(M × IR) is maximally isotropic with respect to the
canonical symmetric bilinear form in T (M × IR)⊕ T ∗(M × IR) if and only if
L ⊂ E1

ω(M) is maximally isotropic with respect to the canonical symmetric
bilinear form in E1

ω(M). To complete the proof of the first assertion, we take

two sections (Xi +fi
∂

∂t
)+et(αi + iXi

ω+gidt), i = 1, 2, of L̃ω. Then, denoting

by [·, ·]C the Courant bracket on Γ(T (M × IR) ⊕ T ∗(M × IR)), we compute

[(X1 + f1
∂

∂t
) + et(α1 + iX1

ω + g1dt), (X2 + f2
∂

∂t
) + et(α2 + iX2

ω + g2dt)]C

=

(

[X1, X2] + (X1.f2 − X2.f1)
∂

∂t

)

+ et (LX1
α2 − LX2

α1

+
1

2
d(iX2

α1 − iX1
α2) + f1α2 − f2α1 +

1

2
(g2df1 − g1df2 − f1dg2 + f2dg1)

+dω(X1, X2, ·) + ω(f1X2 − f2X1, ·) + i[X1,X2]ω
)

+et

(

X1.g2 − X2.g1 +
1

2
(iX2

α1 − iX1
α2 − f2g1 + f1g2) + ω(X1, X2)

)

dt

and, since

([X1, X2], X1.f2 − X2.f1)

+

(

LX1
α2 − LX2

α1 +
1

2
d(iX2

α1 − iX1
α2) + f1α2 − f2α1

+
1

2
(g2df1 − g1df2 − f1dg2 + f2dg1) + dω(X1, X2, ·) + ω(f1X2 − f2X1, ·),

X1.g2 − X2.g1 +
1

2
(iX2

α1 − iX1
α2 − f2g1 + f1g2) + ω(X1, X2)

)

= [(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]ω,
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we conclude that the bracket [·, ·]C closes in Γ(L̃ω) if and only if the bracket
[·, ·]ω closes in Γ(L). The proof of the second assertion is very similar and we
omit it.

5. Gauge transformations
As in [24], in the case of (twisted) Dirac structures for Courant algebroids,

we may define gauge transformations for Dirac-Jacobi sub-bundles. Given a
section (η, γ) of

∧2(T ∗M × IR), let us consider the vector bundle map

τ(η,γ) : E1(M) → E1(M)

that induces on the spaces of sections a map, that we also denote by τ(η,γ),
which is defined, for any (X, f) + (α, g) ∈ Γ(E1(M)), by

τ(η,γ)((X, f) + (α, g)) = (X, f) + (α, g) + (η, γ)♭(X, f).

τ(η,γ) is called a gauge transformation associated with (η, γ). Let us also
consider the Courant-Jacobi algebroids (E1(M)(dω,ω), (0, 1) + (0, 0)) and
(E1(M)(dω,ω)−d(0,1)(η,γ), (0, 1) + (0, 0)). Given a (dω, ω)-Dirac-Jacobi structure

L, its image by τ(η,γ) is the vector sub-bundle of E1(M),

τ(η,γ)(L) = {(X, f) + (α, g) + (η, γ)♭(X, f) | (X, f) + (α, g) ∈ L}.

Proposition 5.1. Let L be a (dω, ω)-Dirac-Jacobi structure. Then, for any
(η, γ) ∈ Γ(

∧2(T ∗M × IR)), τ(η,γ)(L) is a ((dω, ω) − d(0,1)(η, γ))-Dirac-Jacobi
structure. Moreover,

τ(η,γ)|L : (L, [·, ·](dω,ω)|L, ρ|L) → (τ(η,γ)(L), [·, ·](dω,ω)−d(0,1)(η,γ)|τ(η,γ)(L), ρ|τ(η,γ)(L))

is an isomorphism of Lie algebroids over the identity, with ρ = π + 0.

Proof : Let e1 = (X1, f1) + (α1, g1) and e2 = (X2, f2) + (α2, g2) be any two
sections of L. Then,

(τ(η,γ)(e1), τ(η,γ)(e2))+ = (e1, e2)+
︸ ︷︷ ︸

=0

+
1

2
(〈(X1, f1), (η, γ)♭(X2, f2)〉

+〈(X2, f2), (η, γ)♭(X1, f1)〉) = 0,
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and τ(η,γ)(L) is a maximally isotropic sub-bundle of E1(M). On the other
hand,

[τ(η,γ)(e1), τ(η,γ)(e2)](dω,ω)−d(0,1)(η,γ) = [[e1, e2]]

+(d(ω − η), ω − η + dγ)((X1, f1), (X2, f2), ·)

+L
(0,1)
(X1,f1)

(iX2
η + f2γ,−iX2

γ) − L
(0,1)
(X2,f2)

(iX1
η + f1γ,−iX1

γ)

+d(0,1)(iX2
(iX1

η) + f1(iX2
γ) − f2(iX1

γ))

= [[e1, e2]] + ((dω, ω) − (dη, η − dγ))((X1, f1), (X2, f2), ·)

+(i[X1,X2]η + iX2
(iX1

dη) + (X1.f2)γ + f2(LX1
γ) + f1(iX2

η)

−f2(iX1
η) − (X2.f1)γ − f1(iX2

dγ) − f2d(iX1
γ),

η(X1, X2) − iX1
(iX2

γ) + iX2
(iX1

γ))

= [[e1, e2]] + (dω, ω)((X1, f1), (X2, f2), ·) + i[(X1,f1),(X2,f2)](0,1)(η, γ)

= τ(η,γ)([e1, e2](dω,ω)), (32)

which means that Γ(τ(η,γ)(L)) closes under the bracket [·, ·](dω,ω)−d(0,1)(η,γ) and

we conclude that τ(η,γ)(L) is a ((dω, ω) − d(0,1)(η, γ))-Dirac-Jacobi structure.
Moreover, with ρ = π + 0, we have

ρ(τ(η,γ)((X, f) + (α, g))) = ρ((X, f) + (α, g)), (33)

for any section (X, f) + (α, g) of L. From (32) and (33), we deduce that
τ(η,γ)|L is an isomorphism of Lie algebroids over the identity.

The twisted Dirac-Jacobi structures L and τ(η,γ)(L) are said to be gauge-
equivalent.

Corollary 5.2. Let L be a (dω, ω)-Dirac-Jacobi structure and (η, γ) ∈
Γ(

∧2(T ∗M × IR)).

i) If d(0,1)(η, γ) = (0, 0), then τ(η,γ)(L) is also a (dω, ω)-Dirac-Jacobi
structure.

ii) If d(0,1)(η, γ) = (dω, ω), then τ(η,γ)(L) is a Dirac-Jacobi structure.

Let us denote by Dirω the set of all ω-Dirac-Jacobi structures and consider
the additive group

F = {(η, γ) ∈ Γ(
2∧

(T ∗M × IR)) | d(0,1)(η, γ) = 0}.
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Corollary 5.2 i) means that F acts on Dirω with the action,

F × Dirω → Dirω, ((η, γ), L) 7→ τ(η,γ)(L),

and two elements of Dirω are gauge equivalent if they lie in the same orbit
of the action.

6. The Jacobi algebroid associated to a twisted Jacobi
manifold

In this section we will show that we can associate a Jacobi algebroid to
each twisted Jacobi manifold.

Proposition 6.1. Let (M, (Λ, E), ω) be a twisted Jacobi manifold. Then,
(T ∗M × IR, {·, ·}ω, π ◦ (Λ, E)#) is a Lie algebroid over M , where {·, ·}ω is the
bracket on Γ(T ∗M × IR) given, for all (α, f), (β, g) ∈ Γ(T ∗M × IR), by

{(α, f), (β, g)}ω = {(α, f), (β, g)} + (dω, ω)((Λ, E)#(α, f), (Λ, E)#(β, g), ·),
(34)

{·, ·} being the bracket (5).

Proof : Let (M, (Λ, E), ω) be a twisted Jacobi manifold. From Corollary 4.5,
we know that graph(Λ, E)# is a twisted Dirac-Jacobi sub-bundle of E1

ω(M),
hence it is a Lie algebroid over M with the following bracket on the space of
its sections,

[(Λ, E)#(α, f) + (α, f), (Λ, E)#(β, g) + (β, g)](dω,ω)

= [(Λ, E)#(α, f), (Λ, E)#(β, g)]

+{(α, f), (β, g)} + (dω, ω)((Λ, E)#(α, f), (Λ, E)#(β, g), ·). (35)

Since the bracket (35) splits in the sum Γ(TM × IR) ⊕ Γ(T ∗M × IR), then
its projection {·, ·}ω over Γ(T ∗M × IR) is a Lie bracket. Moreover, for any
h ∈ C∞(M, IR),

{(α, f), h(β, g)}ω = h{(α, f), (β, g)}ω + (((π ◦ (Λ, E)#)(α, f)) · h)(β, g).

So, ({·, ·}ω, π ◦ (Λ, E)#) endows T ∗M × IR with a Lie algebroid structure.

Corollary 6.2. Let (M, (Λ, E), ω) be a twisted Jacobi manifold. Then, for
any f, g ∈ C∞(M, IR),

{d(0,1)f, d(0,1)g}ω = d(0,1){f, g} + (dω, ω)((Λ, E)#(d(0,1)f), (Λ, E)#(d(0,1)g), ·).
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Proof : It is an immediate consequence of Proposition 6.1, taking into ac-
count that, for any f, g ∈ C∞(M, IR), d(0,1){f, g} = {d(0,1)f, d(0,1)g}, with
the bracket on the left hand-side given by (22) and the bracket on the right
hand-side given by (5).

The differential operator dω
∗ defined on Γ(

∧
(TM×IR)) by the Lie algebroid

structure ({·, ·}ω, π ◦ (Λ, E)#) on T ∗M × IR is given,

• for any f ∈ C∞(M, IR), by

dω
∗ f = d∗f = −(Λ, E)#(df, 0); (36)

• for any (X, f) ∈ Γ(TM × IR), by

dω
∗ (X, f) = d∗(X, f) + ((Λ, E)# ⊗ 1)(dω, ω)(X, f), (37)

where d∗ denotes the operator given by (6) and (Λ, E)#⊗1 is defined adapting
(15) in the obvious way.

Proposition 6.3. Let (M, (Λ, E), ω) be a twisted Jacobi manifold. The
section (−E, 0) of TM × IR is a 1-cocycle for the Lie algebroid (T ∗M ×
IR, {·, ·}ω, π ◦ (Λ, E)#) over M .

Proof : It suffices to prove that dω
∗ (−E, 0) = (0, 0). Let (α, f), (β, g) be any

sections of T ∗M × IR. Then,

dω
∗ (−E, 0)((α, f), (β, g))

= d∗(−E, 0)((α, f), (β, g)) + ((Λ, E)# ⊗ 1)(dω, ω)(−E, 0)((α, f), (β, g))

= [E, Λ](α, β) − (dω, ω)((Λ, E)#(α, f), (Λ, E)#(β, g), (−E, 0))

= ((Λ# ⊗ 1)(ϕ)(E) − ((Λ# ⊗ 1)(ω)(E)) ∧ E)(α, β)

+dω(Λ#(α), Λ#(β), E) − (iEα)ω(Λ#(β), E) + (iEβ)ω(Λ#(α), E)

= 0,

and so, dω
∗ (−E, 0) = (0, 0).

From Propositions 6.1 and 6.3, we deduce that the twisted Jacobi structure
((Λ, E), ω) on M defines a Jacobi algebroid structure on T ∗M×IR. Moreover
we have, from (8), (36) and (37), that

• for any f ∈ C∞(M, IR),

(dω
∗ )

(−E,0)f = −(Λ, E)#(df, f); (38)
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• for any (X, f) ∈ Γ(TM × IR),

(dω
∗ )

(−E,0)(X, f) = [(Λ, E), (X, f)](0,1) + ((Λ, E)# ⊗ 1)(dω, ω)(X, f). (39)

The Lie algebra homomorphism, from C∞(M, IR) to Γ(TM), expressed by
equation (4) in the case where M is a Jacobi manifold, fails in the case of
twisted Jacobi manifolds, as shown in the next proposition.

Proposition 6.4. Let (M, (Λ, E), ω) be a twisted Jacobi manifold. Then, for
any f, g ∈ C∞(M, IR),

[Xf , Xg] = X{f,g} + (π ◦ (Λ, E)#)((dω, ω)((Λ, E)#(df, f), (Λ, E)#(dg, g), ·)).
(40)

Proof : From (28) we have, with (Λ, E)#(df, f) = (Xf ,−E · f),

[(Xf ,−E · f), (Xg,−E · g)] = (X{f,g},−E · {f, g})

+(Λ, E)#((dω, ω)((Λ, E)#(df, f), (Λ, E)#(dg, g), ·)).

The projection over the first factor gives (40).

7. Quasi-Jacobi bialgebroids and their doubles
The notion of quasi-Lie bialgebroid was introduced in [22]. It is a structure

on a pair (A, A∗) of vector bundles, in duality, over a differentiable manifold
M that is defined by a Lie algebroid structure on A∗, a skew-symmetric
bracket on the space of smooth sections of A and a bundle map a : A → TM ,
satisfying some compatibility conditions. These conditions are expressed in
terms of a section of

∧3
A∗, which turns to be an obstruction to the Lie

bialgebroid structure on (A, A∗). As in the case of a Lie bialgebroid, the
double A⊕A∗ of a quasi-Lie bialgebroid (A, A∗) is endowed with a Courant
algebroid structure [22, 11].

In this section, in order to adapt the previous notion to the Jacobi frame-
work, we introduce the concept of quasi-Jacobi bialgebroid and we prove that
its double is endowed with a Courant-Jacobi algebroid structure [18, 4].

Definition 7.1. A quasi-Jacobi bialgebroid structure on a pair (A, A∗) of
dual vector bundles over a differentiable manifold M consists of:

• a Lie algebroid structure ([·, ·]∗, a∗) on A∗ with a 1-cocycle W ;
• a bundle map a : A → TM ;
• a skew-symmetric operation [·, ·] on Γ(A);
• a section φ ∈ Γ(A∗);
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• a section ϕ ∈ Γ(
∧3

A∗);

satisfying, for all X, Y, Z ∈ Γ(A) and f ∈ C∞(M, IR), the following proper-
ties:

1) [X, fY ] = f [X, Y ] + (a(X)f)Y ;
2) a([X, Y ]) = [a(X), a(Y )] − a∗ϕ(X, Y, ·);
3) [[X, Y ], Z] + c.p. = −dW

∗ (ϕ(X, Y, Z)) − ((iϕ(X,Y,·)d
W
∗ Z) + c.p.), where

dW
∗ is the modified differential operator on Γ(

∧
A) defined by the Lie

algebroid structure of A∗ and the 1-cocycle W ;
4) dφ−ϕ(W, ·, ·) = 0, where d is the quasi-differential operator on Γ(

∧
A∗)

determined by the structure ([·, ·], a) on A;

5) dφϕ = 0, where dφ is given, for any β ∈ Γ(
∧k

A∗), by dφ(β) = dβ +
φ ∧ β;

6) dW
∗ [P, Q]φ = [dW

∗ P, Q]φ + (−1)p+1[P, dW
∗ Q]φ, with P ∈ Γ(

∧p
A) and

Q ∈ Γ(
∧

A).

We will denote the quasi-Jacobi bialgebroid by ((A, φ), (A∗, W ), ϕ).

Let ((A, φ), (A∗, W ), ϕ) be a quasi-Jacobi bialgebroid over M , Lφ and LW
∗

the quasi-Lie derivative and the Lie derivative operators defined, respectively,
by dφ and dW

∗ as in (9), aφ and aW
∗ the deformed anchor maps according to

(7). On the Whitney sum bundle A⊕A∗ we consider the two nondegenerate
canonical bilinear forms (·, ·)± and, on the space Γ(A⊕A∗) ∼= Γ(A)⊕ Γ(A∗)
we define the bracket [·, ·]ϕ by setting, for any e1 = X1 + α1, e2 = X2 + α2 ∈
Γ(A ⊕ A∗),

[e1, e2]ϕ = [X1 + α1, X2 + α2]ϕ = [[X1 + α1, X2 + α2]] + ϕ(X1, X2, ·), (41)

where [[·, ·]] is the bracket (27).

Theorem 7.2. Let ((A, φ), (A∗, W ), ϕ) be a quasi-Jacobi bialgebroid over M .
The vector bundle A⊕A∗ over M endowed with ([·, ·]ϕ, (·, ·)+, ρθ,Dθ), where
θ = φ + W ∈ Γ(A∗ ⊕ A), ρθ = aφ + aW

∗ and Dθ = (dW
∗ + dφ)|C∞(M,IR), is a

Courant-Jacobi algebroid over M .

For establishing the above theorem, we need the results of the following
lemmas. Let ((A, φ), (A∗, W ), ϕ) be a quasi-Jacobi bialgebroid over M .

Lemma 7.3. For any P ∈ Γ(
∧k

A), X, Y ∈ Γ(A), α ∈ Γ(A∗) and f ∈
C∞(M, IR),

i) dW
∗ [X, Y ] = [dW

∗ X, Y ] + [X, dW
∗ Y ];
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ii) LW
∗φP + Lφ

WP = 0;
iii) 〈φ, W 〉 = 0 and a(W ) + a∗(φ) = 0;
iv) L∗φX + [W, X] = 0;

v) [dW
∗ f, X] + LW

∗dφfX = 0 and [dφf, α]W∗ + Lφ
dW
∗ f

α = 0.

Proof : The proof is based on the facts that dW
∗ (resp. dφ) is a derivation of

[·, ·]φ (resp. [·, ·]W∗ ) and it is similar to the case of a Jacobi bialgebroid (see
[5, 18]).

On the space C∞(M, IR) we define the internal composition law {·, ·} by
setting, for any f, g ∈ C∞(M, IR),

{f, g} = 〈dφf, dW
∗ g〉. (42)

Lemma 7.4. For any f, g ∈ C∞(M, IR),

[dW
∗ f, dW

∗ g] = dW
∗ ({g, f}). (43)

Proof : From the skew-symmetry of the bracket [·, ·] on Γ(A), from Lemma
7.3 v) and because (dW

∗ )2 = 0,

[dW
∗ f, dW

∗ g] = −[dW
∗ g, dW

∗ f ] = LW
∗dφg(d

W
∗ f) = dW

∗ (〈dφg, dW
∗ f〉) = dW

∗ ({g, f}).

Lemma 7.5. The bracket (64) is a first-order differential operator on the
second argument and it is skew-symmetric.

Proof : In fact, for any f, g, h ∈ C∞(M, IR),

{f, gh} = g{f, h} + h{f, g} − gh{f, 1} (44)

because

dW
∗ (gh) = g dW

∗ h + h dW
∗ g − ghW.

In order to establish the skew-symmetry of (64), we will prove that, for any
f ∈ C∞(M, IR),

{f, f} = 0. (45)

Since (A∗, [·, ·]∗, a∗, W ) is a Lie algebroid over M with a 1-cocycle, the ho-
momorphism of C∞(M, IR)-modules aW

∗ : Γ(A∗) → Γ(TM × IR) given by
(7), induces a Lie algebroid homomorphism over the identity between the
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Lie algebroids with 1-cocycles (A∗, [·, ·]∗, a∗, W ) and (TM × IR, [·, ·], π, (0, 1)).
Hence, for any f ∈ C∞(M, IR) †,

(aW
∗ )∗(0, 1) = W, (aW

∗ )∗(δf, f) = dW
∗ f and (aW

∗ )∗(δf, 0) = d∗f, (46)

where (aW
∗ )∗ : Γ(T ∗M × IR) → Γ(A) denotes the transpose of aW

∗ . On the
other hand, since the quasi-differential operator d on Γ(A∗) is defined by
a : Γ(A) → Γ(TM) and by the bracket [·, ·] on Γ(A), we can easily prove
that

(aφ)∗(δf, 0) = a∗(δf) = df and (aφ)∗(δf, f) = dφf, (47)

where (aφ)∗ : Γ(T ∗M × IR) → Γ(A∗) denotes the transpose of aφ. So,

{f, g} = 〈dφf, dW
∗ g〉

(46),(47)
= 〈(aφ)∗(δf, f), (aW

∗ )∗(δg, g)〉

= 〈(δf, f), aφ ◦ (aW
∗ )∗(δg, g)〉. (48)

When g = 1, (48) gives

{f, 1} = 〈(δf, f), aφ ◦ (aW
∗ )∗(0, 1)〉

(46)
= 〈(δf, f), aφ(W )〉 = −〈df, a∗(φ)〉, (49)

where the last equality follows from Lemma 7.3 iii). On the other hand,

{1, f} = 〈(0, 1), aφ ◦ (aW
∗ )∗(δf, f)〉 = 〈(0, 1), aφ(dW

∗ f)〉

= 〈φ, d∗f〉 = 〈φ, a∗∗(δf)〉. (50)

From (49) and (50), we get

{f, 1} = −{1, f}. (51)

Using Lemma 7.3 iii), (46) and (47), we can write

{f, f} = 〈(δf, 0), aφ ◦ (aW
∗ )∗(δf, 0)〉. (52)

From Lemma 7.4 we have,

dW
∗ ({f, f}) = [dW

∗ f, dW
∗ f ] = 0. (53)

In particular, for f 2,

dW
∗ ({f 2, f 2}) = 0 (54)

†In this section, in order to avoid confusion with the quasi-differential d of A, we will denote by
δf the usual de Rham differential of f ∈ C∞(M, IR).
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and

0 = dW
∗ ({f 2, f 2})

(52)
= dW

∗ (〈(δf 2, 0), aφ ◦ (aW
∗ )∗(δf 2, 0)〉

= 4f 2dW
∗ ({f, f}) + 4{f, f}dW

∗ f 2

(53)
= 4{f, f}dW

∗ f 2.

So, for any f ∈ C∞(M, IR),

{f, f}dW
∗ f 2 = 0. (55)

Then,

0
(55)
= 〈dφ1, {f, f}dW

∗ f 2〉 = {f, f}{1, f 2}
(44)
= 2f{f, f}{1, f} − f 2{f, f} {1, 1}

︸ ︷︷ ︸
=0

= 2f{f, f}{1, f} (56)

and

0
(55)
= 〈dφf, {f, f}dW

∗ f 2〉 = {f, f}{f, f 2}
(44),(51)

= 2f{f, f}2 + f 2{f, f}{1, f}
(56)
= 2f{f, f}2,

whence we deduce that (45) holds.

Remark 7.6. From the skew-symmetry of (42) and the fact that it is first
order differential operator on the second argument, we conclude that it is
first order differential operator on each argument.

Lemma 7.7. For any f ∈ C∞(M, IR), X ∈ Γ(A) and α ∈ Γ(A∗),

i) (a ◦ dW
∗ + a∗ ◦ dφ)f = 0;

ii) [a(X), a∗(α)] = a∗(L
φ
Xα) − a(LW

∗αX) + a(dW
∗ 〈α, X〉).

Proof : For i) we have that, for any g ∈ C∞(M, IR),

〈(aφ ◦ dW
∗ + aW

∗ ◦ dφ)f, (δg, g)〉 = 〈dW
∗ f, (aφ)∗(δg, g)〉 + 〈dφf, (aW

∗ )∗(δg, g)〉
(47),(46)

= 〈dW
∗ f, dφg〉 + 〈dφf, dW

∗ g〉
(42)
= {g, f} + {f, g} = 0,

because {·, ·} is skew-symmetric. So, (aφ ◦ dW
∗ + aW

∗ ◦ dφ)f = 0. But,

(aφ ◦ dW
∗ + aW

∗ ◦ dφ)f = (a ◦ dW
∗ + a∗ ◦ dφ)f + 〈φ, dW

∗ f〉 + 〈W, dφf〉
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and

〈φ, dW
∗ f〉 + 〈W, dφf〉

(46),(47)
= 〈aW

∗ (φ) + aφ(W ), (δf, f)〉 = 0,

where the last equality follows from Lemma 7.3 iii). Consequently, for any
f ∈ C∞(M, IR),

(a ◦ dW
∗ + a∗ ◦ dφ)f = 0.

The proof of ii) is similar to the case of a Jacobi bialgebroid (see [5, 18]).

Lemma 7.8. Let ((A, φ), (A∗, W ), ϕ) be a quasi-Jacobi bialgebroid over M .
Then, the quasi-Lie derivative operator Lφ associated to the quasi-differential
operator dφ on Γ(

∧
A∗) satisfies the following property: For any X, Y, V1, . . . ,

Vp ∈ Γ(A) and any η ∈ Γ(
∧p

A∗),

Lφ
[X,Y ]η(V1, . . . , Vp) = (Lφ

X ◦ Lφ
Y − Lφ

Y ◦ Lφ
X)η(V1, . . . , Vp)

+

p
∑

i=1

(−1)iη([[X, Y ], Vi] + c.p. , V1, . . . , V̂i, . . . , Vp)

−aW
∗ (ϕ(X, Y, ·))(η(V1, . . . , Vp)). (57)

Proof : We prove the above formula by a simple, but long, computation,
taking into account the condition 4) of Definition 7.1 of a quasi-Jacobi bial-
gebroid.

Now, we will prove Theorem 7.2.

Proof of Theorem 7.2. We have to check that the conditions i) − iv) of
Definition 4.1 hold. In order to establish condition ii), we use the results of
Lemma 7.7 and the conditions 2) and 4) of Definition 7.1 of a quasi-Jacobi
bialgebroid. We obtain that, for any two sections e1 = X1 +α1, e2 = X2 +α2

of A ⊕ A∗,
ρθ([e1, e2]ϕ) = [ρθ(e1), ρ

θ(e2)].

For condition iii) we have that, for all e, e1, e2 ∈ Γ(A ⊕ A∗), e = X + α,
e1 = X1 + α1, e2 = X2 + α2,

([e, e1]ϕ + Dθ(e, e1)+, e2)+ + (e1, [e, e2]ϕ + Dθ(e, e2)+)+

= ([[e, e1]] + Dθ(e, e1)+, e2)+ +
1

2
ϕ(X, X1, X2)

+ (e1, [[e, e2]] + Dθ(e, e2)+)+ +
1

2
ϕ(X, X2, X1)

= ([[e, e1]] + Dθ(e, e1)+, e2)+ + (e1, [[e, e2]] + Dθ(e, e2)+)+.
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But, by doing the same computations as in Proposition 4.1 of [18], we estab-
lish the equality

([[e, e1]] + Dθ(e, e1)+, e2)+ + (e1, [[e, e2]] + Dθ(e, e2)+)+ = ρθ(e)(e1, e2)+.

Hence, we conclude

ρθ(e)(e1, e2)+ = ([e, e1]ϕ + Dθ(e, e1)+, e2)+ + (e1, [e, e2]ϕ + Dθ(e, e2)+)+.

The condition iv) can be easily proved as follows. For any f, g ∈ C∞(M, IR),

(Dθf,Dθg)+ = (dW
∗ f + dφf, dW

∗ g + dφg)+ =
1

2
(〈dφg, dW

∗ f〉 + 〈dφf, dW
∗ g〉)

=
1

2
({g, f} + {f, g}) = 0,

where {·, ·} is the bracket (42) which, by Lemma 7.5, is skew-symmetric.
Finally, it remains to establish condition i) of Definition 4.1, i.e., for any
e1, e2, e3 ∈ Γ(A ⊕ A∗), ei = Xi + αi, i = 1, 2, 3,

[[e1, e2]ϕ, e3]ϕ + [[e2, e3]ϕ, e1]ϕ + [[e3, e1]ϕ, e2]ϕ = DθTϕ(e1, e2, e3), (58)

where Tϕ(e1, e2, e3) =
1

3
(([e1, e2]ϕ, e3)+ + c.p.). Since the proof involves a very

long computation, we only give a short schedule.

First, we note that, if T (e1, e2, e3) =
1

3
(([[e1, e2]], e3)+ + c.p.), then

Tϕ(e1, e2, e3) = T (e1, e2, e3) +
1

2
ϕ(X1, X2, X3). (59)

Let us set

[[e1, e2]ϕ, e3]ϕ + [[e2, e3]ϕ, e1]ϕ + [[e3, e1]ϕ, e2]ϕ = Y + β, (60)

where Y and β denote the components of [[e1, e2]ϕ, e3]ϕ + c.p. on Γ(A) and
Γ(A∗), respectively. We have

[[e1, e2]ϕ, e3]ϕ + c.p. = [[[e1, e2]] + ϕ(X1, X2, ·), e3]ϕ + c.p.

= ([[[e1, e2]], e3]ϕ + [ϕ(X1, X2, ·), e3]ϕ) + c.p.

= ([[[[e1, e2]], e3]] + ϕ( ˜[[e1, e2]], X3, ·) + [[ϕ(X1, X2, ·), e3]])

+c.p.,

where [̃[ei, ej]], i, j = 1, 2, 3, denotes the part of [[ei, ej]] that belongs to Γ(A).
Hence,

Y = ( ˜[[[[e1, e2]], e3]] + ˜[[ϕ(X1, X2, ·), e3]]) + c.p.
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Taking into account condition 3) of Definition 7.1, the fact that (A∗, [·, ·]∗, a∗)
is a Lie algebroid over M , so

LW
∗[αi,αj ]W∗

= LW
∗αi

◦ LW
∗αj

− LW
∗αj

◦ LW
∗αi

, for i, j = 1, 2, 3,

and also (59), we obtain, after a long computation,

Y = dW
∗ (Tϕ(e1, e2, e3)). (61)

Similarly, for β we have

β = ( ̂[[[[e1, e2]], e3]] + ϕ( ˜[[e1, e2]], X3, ·) + ̂[[ϕ(X1, X2, ·), e3]]) + c.p.,

where ̂[[[[ei, ej]], ek]] (resp. ̂[[ϕ(Xi, Xj, ·), ek]]), i, j, k = 1, 2, 3, denotes the com-
ponent of [[[[ei, ej]], ek]] (resp. [[ϕ(Xi, Xj, ·), ek]]) that is section of A∗. We
repeat the computations developed in Proposition 4.1 of [18] for the calcula-
tion of the corresponding β and we take into account the conditions 3) and
5) of Definition 7.1, the fact that (A∗, [·, ·]∗, a∗) is a Lie algebroid over M ,
so [[α1, α2]

W
∗ ]W∗ + c.p. = 0, the result of Lemma 7.8 and (59). After a long

calculation we get

β = dφ(Tϕ(e1, e2, e3)). (62)

From (60), (61) and (62) we conclude that (58) holds. �

Remark 7.9. When ϕ = 0, the quasi-Jacobi bialgebroid is a Jacobi bialge-
broid and we obtain Proposition 4.1 of [18].

8. The quasi-Jacobi bialgebroid of a twisted Jacobi man-
ifold

Let (M, (Λ, E), ω) be a twisted Jacobi manifold. We consider the following
skew-symmetric bracket on the space of sections of the vector bundle TM×IR
over M , given, for all (X, f), (Y, g) ∈ Γ(TM × IR), by

[(X, f), (Y, g)]′ = [(X, f), (Y, g)] − (Λ, E)#((dω, ω)((X, f), (Y, g), ·)), (63)

where [·, ·] is the bracket (11), and we define an operator d′, acting on the
space of sections of the exterior algebra

∧
(T ∗M×IR) as a graduate differential

operator, by setting,

• on f ∈ C∞(M, IR),

d′f = df = (df, 0);



32 J.M. NUNES DA COSTA AND F. PETALIDOU

• on sections (α, f) of T ∗M × IR,

d′(α, f) = d(α, f) − (dω, ω)((Λ, E)#(α, f), ·, ·).

Then, we extend d′, by linearity, to the algebra (Γ(
∧

(T ∗M × IR)),∧). The
operator d′ coincides with the one determined by the structure ([·, ·]′, π) on
TM × IR.

Now, we use the section (0, 1) ∈ Γ(T ∗M × IR) to modify the bracket [·, ·]′

on Γ(TM × IR), according to formula (10), and also the operator d′. The

new bracket will be denoted by [·, ·]′(0,1) and the resulting operator d′(0,1) is
defined as follows:

• on f ∈ C∞(M, IR),

d′(0,1)f = d(0,1)f = (df, f);

• on sections (α, f) of T ∗M × IR,

d′(0,1)(α, f) = d(0,1)(α, f) − (dω, ω)((Λ, E)#(α, f), ·, ·).

Let us extend the bracket [·, ·]′(0,1) on Γ(TM × IR) to the whole algebra
(Γ(

∧
(TM × IR)),∧), as in the case of a Jacobi algebroid. In particular, if

(X, f) ∈ Γ(TM × IR) and (C, Y ) ∈ Γ(
∧2(TM × IR)), we have

[(C, Y ), (X, f)]′(0,1) = [(C, Y ), (X, f)](0,1) −
(
((Λ, E)# ⊗ (C, Y )#

+ (C, Y )# ⊗ (Λ, E)#) ⊗ 1
)
(dω, ω)(X, f), (64)

where the second term of the right hand-side of (64) is the section of
∧2(TM×

IR) given, for any (α, g), (β, h) ∈ Γ(T ∗M × IR), by
(
((Λ, E)# ⊗ (C, Y )# + (C, Y )# ⊗ (Λ, E)#) ⊗ 1

)
(dω, ω)(X, f)((α, g), (β, h))

= (dω, ω)((Λ, E)#(α, g), (C, Y )#(β, h), (X, f))

+(dω, ω)((C, Y )#(α, g), (Λ, E)#(β, h), (X, f)).

Lemma 8.1. Let (M, (Λ, E), ω) be a twisted Jacobi manifold. Then, for any
(X, f) ∈ Γ(TM × IR), we have

(dω
∗ )

(−E,0)(X, f) = [(Λ, E), (X, f)]′(0,1) − ((Λ, E)# ⊗ 1)(dω, ω)(X, f). (65)

Proof : It is a direct consequence of (64), (10) and (39).

We remark that if ω is a 2-form on M such that (Λ, E)#(dω, ω) = (0, 0),
i.e. when the twisted Jacobi manifold is just a Jacobi manifold, we recover

the well-known relation [5], d
(−E,0)
∗ (X, f) = [(Λ, E), (X, f)](0,1).
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In the next theorem, which is the main result of this section, we show that
one can associate a quasi-Jacobi bialgebroid to each twisted Jacobi manifold.

Theorem 8.2. Let (M, (Λ, E), ω) be a twisted Jacobi manifold and (T ∗M ×
IR, {·, ·}ω, π ◦ (Λ, E)#) its associated Lie algebroid. Consider the vector bun-
dle TM × IR equipped with the bracket (63) on the space of its sections,
the operator d′ and the projection π : TM × IR → TM . Then, ((TM ×
IR, (0, 1)), (T ∗M ×IR, (−E, 0)), (dω, ω)) is a quasi-Jacobi bialgebroid over M .

Proof : We have to check that all conditions of Definition 7.1 are satisfied.
According to Proposition 6.3, the section (−E, 0) of TM × IR is a 1-cocycle
for the Lie algebroid (T ∗M × IR, {·, ·}ω, π ◦ (Λ, E)#).

Let (X, f) and (Y, g) be any two sections of TM × IR and h ∈ C∞(M, IR).
Then,

[(X, f), h(Y, g)]′ = h[(X, f), (Y, g)]′ + (π(X, f))(h)(Y, g),

which means that condition 1) of Definition 7.1 holds. We also have

π([(X, f), (Y, g)]′) = [X, Y ] − (π ◦ (Λ, E)#)((dω, ω)((X, f), (Y, g), ·)),

which is 2) of Definition 7.1. Moreover,

d′(0, 1) = −(dω, ω)((Λ, E)#(0, 1), ·, ·) = (dω, ω)((−E, 0), ·, ·)

and so 4) is also satisfied. The skew-symmetry of the morphism (Λ, E)#,
allows us to conclude that

d′(0,1)(dω, ω) = (0, 0),

which is condition 5) of Definition 7.1.
Let us now consider the sections (X1, f1), (X2, f2) and (X3, f3) of TM × IR.

Then,

[[(X1, f1), (X2, f2)]
′, (X3, f3)]

′ + c.p. = ([[(X1, f1), (X2, f2)], (X3, f3)]

−(Λ, E)#((dω, ω)([(X1, f1), (X2, f2)], (X3, f3), ·))

−[(Λ, E)#((dω, ω)((X1, f1), (X2, f2), ·)), (X3, f3)]

+(Λ, E)#((dω, ω)((Λ, E)#((dω, ω)((X1, f1), (X2, f2), ·)), (X3, f3), ·))
)

+ c.p.

(66)

First, we remark that, since [·, ·] is a Lie bracket on Γ(TM × IR),

[[(X1, f1), (X2, f2)], (X3, f3)] + c.p. = (0, 0).
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Let (α, g) be an arbitrary section of T ∗M × IR. Then,

〈(α, g),−(Λ, E)#((dω, ω)([(X1, f1), (X2, f2)], (X3, f3), ·)) + c.p.〉

= (π(X1, f1)).((dω, ω)((X2, f2), (X3, f3), (Λ, E)#(α, g))) + c.p.

−(π(Λ, E)#(α, g)).((dω, ω)((X1, f1), (X2, f2), (X3, f3)))

−(dω, ω)([(X1, f1), (Λ, E)#(α, g)], (X2, f2), (X3, f3)) − c.p.

+(0, 1) ∧ (dω, ω)((X1, f1), (X2, f2), (X3, f3), (Λ, E)#(α, g)) (67)

and

〈(α, g),−[(Λ, E)#((dω, ω)((X1, f1), (X2, f2), ·)), (X3, f3)] + c.p.〉

= −
(

i(dω,ω)((X1,f1),(X2,f2),·)(d
ω
∗ )

(−E,0)(X3, f3)
)

(α, g) − c.p.

−(π(X1, f1)).((dω, ω)((X2, f2), (X3, f3), (Λ, E)#(α, g))) − c.p.

+(dω, ω)([(X1, f1), (Λ, E)#(α, g)], (X2, f2), (X3, f3)) + c.p.

−f1(dω, ω)((X2, f2), (X3, f3), (Λ, E)#(α, g)) − c.p.

−(dω, ω)((X1, f1), (X2, f2), ((Λ, E)# ⊗ 1)(dω, ω)(X3, f3)(α, g)) − c.p.

(68)

On the other hand,

〈(α, g), (Λ, E)#((dω, ω)((Λ, E)#((dω, ω)((X1, f1), (X2, f2), ·)), (X3, f3), ·))

+c.p.〉

= (dω, ω)((X1, f1), (X2, f2), ((Λ, E)# ⊗ 1)(dω, ω)(X3, f3)(α, g)) + c.p.

(69)

If we add up the terms of (67), (68) and (69), we obtain

−(π(Λ, E)#(α, g)).((dω, ω)((X1, f1), (X2, f2), (X3, f3)))

+(0, dω)((X1, f1), (X2, f2), (X3, f3), (Λ, E)#(α, g))

−
(

i(dω,ω)((X1,f1),(X2,f2),·)(d
ω
∗ )

(−E,0)(X3, f3)
)

(α, g) − c.p.

−f1(dω, ω)((X2, f2), (X3, f3), (Λ, E)#(α, g)) − c.p.

= −(dω
∗ )

(−E,0)((dω, ω)((X1, f1), (X2, f2), (X3, f3)))((α, g))

−
(

i(dω,ω)((X1,f1),(X2,f2),·)(d
ω
∗ )

(−E,0)(X3, f3)
)

(α, g) − c.p.
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and we conclude that

[[(X1, f1), (X2, f2)]
′, (X3, f3)]

′ + c.p. =

−(dω
∗ )

(−E,0)((dω, ω)((X1, f1), (X2, f2), (X3, f3)))

−
(

i(dω,ω)((X1,f1),(X2,f2),·)(d
ω
∗ )

(−E,0)(X3, f3) + c.p.
)

,

which is condition 3) of Definition 7.1.
Finally, we must show that, for any (P, P0) ∈ Γ(

∧p(TM×IR)) and (Q, Q0) ∈
Γ(

∧
(TM × IR)),

(dω
∗ )

(−E,0)[(P, P0), (Q, Q0)]
′(0,1) =

= [(dω
∗ )

(−E,0)(P, P0), (Q, Q0)]
′(0,1) + (−1)p+1[(P, P0), (d

ω
∗ )

(−E,0)(Q, Q0)]
′(0,1).

(70)

As in the case of a Jacobi algebroid [3], it is enough to prove (70) in the cases
where: i) (P, P0) and (Q, Q0) are both functions of M ; ii) (P, P0) is a section
of TM × IR and (Q, Q0) is a function of M ; iii) (P, P0) and (Q, Q0) are both
sections of TM × IR.

We remark that, for any f ∈ C∞(M, IR) and (P, P0) ∈ Γ(
∧p(TM × IR)),

[(P, P0), f ]′(0,1) = [(P, P0), f ](0,1).

When (P, P0) = (f, 0) ≡ f and (Q, Q0) = (g, 0) ≡ g, with f, g ∈ C∞(M, IR),
equation (70) gives

[(dω
∗ )

(−E,0)f, g](0,1) − [f, (dω
∗ )

(−E,0)g](0,1) = (0, 0),

or, equivalently,

[[(Λ, E), f ](0,1), g](0,1) − [f, [(Λ, E), g](0,1)](0,1) = (0, 0). (71)

The graded Jacobi identity for the bracket [·, ·](0,1) on Γ(TM × IR), ensures
the validity of (71).
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Let us now take (P, P0) = (X, f) ∈ Γ(TM × IR) and (Q, Q0) = g ∈
C∞(M, IR). Then,

(dω
∗ )

(−E,0)[(X, f), g]′(0,1) = [(Λ, E), [(X, f), g](0,1)](0,1)

= [(X, f), [(Λ, E), g](0,1)](0,1) + [[(Λ, E), (X, f)](0,1), g](0,1)

= [(X, f), (dω
∗ )

(−E,0)g](0,1) + [(dω
∗ )

(−E,0)(X, f), g](0,1)

−[((Λ, E)# ⊗ 1)(dω, ω)(X, f), g](0,1)

= [(X, f), (dω
∗ )

(−E,0)g]′(0,1) + (Λ, E)#
(

(dω, ω)((X, f), (dω
∗ )

(−E,0)g, ·)
)

+[(dω
∗ )

(−E,0)(X, f), g]′(0,1) − [((Λ, E)# ⊗ 1)(dω, ω)(X, f), g](0,1)

= [(X, f), (dω
∗ )

(−E,0)g]′(0,1) + [(dω
∗ )

(−E,0)(X, f), g]′(0,1), (72)

which proves (70) in this case.
When (P, P0) = (X, f) and (Q, Q0) = (Y, g) are two sections of TM × IR,

equation (70) is given by

(dω
∗ )

(−E,0)[(X, f), (Y, g)]′(0,1) = [(dω
∗ )

(−E,0)(X, f), (Y, g)]′(0,1)

+[(X, f), (dω
∗ )

(−E,0)(Y, g)]′(0,1). (73)

We compute,

(dω
∗ )

(−E,0)[(X, f), (Y, g)]′(0,1) = [(Λ, E), [(X, f), (Y, g)](0,1)](0,1)

+ ((Λ, E)# ⊗ 1)(dω, ω)([(X, f), (Y, g)](0,1))

− [(Λ, E), (Λ, E)# ((dω, ω)((X, f), (Y, g), ·))](0,1)

− ((Λ, E)# ⊗ 1)(dω, ω)((Λ, E)#((dω, ω)((X, f), (Y, g), ·)))

= [(X, f), [(Λ, E), (Y, g)](0,1)](0,1) + [[(Λ, E), (X, f)](0,1), (Y, g)](0,1)

+ ((Λ, E)# ⊗ 1)(dω, ω)([(X, f), (Y, g)](0,1))

− ((Λ, E)# ⊗ 1)(dω, ω)((Λ, E)#((dω, ω)((X, f), (Y, g), ·)))

+ (Λ, E)#
(

d(0,1)((dω, ω)((X, f), (Y, g), ·))
)

+ (Λ, E)#(dω, ω) ((dω, ω)(X, f), (Y, g), ·))

(74)

where, in the last equality, we used (20), the graded Jacobi identity for the
bracket [·, ·](0,1) and also the following formula, that holds for any section
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(α, f) of T ∗M × IR:

[(Λ, E)#(α, f), (Λ, E)] = (Λ, E)#(d(0,1)(α, f)) +
1

2
[(Λ, E), (Λ, E)](0,1)((α, f)).

On the other hand,

[(dω
∗ )

(−E,0)(X, f), (Y, g)]′(0,1) + [(X, f), (dω
∗ )

(−E,0)(Y, g)]′(0,1) =

= [[(Λ, E), (X, f)](0,1), (Y, g)](0,1)

−
((

(Λ, E)# ⊗ ([(Λ, E), (X, f)](0,1))#

+ ([(Λ, E), (X, f)](0,1))# ⊗ (Λ, E)#
)

⊗ 1
)

(dω, ω)(Y, g)

+ [((Λ, E)# ⊗ 1)(dω, ω)(X, f), (Y, g)](0,1)

−
((

(Λ, E)# ⊗
(
((Λ, E)# ⊗ 1)(dω, ω)(X, f)

)#

+
(
((Λ, E)# ⊗ 1)(dω, ω)(X, f)

)#
⊗ (Λ, E)#

)

⊗ 1
)

(dω, ω)(Y, g)

+ [(X, f), [(Λ, E), (Y, g)](0,1)](0,1)

+
((

(Λ, E)# ⊗ ([(Λ, E), (Y, g)](0,1))#

+ ([(Λ, E), (Y, g)](0,1))# ⊗ (Λ, E)#
)

⊗ 1
)

(dω, ω)(X, f)

+ [(X, f), ((Λ, E)# ⊗ 1)(dω, ω)(Y, g)](0,1)

+
((

(Λ, E)# ⊗
(
((Λ, E)# ⊗ 1)(dω, ω)(Y, g)

)#

+
(
((Λ, E)# ⊗ 1)(dω, ω)(Y, g)

)#
⊗ (Λ, E)#

)

⊗ 1
)

(dω, ω)(X, f).

(75)

Comparing the terms of (74) and (75), we conclude, after some computations,
that (73) holds if and only if, for all (α, h), (β, l) ∈ Γ(T ∗M × IR),
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d(0,1) ((dω, ω)((X, f), (Y, g), ·)) ((Λ, E)#(α, h), (Λ, E)#(β, l))

−(dω, ω)([(X, f), (Y, g)](0,1), (Λ, E)#(α, h), (Λ, E)#(β, l))

+(dω, ω)((Y, g), (Λ, E)#(α, h), ([(Λ, E), (X, f)](0,1))#(β, l))

−(dω, ω)((Y, g), (Λ, E)#(β, l), ([(Λ, E), (X, f)](0,1))#(α, h))

+[(Y, g), ((Λ, E)# ⊗ 1)(dω, ω)(X, f)](0,1)((α, h), (β, l))

−(dω, ω)((X, f), (Λ, E)#(α, h), ([(Λ, E), (Y, g)](0,1))#(β, l))

+(dω, ω)((X, f), (Λ, E)#(β, l), ([(Λ, E), (Y, g)](0,1))#(α, h))

−[(X, f), ((Λ, E)# ⊗ 1)(dω, ω)(Y, g)](0,1)((α, h), (β, l)) = 0. (76)

After a long computation, we get that (76) is equivalent to
(

d(0,1)(dω, ω)
)

((X, f), (Y, g), (Λ, E)#(α, h), (Λ, E)#(β, l)) = 0,

which holds since d(0,1)(dω, ω) = 0.
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