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1. Introduction

An alternating parity sequence (a.p. sequence, for short) is a (strictly) in-
creasing sequence of integers, with a finite number of entries, such that any
two adjacent entries have opposite parities. These are well-known objects
in combinatorics under the name alternating subsets of integers. The first
known reference on them goes back to the nineteenth century; since then,
many counting results have been obtained involving sequences of this kind
and of several of its generalizations. The precise references may be found
in the papers [13, 17, 10]. Most generalizations go over, instead of the i-th
entry ‘parity’, its residue class modulo a fixed number m, or modulo an mi

depending on the entry’s position; and, very often, the counting involves the
sequences of a fixed length, and fixed lower and upper bounds. Our approach
here is of a different kind: we fix an arbitrary increasing sequence of integers,
τ = (τ1, τ2, . . . , τw), and count the a.p. subsequences of τ whose leftmost
[rightmost] entry has a prescribed parity.

It is well-known that the number of a.p. subsequences of (1, 2, . . . , k) is
F k+3 − 2, where F n is the n-th Fibonacci number, determined by the usual
recursion F n+2 = F n +F n+1, with initial conditions F 0 = 0 and F 1 = 1. Our
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research on a.p. subsequences of τ lead us to several counting formulas that
are sums of products of Fibonacci numbers (cf. Theorems 4.3, 4.4, 4.5). The
methods range from ad-hoc techniques to the use of the inclusion-exclusion
principle.

The motivation for this research was the study of the facial structure of Ωn,
the polytope of all n-by-n nonnegative doubly stochastic matrices, known as
transportation polytope, or the Birkhoff polytope. This has been extensively
considered in the literature, lying at the crossroads of several branches of
mathematics. For example, the Birkhoff polytope arises in the optimal as-
signment problem which can be seen as a special Hitchcock problem (cf. [9]).
Nonnegative doubly stochastic matrices are also connected with probability
theory since each row (column) can be identified as a discrete probability law
(cf. [14]).

We are particularly concerned with the set Tn whose elements are the
n × n tridiagonal doubly stochastic matrices, which is a face of the Birkhoff
polytope. The facial structure of Ωn has been the object of a systematic study
in the series of papers [3, 4, 5, 6], and also in [2, 8]. However, the tridiagonal
case has interesting combinatorial peculiarities that deserve further analysis.

In [8] it is proven that Tn has F n+1 vertices. In this paper, we find a closer
connection of vertex counting in Tn with Fibonacci numbers. In particular,
our results on a.p. subsequences will be applied to determine the number of
vertices of an arbitrarily given face of Tn. We also give an expression for the
number of edges of Tn.

For the general theory of polytopes, and on the numbers, fd(K), of faces
of dimension d of a polytope K, we refer the reader to [11].

2. The faces of Tn

As Tn is a face of Ωn, the faces of Tn are the faces of Ωn which are contained
in Tn. According to [3], the faces of Tn are in one-to-one correspondence with
the n×n tridiagonal matrices A, with entries 0 or 1 having total support (this
means that A is a Boolean sum of n×n, tridiagonal, permutation matrices).
In this paper, A will always denote a matrix of this kind. The face of Tn

corresponding to A is

FA := {X ∈ Tn : aij = 0 ⇒ xij = 0}.
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A famous result of G. Birkhoff asserts that the vertices of Ωn are the n×n

permutation matrices (cf. [1, 12]). So the vertices of Tn are the tridiagonal
permutation matrices; as these matrices are symmetric, all elements of Tn,
and all 0-1 matrices A to be considered in the sequel, are symmetric as well.

Taking a look at the super-diagonal entries of A (i.e., the aij with j = i+1),
we see that A is a direct sum of square blocks, A = A1 ⊕ · · · ⊕ Ap, where
each At is of one of the following types:

Type 1. At = 1, a one-by-one matrix;

Type 2. At = K, where K is the 2 × 2 matrix

[

0 1
1 0

]

;

Type 3. At is not of the previous two types, and all super diagonal entries
of At are 1’s.

If At is of type 3, then its first and last diagonal entries are 1, otherwise A

would not have total support.

Definition 2.1. An S-matrix is a symmetric tridiagonal matrix of 0-1 entries,
different from 1 and K, with all super diagonal entries = 1, and with first
and last diagonal entries = 1. The blocks At of type 3 are called the S-blocks
of A.

Let B be an S-matrix of order k. We say that bii is an inner entry of B, if
bii = 1 and 1 < i < k.

Note that FA = FA1
× · · · × FAp

, and FAt
is a singleton if At is a block of

type 1 or 2. Now, if we omit these singleton faces from the cartesian product,
and reorder the FAi

corresponding to the S-blocks At, we get a polytope that
is affinely isometric to FA (with respect to the usual inner product for square
matrices: 〈U |V 〉 = tr(UV T )). This implies that only the multi-set of S-blocks
of A matters in the study of a single face FA.

As a simple example of this we determine the dimension of FA. Recall that
an n × n matrix, with n > 1, is fully indecomposable if it cannot be brought
to the form

[

∗ O

∗ ∗

]

by a permutation of its rows and a permutation of its columns, where O is a
p × q, non-empty, zero matrix with p + q = n.
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Lemma 2.2. Any S-matrix has total support and is fully indecomposable.

Proof. For n > 1, let M be the n×n matrix defined by mij = 1 if and only
if: |i− j| = 1, or i = j ∈ {1, n} (the S-matrix with minimum number of 1’s).
Clearly, M has total support, and if we transform a 0 diagonal entry into
a 1 we also get a matrix of total support. As the Boolean sum of matrices
of total support has total support, we may conclude that any S-matrix has
total support.

The matrix M gives rise to a directed bipartite graph, with 2n vertices,
u1, . . . , un, v1, . . . , vn, and an edge from ui to vj iff mij = 1. This graph
is obviously strongly connected. So any S-matrix gives rise to a strongly
connected bipartite graph. Therefore, by [7, Theorem 4.2.7], any S-matrix is
fully indecomposable. �

According to [3, Theorem 2.5], if A is fully indecomposable, dimFA =
σA − 2n + 1, where σA is the number of 1’s in A. So, for an S-matrix B,
dimFB = 1 + w, where w is the number of inner entries of B. As dimFA is
the sum of the dimFAi

for the S-blocks of A, we get:

dimFA = sA + ιA, (1)

where sA is the number of S-blocks of A and ιA is the sum of the numbers of
inner entries in the S-blocks of A.

3. Vertices of Tn and alternating parity sequences

We shall give explicit formulas for f0(FA) (cf. [11]), the number of vertices
of the face FA. A vertex of FA is a permutation matrix which is componen-
twise 6 A, so f0(FA) is the permanent of A (cf. [3]). Clearly, per(A) is the
product of the permanents of the S-blocks of A, so we first determine the
permanent of an S-matrix.

For any increasing sequence of integers, τ = (τ1, τ2, . . . , τw), we denote by
N(τ), or Nτ , the number of nonempty a.p. subsequences of τ .

Lemma 3.1. The number of vertices of FB is Nτ +2, where τ is the (strictly)
increasing sequence of the positions of the inner entries of B (so 1 < τ1 <

· · · < τw < n, and bτiτi
= 1).
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Proof. There are exactly 2 permutations 6 B with no inner entries. So we
have to prove that M, the set of the permutation matrices 6 B with at least
one inner entry, has cardinality Nτ .

Let I(P ) be the increasing sequence of the positions of the inner entries
of P ∈ M. P is a direct sum of blocks, each of which is either 1 or K. In
between two consecutive blocks 1 of P , there are only blocks K (possibly
none); so the difference between the positions of these consecutive diagonal
entries of P is odd. Therefore, I(P ) is an a.p. sequence.

Next, given an a.p. sequence γ, 1 6 γ1 < · · · < γr 6 n, the previous
argument makes the converse clear: that there exists a unique permutation
matrix Pγ such that I(Pγ) = γ. Moreover, γ is a nonempty subsequence of
τ if and only if Pγ ∈ M. So M has cardinality Nτ . �

Examples.

(a) If B has no inner entry, Nτ = 0, and so FB has 2 vertices.

(b) If B has only one inner entry, Nτ = 1, and so FB is a triangle.

(c) Suppose B has two inner entries, at τ1 < τ2. We have two cases: (i)
τ2 − τ1 is even; the two singletons, (τ1), (τ2), are the only a.p. subsequences
of τ . So FB has four vertices. (ii) τ2 − τ1 is odd; in this case, NB = 3, so FB

has five vertices.

4. Alternating parity sequences and Fibonacci numbers

In this section we prove closed formulas for Nτ in terms of Fibonacci num-
bers, where τ = (τ1, τ2, . . . , τw) is an arbitrary increasing sequence of integers.

The variable X [Y ] may take one of three values, A,E,O, meaning “any”,
“even”, “odd”, respectively. So, the expression “X number” means “any
number”, “even number”, or “odd number”, according to the current value
of X. The symbol X denotes the opposite of X, i.e.,

E = O, O = E, A = A.

For X 6= Y , the symbol XY (τ) (or just XYτ) denotes the number of all
a.p. subsequences of τ started with an X number and ended with an Y

number, including the empty sequence; if X = Y , XY (τ) is the number of
nonempty a.p. subsequences of τ started and ended with an X number. The
curly notation XY(τ), or XYτ , denotes the set of the a.p. subsequences of
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τ started with an X number and ended with an Y number, including the
empty sequence in case X 6= Y . So XYτ is the cardinality of XYτ .

For example, EO(τ) is the set of a.p. subsequences of τ started with an
even number and ended with an odd number, and ∅ ∈ EO(τ); AAτ is the
set of all nonempty a.p. subsequences of τ , and AAτ = Nτ . Note that, for
X ∈ {O, E}:

AXτ = OXτ + EXτ , XAτ = XOτ + XEτ , AAτ = AOτ + AEτ − 2. (2)

(The ‘−2’ in the last equation comes from our conventions on the empty
sequence.) In the sequel, we denote by Lτ [Rτ ] the parity of the leftmost
[resp., rightmost] entry of τ .

Given a subsequence of τ , say κ = (κ1, . . . , κr), and an integer z, the z-
reverse of κ, denoted κz, is defined by κz

i := z +1−κr+1−i, for i = 1, . . . , r.
If z is odd [even], then z reversion preserves [resp., reverses] parity, in the
sense that κi and κz

r+1−i have the same parity [resp., opposite parity], for all
i. Clearly, z-reversion is an involution that maps the set of a.p. subsequences
of τ , onto the set of a.p. subsequences of τ z. In the sequel, we shall use the
following identities with no further comment: if z is odd, [XY(τ)]z = YX (τ z);
and, if z is even, [XY(τ)]z = Y X (τ z)

To determine XY (τ) in case τ is the sequence (1, 2, . . . , w), we use the
notation XY w := XY (1, 2, . . . , w). The sequences OOw, OEw satisfy the
following recursions and initial conditions:

OO1 = 1; OO2 = 1; OE1 = 1; OE2 = 2; (3)

OOw = OEw−1 + OOw−2, OEw =OEw−1, for odd w > 2; (4)

OEw = OOw−1 + OEw−2, OOw =OOw−1, for even w > 2. (5)

The initial conditions (3) are trivial to check. To prove the first equation
in (4), note that any γ in the set OO(1, 2 . . . , w) is of one of the following
mutually exclusive types: (i) γ ends up with w; (ii) γ ends with an odd
number 6 w− 2. Clearly, there are OEw−1 sequences of type (i); and OOw−2

sequences of type (ii). The second identity in (4) is obvious. To prove (5) we
argue in a similar manner.
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The recursion (3)-(5) determines uniquely the OOw and OEw; if we replace
OOw and OEw by the following values

OOw = Fw+1, OEw = Fw, for odd w > 1 (6)

OOw = Fw, OEw = Fw+1, for even w > 1, (7)

then (3)-(5) are satisfied for all w > 1; therefore, OOw and OEw are given by
(6)-(7). To determine EEw, EOw, EAw, we z-reverse (6)-(7) to get: EOw =
Fw, for odd w > 1; and EEw = Fw for even w > 1. Then we use the
identities EOw = EOw−1, for even w, and EEw = EEw−1 for odd w, to get
the remaining values of EEw and EOw. And we get

EEw = Fw−1, EOw = Fw, for odd w > 1

EEw = Fw, EOw = Fw−1, for even w > 1.

Now the numbers XAw, AXw and AAw are obtained at once from (2):

OAw = Fw+2, EAw = Fw+1

AOw = Fw+2, AEw = Fw+1, for odd w > 1

AOw = Fw+1, AEw = Fw+2, for even w > 1,

and AAw = Fw+3 − 2. From this we get, with an easy proof:

Theorem 4.1. Let α = (α1, . . . , αr) be an a.p. sequence. Recall Lα [Rα] is
the parity of the leftmost [resp., rightmost] entry of α. For X, Y ∈ {E,O},
we have:

XYα =















Fw+1, if X = Lα and Y = Rα

Fw, if X 6= Lα and Y = Rα

Fw, if X = Lα and Y 6= Rα

Fw−1, if X 6= Lα and Y 6= Rα

(8)

XAα =

{

Fw+2, if X = Lα

Fw+1, if X 6= Lα

AY α =

{

Fw+2, if Y = Rα

Fw+1, if Y 6= Rα.
(9)

4.1. Homogeneous formulas. We now fix two values, L and R, in the set
{E,O}, and seek a formula for LRτ , the cardinality of LRτ (recall this is
the set of the a.p. subsequences of τ beginning [ending] with an L [resp., R]
number).
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We may represent τ as a concatenation

τ = α1α2 . . . αm, (10)

where αi is a nonempty a.p. subsequence of τ , such that the concatenation
αiαi+1 is not an a.p. sequence, for 1 6 i < m. So αi is made up of consecutive
entries of τ of alternating parities, and it is maximal under these conditions.
The αi’s are uniquely determined, and called a.p. components of τ . The
length of αi will be denoted by ri. The formulas given in Theorems 4.3
and 4.4 for LRτ are homogeneous in the sense that they are sums of m-fold
products of Fibonacci numbers.

Any γ ∈ LRτ will be represented, according to the a.p. decomposition (10)
of τ , as a concatenation

γ = γ1γ2 . . . γm,

where γi is a, possibly empty, subsequence of αi. To each such γ we associate
a sequence of m + 1 parities,

Pγ = (Z1, Z2 . . . , Zm+1),

satisfying the condition

γi ∈ Z iZ i+1(α
i), for 1 6 i 6 m. (11)

In case γi is nonempty, (11) implies that Zi [Z i+1 ] is the parity of the first
[resp., last] entry of γi. But if γi is empty, (11) only says that Zi = Zi+1. In
any case the “boundary conditions”

Z1 = L, and Zm+1 = R (12)

together with (11), determine Pγ in a unique way. To show this, suppose p

and q are integers such that γi is empty, for p < i < q, and γp and γq are
nonempty. Then Zi = Zi+1 for p < i < q. On the other hand, Zp+1 is the
parity, Rγp, of the rightmost entry of γp; so Z i = Rγp, for p < i 6 q. Note
that the value Zq = Rγp agrees with the fact that the last entry of γp and
the first entry of γq, are consecutive entries of γ. The case when γ1 [γm] is
empty is similarly treated, taking (12) into account. Note also that, if γ is
empty, then R is opposite to L, and Zi = L for all i.

Let us denote by S the set of all sequences of parities

S = (X1, . . . , Xm+1), (13)

and by S(L, R) the set of the elements of S satisfying X1 = L and Xm+1 = R.
The mapping defined above, γ 7→ Pγ, maps LRτ onto S(L, R). Given
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(13), how many γ ∈ LRτ satisfy Pγ = S? The answer is, obviously,
∏m

i=1 XiX i+1(α
i). This implies the following formula

LRτ =
∑

S∈S(L,R)

m
∏

i=1

XiX i+1(α
i), (14)

where the sum is extended to all sequences (13) in S(L, R). In the next
theorem, we express LRτ as a combination of Fibonacci numbers.

Definition 4.2. Let Ψ be the set of m-tuples ω = (ω1, . . . , ωm), with entries
in {−1, 0, 1}, whose nonzero entries occur, from left to right, with alternating
signs (example: (0, 0,−1, 0, 1,−1, 0, . . . , 0, 1)). Four subsets of Ψ will be distin-
guished, denoted by Ψ(u, v), with u, v in {1,−1}. By definition, Ψ(u, v) con-
tains all nonzero ω ∈ Ψ whose first nonzero entry is u, and whose last nonzero
entry is v; besides, by convention, the zero m-tuple belongs to Ψ(1,−1) and
to Ψ(−1, 1), but does not belong to either Ψ(1, 1), or Ψ(−1,−1).

Clearly Ψ(1,−1) = −Ψ(−1, 1), and Ψ(1, 1) = −Ψ(−1,−1). Note that
these four sets have cardinality 2m−1 (hint: Ψ(1, 1) [Ψ(1,−1)] is in natural
bijective correspondence with the set of subsets of {1, . . . , m} of odd [resp.,
even] cardinality).

Theorem 4.3. For any increasing integer sequence τ , with m a.p. compo-
nents of lengths r1, . . . , rm, we have

LRτ =
∑

ω∈Ψ(u,v)

m
∏

i=1

F ri+ωi
,

where u = 1 [u = −1] if L = Lτ [resp., L 6= Lτ ], and v = 1 [v = −1] if
R = Rτ [resp., R 6= Rτ ].

Proof. For any S = (X1, . . . , Xm+1), Theorem 4.1 implies

XiX̄i+1(α
i) = F ri+ǫi(S) ,

where the coefficients ǫi(S) are given according to the table (8):

ǫi(S) =















1, if Xi = Lαi and Xi+1 6= Lαi+1

0, if Xi 6= Lαi and Xi+1 6= Lαi+1

0, if Xi = Lαi and Xi+1 = Lαi+1

−1, if Xi 6= Lαi and Xi+1 = Lαi+1 .

(15)
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We may then write (14) as

LRτ =
∑

S∈S(L,R)

m
∏

i=1

F ri+ǫi(S), (16)

and we are left with the proof that Ψ(u, v) is precisely the set of m-tuples
(ǫ1(S), ǫ2(S), . . . , ǫm(S)) occurring on the right hand side of (16), and that
these m-tuples occur with no repetition. So we examine in detail the mapping

ǫ(S) = (ǫ1(S), ǫ2(S), . . . , ǫm(S)).

Assume that ǫi = 1, that is, Xi = Lαi and Xi+1 6= Lαi+1. Therefore ǫi+1 is
either 0 or −1; if it is 0, then ǫi+2 is either 0 or −1; and if ǫi+2 is also 0, then
ǫi+3 is either 0 or −1; etc. So, by induction, we see that if ǫi = 1, the next
nonzero ǫj equals −1. Similarly we obtain: if ǫi = −1, the next nonzero ǫj

equals 1. This means that ǫ maps {E,O}m+1 into Ψ.

To determine the kernel of ǫ, let ǫ(S) = 0. From (15) we have the alterna-
tive: (a) X1 6= Lα1 and X2 6= Lα2; or (b) X1 = Lα1 and X2 = Lα2. In case
(a), X2 6= Lα2 and ǫ2(S) = 0 imply X3 6= Lα3; in this way, we may prove by
induction that Xi 6= Lαi+1, for all i; therefore, S = (Lα1, . . . , Lαm+1). In case
(b) a similar argument proves S = (Lα1, . . . , Lαm+1). By now, it is obvious
that ǫ transforms (Lα1, . . . , Lαm+1) and (Lα1, . . . , Lαm+1) into 0. So these two
m-tuples form the kernel of ǫ.

Now let ω be a nonzero element of Ψ, and let {i1, . . . , it} be the support of
ω, i1 < · · · < it. Partition the integer interval ]0, m+1] into t+1 subintervals,
Jk :=]ik, ik+1], k = 0, . . . , t (with i0 := 0, it+1 := m + 1). Now suppose that
ωi1 = 1 (the case ωi1 = −1 is analogous). Define Zi = Lαi [Zi = Lαi] for
i inside the intervals Jk with odd [resp., even] k. It is easy to check that
ǫ(Z1, . . . , Zm+1) = ω. So ǫ is onto Ψ.

Note that Ψ has 2m+1 − 1 elements, one less than {E,O}m+1. As the kernel
of ǫ has two elements, ǫ has to be injective outside its kernel.

Let S = (X1, . . . , Xm+1) ∈ S(L, R). By definition (13) have X1 = L, Xm+1 =
R. The proof here splits into four cases, according to the value of the pair
(u, v). These cases are quite similar to each other, and so we chose to con-
sider only one, namely: (u, v) = (−1, 1), that is, the parity L is opposed to
the parity of the first entry of τ , and R is the parity of the last entry of τ .
So, in table (15), we enter X1 6= Lα1 and Xm+1 6= Lαm+1. We get: ǫ1(S) is
either 0 or −1; if it is 0, then ǫ2(S) is either 0 or −1; etc. So, either ǫ(S) = 0
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or the first nonzero entry of ǫ(S) is −1. Now enter Xm+1 6= Lαm+1, to obtain:
ǫm(S) is either 0 or 1; if it is 0, then ǫm−1(S) is either 0 or 1; etc. So, either
ǫ(S) = 0 or the last nonzero entry of ǫ(S) is 1. So we proved ǫ(S) belongs to
Ψ(−1, 1). And in general we have ǫ(S) ∈ Ψ(u, v), for the prescribed (u, v).

Finally, note that one of the kernel elements of ǫ, determined above, may
lie in S(L, R), but not both (for fixed L, R). Therefore, ǫ is one-to-one from
S(L, R) into Ψ(u, v); it is in fact onto Ψ(u, v), because S(L, R) and Ψ(u, v)
both have 2m−1 elements. This ends the proof. �

Theorem 4.4. With the notation of Theorem 4.3, we have

LAτ =
∑

ω∈Ψ(u,1)∪Ψ(u,−1)

m
∏

i=1

F ri+ωi
, ARτ =

∑

ω∈Ψ(1,v)∪Ψ(−1,v)

m
∏

i=1

F ri+ωi

and

Nτ =
m
∏

i=1

F ri
+
∑

ω∈Ψ

m
∏

i=1

F ri+ωi
− 2.

Proof. The formulas are direct consequences of Theorem 4.3, combined
with (2), and the fact that Ψ(u, 1) ∪ Ψ(u,−1) and Ψ(1, v) ∪ Ψ(−1, v) are
disjoint unions. For the last formula, take into account that these two sets
have union Ψ, and have exactly one element in common: the zero m-tuple.�

4.2. Inclusion-exclusion formulas. Other formulas for LRτ , LAτ , ARτ ,
Nτ may be obtained based on the well-known inclusion-exclusion theorem.
Let’s go back to (10), the a.p. decomposition of τ , where the a.p. component
αi has length ri. The number r1 + · · · + rm + m − 1 is denoted by M ; the
numbers c0, . . . , cm, given by

ck := r1 + r2 + · · · + rk + k,

are called the gaps of τ (note that c0 = 0, cm = M + 1).
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Theorem 4.5. With the notation just introduced, we have

LRτ = FM+u+v−1 +
m−1
∑

t=1

(−1)t
∑

0<k1<···<kt<m

F ck1
+u−1FM−ckt

+v

∏

0<i<t

F cki+1
−cki

LAτ = FM+u+1 +
m−1
∑

t=1

(−1)t
∑

0<k1<···<kt<m

F ck1
+u−1FM−ckt

+2

∏

0<i<t

F cki+1
−cki

ARτ = FM+v+1 +
m−1
∑

t=1

(−1)t
∑

0<k1<···<kt<m

F ck1
+1FM−ckt

+v

∏

0<i<t

F cki+1
−cki

Nτ = FM+3 +
m−1
∑

t=1

(−1)t
∑

0<k1<···<kt<m

F ck1
+1FM−ckt

+2

∏

0<i<t

F cki+1
−cki

− 2,

where u = 1 if L = Lτ , u = 0 if L 6= Lτ , v = 1 if R = Rτ , v = 0 if R 6= Rτ .

Proof. To prove the theorem we assume, without loss of generality, that
τ1 is odd. (If τ1 is even, then the proof goes the same way with appropriate
reversion of parities.) And also assume, without loss of generality, that the
entries of τ are the smallest positive integers compatible with the conditions
that τ is an increasing sequence, and the a.p. components of τ have lengths
r1, . . . , rm (from left to right), that is:

αi = (ci−1 + 1, ci−1 + 2, . . . , ci−1 + ri).

So, in this context, M is the maximum entry of τ , and the gaps of τ are the
elements of {0, 1, . . . , M + 1} that are not entries of τ .

We only prove the formula for LRτ ; the others may be obtained from this
one as in Corollary 4.4.

For 0 < k1 < · · · < kt < m, we let Wk1...kt
be the number of elements

of LR(1, 2, . . . , M) having all t gaps ck1
, . . . , ckt

among its entries; and we
denote by W (t) the sum of all Wk1...kt

for a fixed t. For example, W (0) is the
number of elements of LR(1, . . . , M); table (8) gives its value

W (0) = FM+u+v−1, (17)

where u and v are as given in the theorem’s statement.



ALTERNATING PARITY SEQUENCES 13

According to the inclusion-exclusion formula (Theorem 1.2, page 19 of [15]),
the number of elements of LR(1, 2, . . . , M) is given by

LRτ = W (0) − W (1) + W (2) − · · · + (−1)m−1W (m − 1). (18)

We now prove the following formula

Wk1...kt
= F ck1

+u−1

(

∏

1<i<t

F cki+1
−cki

)

FM−ckt
+v, (19)

for positive t. It is easy to describe how one can generate all elements of
LR(1, . . . , M) that have ck1

, . . . , ckt
among their entries. Such a sequence γ

has the following structure:

γ = Γ0(ck1
)Γ1(ck2

)Γ2 . . . (ckt
)Γt, (20)

i.e., γ is a concatenation of t + 1 sequences Γi, and the t singletons (cki
). To

specify the parities of the extreme entries of each Γi, let Xi be the parity of
ci + 1, for 0 < i < m. For notational reasons, we define k0 = 0, kt+1 = m,
X0 = L and Xm = R. Then Γi is an arbitrary a.p. sequence in the integer
interval [cki

+ 1, cki+1
− 1], beginning with an Xki

number, and ending with
an Xki+1

number. Therefore, the number of possible Γi ’s is

Xki
Xki+1

(cki
+ 1, cki

+ 2, . . . , cki+1
− 1). (21)

Let ℓi denote the length of the a.p. sequence (cki
+ 1, cki

+ 2, . . . , cki+1
− 1).

Clearly, ℓi = cki+1
− cki

− 1. To apply Theorem 4.1 we consider three cases:

Case 1: 0 < i < t. We are in the first instance of (8), therefore (21)= F ℓi+1.

Case 2: i = 0. We have to determine LXk1
(1, 2, . . . , ℓ0); table (8) yields

(21)= F ℓ0+1 if L is odd, and (21)= F ℓ0 if L is even. As we are assuming Lτ

is odd, we get (21)= F ℓ0+u with u as given in the statement of the theorem.

Case 3: i = t. We determine Xkt
R(ckt

+1, ckt
+2, . . . , ckt

+ℓt); as Xkt
is the

parity of ckt
+ 1, (8) yields (21)= F ℓt+1 if R = Rτ , and (21)= F ℓt

if R 6= Rτ .
So we get (21)= F ℓ0+v with v as in the statement of the theorem.

As the Γi ’s may vary independently of each other, the number of all a.p.
sequences (20) is the product of these t + 1 Fibonacci numbers, namely:

F ℓ0+u

[

∏

0<i<t

F ℓi+1

]

F ℓt+v.
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As ℓ0 = ck1
− 1 and ℓt = M − ckt

, this is precisely the right hand side of (19)
in a different notation. The first formula of the theorem results by entering
(17) and (19) in (18). �

Remark 4.6. To have the flavor of the preceding results, we exhibit the formulas for Nτ ,
for small values of m. For m = 1, we have

Nτ =F r1
+ F r1

+ F r1+1 + F r1−1 − 2 (22)

=F r1+3 − 2. (23)

Formula (22) is what we get from Theorem 4.4, and (23) is from Theorem 4.5. For m = 2,
we also give the two formulas for Nτ , according to Theorems 4.4 and 4.5, respectively:

N(τ) =F r1
F r2

+ F r1
F r2

+ F r1+1F r2
+ F r1

F r2+1+

F r1−1F r2
+ F r1

F r2−1 + F r1+1F r2−1 + F r1−1F r2+1 − 2

=F r1+r2+4 − F r1+2F r2+2 − 2.

For m = 3, Theorems 4.4 and 4.5 offer the following two formulas:

N(τ) =

F r1
F r2

F r3
+ F r1

F r2
F r3+1 + F r1+1F r2−1F r3

+ F r1
F r2+1F r3−1+

F r1
F r2

F r3
+ F r1−1F r2

F r3
+ F r1+1F r2

F r3−1 + F r1
F r2−1F r3+1+

F r1+1F r2
F r3

+ F r1
F r2−1F r3

+ F r1−1F r2+1F r3
+ F r1+1F r2−1F r3+1+

F r1
F r2+1F r3

+ F r1
F r2

F r3−1 + F r1−1F r2
F r3+1 + F r1−1F r2+1F r3−1 − 2

=F r1+r2+r3+5 − F r1+2F r2+r3+3 − F r1+r2+3F r3+2 + F r1+2F r2+1F r3+2 − 2.

Later on we need the following instances of Theorem 4.5 when m = 2 and the first entry
of τ is odd (note that Rτ is, therefore, the parity of r1 + r2 + 1. So v = 0 [v = 1] if R has
[resp., has not] the same parity as r1 + r2):

AO(α1α2) =

{

F r1+r2+2 − F r1+2F r2
, if r1 + r2 is odd

F r1+r2+3 − F r1+2F r2+1 , if r1 + r2 is even
(24)

AE(α1α2) =

{

F r1+r2+3 − F r1+2F r2+1 , if r1 + r2 is odd
F r1+r2+2 − F r1+2F r2

, if r1 + r2 is even
(25)

We may change slightly the indices of ‘F ’ in (24)-(25), by using the following well-known
identities on Fibonacci numbers (see, e.g., [18]):

F r1+r2+2 − F r1+2F r2
= F r1+r2+1 − F r1

F r2−2

F r1+r2+3 − F r1+2F r2+1 = F r1+r2+2 − F r1
F r2−1 .

(26)

4.3. An upper bound to Nτ . Assume, for a moment, that τ is not an a.p.
sequence. Then it may be represented as

τ = α1α2γ, (27)

We are assuming that τ is not an a.p. sequence; α1 and α2 are the first two a.p.
components of τ [cf. (10)], and γ is the (eventually empty) concatenation of
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all other a.p. components. Let τ ∗ be the sequence obtained from τ by adding
1 to all entries of α1, i.e., τ ∗ = α∗α2γ, where α∗ := (τ1 + 1, . . . , τr1

+ 1).
Note that α∗α2 is an a.p. sequence of length r1 + r2, and τ ∗ has one less a.p.
component than τ .

Lemma 4.7. Assume the first entry of τ is odd. Then

Nτ∗ − Nτ =

{

F r1
F r2−2EAγ + F r1

F r2−1OAγ, if r1 + r2 is odd
F r1

F r2−1EAγ + F r1
F r2−2OAγ, if r1 + r2 is even.

(28)

Proof. We obviously have Nτ = AO(α1α2)EAγ + AE(α1α2)OAγ − 2, and
Nτ∗ = AO(α∗α2)EAγ + AE(α∗α2)OAγ − 2 (note that, when γ is empty,
EAγ = OAγ = 1, and these expressions are samples of (2)). Therefore, the
difference Nτ∗ − Nτ is given by

[AO(α∗α2) − AO(α1α2)]EAγ + [AE(α∗α2) − AE(α1α2)]OAγ. (29)

As the right-most entry of α∗α2 has the parity of r1 + r2 + 1, (9) yields:

AO(α∗α2) =

{

F r1+r2+1, if r1 + r2 is odd
F r1+r2+2, if r1 + r2 is even

AE(α∗α2) =

{

F r1+r2+2, if r1 + r2 is odd
F r1+r2+1, if r1 + r2 is even

The lemma follows by entering, in (29), the values just obtained for AO(α∗α2)
and AE(α∗α2), and the values of AO(α1α2) and AE(α1α2) given in (24)-(25)
and modified according to (26). �

Theorem 4.8. Let w be the length of τ . Then Nτ 6 Fw+3 − 2, with equality
if and only if τ is an a.p. sequence.

Proof. If τ is not an a.p. sequence, the right hand side of (28) is positive,
so Nτ < Nτ∗. We may apply the star operation, τ 7→ τ ∗, repeatedly, and
obtain τ ∗, τ ∗∗, τ ∗∗∗, . . . until we get (after m − 1 iterations) an a.p. sequence
of length w. This proves the theorem. �

5. Back to the tridiagonal Birkhoff polytope

To apply the preceding results to a face FA of Tn, we let B1, . . . , Bq be the
S-blocks of A, and assume Bk has wk inner entries. We denote by τ (k) the
sequence of the positions of the inner entries of Bk (so τ (k) is an increasing
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integer sequence of length wk). The following statement goes with no proof,
because it follows easily from Lemma 3.1, and Theorems 4.4, 4.5 and 4.8.

Theorem 5.1. The number of vertices of FA is

f0(FA) = [N(τ (1)) + 2][N(τ (2)) + 2] · · · [N(τ (w)) + 2],

where the N(τ (k)) are given by Fibonacci formulas as those of Theorems 4.4
and 4.5. Moreover

f0(FA) 6 Fw1+3Fw2+3 · · ·Fwp+3,

with equality if and only if all τ (k) are a.p. sequences. �

It is easy to determine the number of edges of Tn, denoted f1(Tn). An
edge is a face FA of dimension 1. So, from the dimensional formula of [3,
Corollary 2.6], or its specialized form (1), we get

Proposition 5.2. FA is an edge of Tn if and only if A has only one S-block,
and no inner entry.

It is easy to check that this agrees with the characterization of the pairs of
vertices that form an edge of Tn given in [8, Theorem 2(iii)]. The matrices
A as in Corollary 5.2 are those of the form U ⊕Mk ⊕ V , where U and V are
tridiagonal permutation matrices of orders i and j, respectively, Mk is the
S-matrix of order k with no inner entry, and i + j + k = n. Here, k runs
over {2, 3, . . . , n}, and i, j > 0. For each such i, j, k, there exist F i+1 possible
matrices U , and F j+1 possible matrices V (cf. [8]). Therefore,

f1(Tn) =
∑

06i+j6n−2

F i+1 F j+1.

This may be simplified, or given many different forms, by means of well-
known identities involving summations of order two products of Fibonacci
numbers (see [18]). Finally, we briefly consider the determination of f2(Tn),
the number of polygons, i.e., 2-dimensional faces FA, of the tridiagonal
Birkhoff polytope. By (1), dimFA = 2 splits into two cases: (′) A has
only one S-block, which has 1 inner entry; (′′) A has two S-blocks, and no
inner entries. Accordingly, f2(Tn) = f ′

2 + f ′′
2 , each term corresponding to the
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respective case. Clearly:

f ′
2 =

∑

06i+j6n−3

(n − i − j − 1)F i+1 F j+1

f ′′
2 =

∑

06i+j+k6n−4

(n − i − j − k + 1)F i+1 F j+1 F k+1 .

Note that in case (′′), per A = 4, and so FA is a quadrilateral (as a matter
of fact, it is a square for the standard inner product. Hint: it is enough to
consider the 4-by-4 case). In case (′), FA is a triangle.
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