Pré-Publicactes do Departamento de Matematica
Universidade de Coimbra
Preprint Number 06-31

REGULARITY OF ENTROPY SOLUTIONS OF QUASILINEAR
ELLIPTIC PROBLEMS RELATED WITH HARDY-SOBOLEV
INEQUALITIES

BOUMEDIENE ABDELLAOUI, EDUARDO COLORADO AND MANEL SANCHON

ABSTRACT. This article is concerned with the regularity of the enyreplution of
—div (|z|7?|Vu|P~2Vu) = f(z) inQ,
u = 0 onodQ,

where () is a smooth bounded domain of RY such that0 € Q,1 < p < N, and
v < (N —p)/p. Assumingf € LI(S, |z|*(9~Vdz) for someg > 1 andN+yp/(N — p) <

a < (v + 1)p, we obtain estimates for the entropy solutierand its weak gradient in
Lebesgue spaces with weights. Moreover, we introduce sopleie examples showing
the optimality of our results and a relation between our j[@wband a Hardy-Sobolev type
inequality.

AMS SUBJECT CLASSIFICATION (2000): 35D10, 35J25; 35J70; 46E35 .

1.Introduction.
Let Q) be a smooth bounded domain®¥ such thad € Q. Let1 < p < N and
—o0 < v < (N — p)/p. We consider the quasilinear elliptic problem
—div (Jz|?|VulP~2Vu) = f(x) inQ, (1)
u = 0 onos.
Throughout the paper we assume that belongs to the Banach space
(EL(Q), || - |aq), fOr someg anda satisfying

Nvp
N—p

g>1 and <a<(y+1)p, (2)

where
EXQ) = {f : |z|*f € LYQ, |z|dz)} = LI, 2@V )
and
1 @) = 1f | og@fafeta-nan):
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2 B. ABDELLAOUI, E. COLORADO AND M. SANCHON

Problem (1) and assumption (2) are related with the follgwardy-Sobolev
inequality which is an immediate consequence of some weallvknCaffarelli-
Kohn-Nirenberg inequalities (see [8]).

Lemmal.l. Letr > 1anda,y € R such thain < N andy < (N —r)/r. Let

_— (N —a)r
N = (v

r

There exists a positive constabt depending only on the parameters and inde-
pendent of) such that

1/re ;
(/Q |¢|raﬂ\az\_o‘dx> <D (/Q |V¢|r\x\_wdx> , (3)

for all ¢ € C5°(92), if and only if

(N —n)a
—

We note that fora, v = 0 the previous inequality reduces to the classical
Sobolev inequality. Forr = (v + 1)r one obtains the Hardy-Sobolev inequal-
ity (if in addition v = 0 andr = 2 one has the classical Hardy inequality). In the
last section of this paper we give some examples relatecegetimequalities and
problem (1).

a—r < gr <

The energy setting for problem (1) is the weighted Sobolewceﬂ?éﬁ(ﬁ),
which is defined as the completion@f°(€2), with respect to the norm

1/p
16l = ( [ 196 el d:z:) |

However, this variational setting requires that the rightd sidef will be in
the dual spac@j’p (Q) of Déﬁ(ﬁ). Under this requirement it is easy to obtain

the existence and uniqueness of a weak energy solutienDéﬁ(Q) using the
classical results developed in the sixties by Browder anatyvisee [15]). By a
weak energy solutioaf (1) we mean a function € D(l)ﬁ(Q) such that

/|Vu|p_2Vu-V¢ \:f::\_wdx:/f¢dx forall ¢ € C;° ().
0 0
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As a consequence of Lemma 1.1 we have &{&f)) C Dj’p'(Q) for all

(N —a)p and Nop
P—DN+(y+1-a)p N-—p
(see Lemma 2.3 below). Therefore,fife £%(Q2), with o andgq satisfying (4),
then there exists a unique weak energy solutj@Déﬁ(Q) of (1).

q=q:= <a<(y+1lp (4)

Remark 1.2. The regularity theory of finite energy solutions of elliptiquations
in divergence form, has been investigated by brilliant reathticians of XX cen-
tury. The first works by De Giorgi in 1957, [10], and Nash in 89§L8]. Later,
appeared the papers by Moser [16], [17] with different psocdome more rele-
vant results were given by Stampacchia, LadyzhenskaybBtdéna, Serrin, etc.

Closer to the regularity of the problems we study here, aeeCthregularity
results studied in [12] for the linear cage= 2, —oco < v < (N — 2)/2, and in
[9] for the nonlinear caset < p < N, —oco < v < (N — p)/p, where, among
other results, is proved that ff satisfy

/m 250Dz < oo,

for somer > N/p, thenu € L>(Q2) and moreover, € C*(2) for some) < x <
1. Observe that the previous® result is covered in Theorem 1.3 (i) below.

For f ¢ Dj’p/(Q) problem (1) does not admit any weak energy solution. How-
ever there exists a new framework for which problem (1) isaole. More pre-
cisely, defining the truncation functiah by

Ti(s) := max{—t,min{t,s}}, s€R,

we say that a measurable functianis an entropy solutionof (1) if 73(u) €
D,?(9Q), for everyt > 0, and

/ IVulP~*Vu - VTi(u — v) |z| "Pdx = / fTi(u—v) dx, (5)
0 0

for everyt > 0, and for every € Déﬁ(ﬂ) N L>(Q2). We note that a measurable
functionu such thatl;(u) € D(l)f;(Q), for everyt > 0, does not necessarily belong

to Wol’l(Q). However, it is possible to define its weak gradient (see Lar2m),
still denoted byVu.

Bénilanet al. [3] introduced this notion of solution to problem (1) for= 0
andf € L'(Q). They proved the existence and uniqueness of an entropticsolu



4 B. ABDELLAOUI, E. COLORADO AND M. SANCHON

to problem (1). Recently, Peral and one of the authors [lgreded these results
to everyy < (N — p)/p. Therefore, we may assume the existence of a unique
entropy solution to (1), sinc€?(Q2) c LY(Q) for all o andgq satisfying (2). Our
main purpose here is to study the regularity of such a salutio

The first result that we prove concerns to the regularity eféhtropy solution
In some appropriate Lebesgue spaces with weights.

Theorem 1.3. Assumef € £1(12) for somen andq satisfying(2). Let

e —a L (p_ 1)(N—Oé>q
Ql, .—/Q|x| dr and e (6)

There exists a positive constafit depending onV, «, v, andp such that ifu is
the entropy solution ofl) then the following assertions hold:
() Ifa<(y+1)pandg > (N —a)/(yp+p—«a), thenu € L>(2). Moreover,

lullse < CILAITL 17 (<),

(i) fa<(y+1pandg= (N —a)/(yp+p— «), thenu € L"(Q, |x|*dx),
forall 1 <r < +oo. Moreover,

% 1 _1
(/ |u|” \g;‘—adx> < CIQallfl[{,,) foralll<r < +ooc.
Q )

(iii) If either,a = (y+1)p,ora < (y+1)pandl < ¢ < (N—a)/(yp+p—a),
then|u|” € L(Q, |x|~2dx), for all 0 < r < r;. Moreover,

(/ " |x|_o‘dx>r <0
Q

where in this case the constanitdepending also on.

i_1 1
o "Nfll{hy, forall0<r<m,

In order to prove this theorem we take an adequate test amutithe entropy
condition (5). Then, using the Hardy-Sobolev inequality {8th » = 1, we
obtain a differential inequality for the distribution fuiran of « with weight |xz|~<.
Finally, solving this inequality in the different cases béttheorem, we prove the
result. This kind of argument were used by Talenti [19] toanibsomea priori
estimates for weak energy solutions whes- v = 0. Recently, Grenon [13] and
Alvino et al. [2] proved Theorem 1.3 far = v = 0 in a similar way.

Our next result concerns to the regularity of the weak gradié the entropy
solutionu of (1) whenl < ¢ < ¢. As we said above, if > ¢ then there exists
a weak energy solution € Déf;(Q). In this last case, higher integrability results
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are known for the gradient af whena = v = 0 (see [11] and [14]). However, to
our knowledge, the techniques used here does not applysicdise.
Theorem 1.4. Letq be defined ir{4) and
N —«
pP—DN-a)+y+1-a/p

Assumef € £1(Q)) for somex andq satisfying(2). If « is the entropy solution of
(1) then it holds that:

g =

(i) If max{1,7} < ¢ < G thenu € Dy7(Q2), where

_ =DV —a)g a2
P T N-a-(y+1-a/pa and P=at, p (")

In particular,u € L™ (Q, |z|~“dx), wherer; is defined in(6).

(i) If 1 < ¢ < max{1, g} then there exists a constant independent slich
that

/ V| 2]~ 0t de < C forall 0 <r < ro.
0

Part (i) extends the regularity results by Boccardo anddsétl[4, 5] fora =
~ = 0. We prove the general case in a similar way, but using the yH8abolev
inequality (3) instead of the classical Sobolev inequaltyino et al. [2] proved
part (ii) (and also part (i)) forvr = v = 0. The proof in the general case uses the
estimates obtained, in order to prove Theorem 1.3, for thieiblution function of
u with weight|z| .

Remark 1.5. First, we note that the last assertion in Theorem 1.4(i) israne-
diate consequence of Lemma 1.1 witk= r, and replacingy by (3, since

(N —a)ry
N — (B+1)ry
and all the assumptions in the lemma hold by (2). On the othed hfq = ¢ then
ro = pandg = ~, and for¢ = gone has, = 1 andg =~y — a/p'.

Now, we do some comments for the critical case ~p+p. By Theorem 1.3, if
f e &), forsomeg > 1, then|u|” € L1(Q, |x|~%dz) forallr < r; = (p—1)q.
In particular, ifq = +o0o we obtain|u|” € LY(Q,|z| “dz) forall 1 < ¢ < +o0.
However, in this special case it remains open to proveusaa bounded solution.

™ =
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Finally, under the assumptions of Theorem 1.4, one hasrthat r, whenever
a = yp+p, and hence, we obtajm|"|Vu|" € L1(Q, |z| *dx) forallr < (p—1)g.

The paper is organized as follows. In section 2 we give thessary tools to
prove our results. Section 3 concerns to the proof of Thedrdmin section 4 we
prove Theorem 1.4. Finally, section 5 deals with some exkmiamples which
show the optimality of our results and the relation betwemblem (1) and the
Hardy-Sobolev inequality (3).

2.Preliminaries
We start this section recalling the Caffarelli-Kohn—Nirerng inequalities (see

[8]).

LemmaZ2.l. Letp, q, r, 5, o, v, anda be real constants such thatg > 1, > 0,
0<a<1,and

1 a 1 ~ 1 j

- = -+ = -4+ —=>0

Sty sttty o
wherea = ao + (1 — a)3. There exists a positive constarf depending only on
the parameters, such that the following inequality holdsafb¢ € CgO(JRN)

l1—a
a B
H|$| ¢ L7 (R") =] ¢HL4(JRN)’
if and only if the following relations hold:

l+g:a<l+u>+(1—a)<l+ﬁ>,

< Ol|lal"IV

Lr(IR™)

r N P N qg N
0<~y—0o if a>0,
and . . .
: Q v —
—o<1 Iif 0 and —4+—=—+4+——.
v—o0 < a > T+N p+ N

As we said in the introduction, Lemma 1.1 is an immediate equence of
Lemma 2.1 and hence we omit its proof. We write Lemma 1.k fer 1 since it
will be a key point in the proof of most of our results.

Lemma 2.2. Let o,y € R such thatae < N and~y < N — 1. There exists a
positive constanD, depending only on the parameters, such that

N—(y+1)

(/ |¢|fN]—V<vil>\xradx) " <0 [ Volielar, ®)
Q Q
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for all ¢ € C3°(92), if and only if

a_1<7<u.

9)
Another consequence of Lemma 1.1 is the following inclusion
Lemma2.3. £1(Q) C Dj’p/(Q) for all

(N—a)p and VP
p—1N+(y+1—-a)p N-—p
PROOF. Since&l(Q) c £7(Q) forall 1 < r < g we may assumg € £1(Q).
Using Holder inequality, Lemma 1.1 (with = p), and noting that

~f q (N - &)p *

qujz( <a< (y+1)p.

i—-1 N—(y+1p o7
we obtain

) 1/d
/Q F6 dr| < 1l ( /Q 0|7 |x|—“da:) < 1l 6o

for all p € C5°(€2). We conclude the proof by a standard density argument.

As we said in the introduction, a measurable functiosuch that7;(u) €

Dy?(9Q), for all t > 0, does not necessarily belong ;"' (Q2), nor to L'(9).

However, it is possible to define its weak gradient as theusignctionv satis-
fying condition (10) below. The weak gradient ofis still denoted byWu. The
following result, proved in [1], introduces this notion.

Lemma 2.4. If v is a measurable function such that(u) € Déﬁ(Q), for all
t > 0, then there exists a unique measurable function©? — IR" such that

VTiu = vX{u<y fora.e z € Qandforallz >0, (10)
wherey z denotes the characteristic function of a measurabletset

Finally, taking an adequate test function in the entropydatoom (5) we obtain
the following useful inequality.

Lemma 2.5. Assume that is the entropy solution ofl) then
1

: / Vul? [o| Pdr < / f(2)] de.
{s<|u|<s+t} {lu|>s}

forall s,t > 0.
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PROOF. The result follows taking = T;(u) in the entropy condition (5

3.Estimatesin L ebesgue spaces

In order to prove Theorem 1.3, first we obtain some estimatabé distribution
function of the entropy solution to problem (1). We obtaiclsestimates using
Lemmas 2.2 and 2.5.

Lemma 3.1. Let« be any real number such that

Noyp
N—p

Assumey < (N —p)/pand f € £4(Q2) for someg > 1. Consideru, then entropy
solution of (1), letr; be defined ir{6), and

Vi(t) = /{ s (12)

<a<(y+1)p. (11)

There exists a positive constaritdepending only oWV, «, v, andp such that the
following assertions hold:

) fa<(y+1)pandg > (N —a)/(yp+ p — a) thenV,(¢t) = 0 for a.e.

t2 6= —n Ol (13)

(i) fa< (y+1)pandg = (N —a)/(yp+ p — «) then

t
Vo(t) <19 exp (1> fora.e.t > 0.
e Fil

(iii) If either,a = (y+1)p,ora < (v+1)pandl < g < (N—a)/(yp+p—a),
then

t\ "
Va(t) < (A - E) fora.e.t > 0,

where

A:=19[" and B:=rC"|fllr -
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PROOF. LetFE;,:={s <|u|] <s+t}fors,t> 0, and

|Es,t|a = / |$|_ad:€.
{s<|u|<s+t}

From Lemma 2.5 and élder inequality, we obtain

/ Vul? o] e < |y Va(s)V? foralls,t>0.  (14)

Es,t

On the other hand, using Jensen inequality, we have

p
1 o a
_ V|| 075+ do | < Vullz| 0" || de
|Es tlg ! E E

for all s,z > 0. From the last inequality and (14), we obtain

! ' [Butla )"
( / Vu|x|<w+a>da:> <l Vet (12) 7 a9

t

forall s, ¢ > 0.
Let,, = Ti(u — Tsu) and note thaWv,; = (Vu)xg,,. By Lemma 2.2, we

have
(/ [ sl \x\_ad$>r < C/\V¢s,t|\x\_(7‘%+a> da
L Q0

_ o/ V|2 05+ da,

forall s, ¢t > 0, where
N —« N~p
N—WT‘O‘—@—l’ N —p

T =

andC' is a constant depending only é¥, «, v, andp. Therefore, using (15), we
obtain

S " g / Es o p—l
([ (B4 )’ s (5
{lul>s} \ T t

forall s, ¢ > 0. Lettingt — 0 we conclude that

Va(s)P/" < CP)| fll (g Val(s) Y9 (=V(s))P™", forae.s >0,
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and then
1< O flI7 5 Vals) 7 (=Vi(s),  forae.s >0, (16)

where
I N-a—(wp+p—a)

o (= 1N —a)g
Recall the assumptiom < (v+1)p < N. We study the following different cases:

1-lfa<(y+1)pandg > (N —a)/(yp+p— «),i.e,r <0, then integrating
(16) in (0, t) we get

E< =G (1907 = Va() 7)),

We conclude thav,(t) = 0 if ¢ > t*, wheret* is defined in (13).

2-Ifa< (y+1)pandg = (N —a)/(yp+p— «), i.e, 1/r; = 0, then we
obtain the assertion integrating (16)(in ¢).

3.-Ifeither,a = (y+ 1)p,ora < (y+ 1)pandg < (N —«a)/(yp+ p — «),
l.e, 71 > 0, we conclude as in the previous cases.

Remark 3.2. The constant” appearing in Lemma 3.1 is the constdntin (8)
replacingy by v + a — a/p. This explains the relation between (9) and (11).

Now, we prove Theorem 1.3 as an easy consequence of Lemma 3.1.

PROOF OFTHEOREM 1.3. Part (i) follows directly from Lemma 3.1(i). Parts (ii)
and (iii) follow from Lemma 3.1(ii)-(iii) by noting
0

/ lu|" x| dx = r/ s" 1V, (s) ds.
0

4.Estimatesfor the gradient

In this section we prove Theorem 1.4 using Lemma 2.5 and tthea&gs ob-
tained in Lemma 3.1.
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PROOF OF THEOREM 1.4. Letu be the entropy solution of (1) and |&f, be
defined in (12). From Lemma 2.5 andlder inequality, we have

1 B ,
—/ Vul? |z| wdxﬁ/ [f(@)] dz < [|flliag) Vals)?,  (17)
t Jis<pul<s+t) {lul>s}

forall s,t > 0. Lettingt ~\, 0 we obtain

d

E (lul<s) ‘vu‘p ‘x‘_wpdil? < Hf”(a’q) Va(S)l/q/, forae.s > 0,

and integrating the last expressionint) we get
t /
[ IVl < W [ Valo) s (18)
{lul<t} 0

(i) Assumemax{1,q} < g < ¢. Letr; andr := r, be defined in (6) and (7),
respectively, and note that< » < p. Let

_ —7r)r’
)= M, B =y + 5’ and s := (p ) 04,74-5’
pr r
wherer;, . ; is the critical Hardy-Sobolev exponent defined in Lemma 1.1.

We note tha) < s < 1 and there exists a constaritsuch that

n

1
< 1—s .
;;_o A h) = C(14+n"%), forallneN (19)

Let M € N and definev := T),,1(u). By Holder inequality, we obtain

_ VUlp N % rs
Vol |z dx < /—l md)(/ 1+ Jo|)=
/QI vffa[" M da < ( g (1+\v\)5m T Q( [01)

17
x|_ad:z:>. (20)
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Now, using (17), (19), and &lder inequality, we estimate the first integral on the
right-hand side of (20) as follows

/ |Vv| -
(1+ \v

M +00
< fl dx
Z 1+k Z/n<|u|<n+1}‘ |

\Vol? |z| P dx
(k< |u|<k+1}

o o
/] v+ /
Z@ /{n§|u|<n+1} kzo (1 §+1 n<|u|<n+1} kz (1 + k)
M
<> [ ol dx+z / F10(1 + o] =) da
n—o Y {n<lu|<n+1} n=M+1 {n<|u|<n+1}

< onfulw/ Il da

o + (/ o] 4= ||~ O‘dx) ]

Using this inequality in (20) and noting thet — s)¢’ = r, ; = sr/(p — 1), we
obtain

/ V| |z| 7 dx
0

p 1-z
<clfl., (Q H{[ et adx) )( [+ bl o)
<1+/\v ws ||~ O‘daz) pq.

T 1_L

o5 pq’
we obtain, by Hardy-Sobolev inequality (3), that

< Cll f1l(a.q)

< ClIflG

e \'UI‘K

Finally, since

/ Vol || dz = / Yl 2| Fde < C forall M >0,
0 (Jul<M+1}

whereC' > 0 is a constant independentefind M. In particularu € D, 5 (Q).
The last assertion of part (i) follows directly from (3).
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(i) Let 7 := pq/(r1 + q) and7y := (py — a)11/p. Assumel < ¢ < ¢ and note
that—r/¢' + 1 > 0. Sincea < (y+ 1)p < N and
N — «
p—LN—a)+(y+1p—a
we are under the assumptions of Lemma 3.1(iii). Therefosgygu(18) and the
lemma, we estimate

/ t" x| %dx
{lz|=2|Vu|1>1}

—T2 T1 p/Tl
S/ " <M> |x|_ada:—l—/ t" x| Ydx
{|I|_72|VU|T1>15}0{|UF15} ¢ {lul>t}

< [ fll@apt™ =" / Vi(s)9 ds + 17V, (1)
0 n

Q<q:(

.o, B t\'"7
< 1 f gt 11_—7"'1/Q' <A+ E) + 1" Va(t)

<C.

In particular,|z|~™"|Vu|"" € LY(Q, |z|~*dx) for all 0 < r < ry, or equivalently,

/ (V| |z| 0T de < ¢ forall 0 < r < 7.
0

5.Examplesand applications

In this section we introduce some examples showing the afityrof our re-
sults and the relation in some sense between problem (1 handardy-Sobolev
inequality (3).

5.1. Examples. 1.- We start with an example that shows the optimality of our
results. Recall that, v, and N satisfy
Np

<a<(y+1)p<N. (21)

Letd be a real number such that— 0 — py > 0 and note thaf (z) = ||~ 7+ ¢
LY(B1(0)). Letu be the unique entropy solution to problem

—div (2|77 VuP2Vu) = |z|70P ) in B.(0),
u = 0 ondB(0).
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A direct computation shows that:
(1) If 4 < p, then

u(x) =

(1 jaf)
(p—=0) (N —p—0)"

Hence, the solution is bounded.
(2) If 6 = p, then

W —p<71+ D <I_1I> |

In this case, one has thate L"((2, |x|~*dz) forall 1 <r < +oc.
(3) If > p, then

p—1
(0 —p) (N —~p—0)r1
In this last case, the solutianis unbounded and

u(z) = (|7 - 1).

N —«
0—p°

By analyzing the above example we get easily that the regyulair+ obtained
in Theorems 1.3 and 1.4 is sharp.

ue L'(Q, x| %z) ifandonlyif 1<r<(p—1)

2.- Let us consider the following problem

—div (|z|?|Vul|P~2Vu) = g(z,u) inQ,
v = 0 onol

Assume that there exist positive constan#gdm such that

(22)

lg(z,t)] < clz|~*(1+t)™ " forallt >0anda.ex € Q.

In the particular casee = v = 0, it is well known that every weak energy
solutionu, € W, ?(Q) of (22) is bounded whenever < p* = Np/(N — p). In
the general case one expect to obtain an analogous resulf, » € D(l)jg(ﬂ) IS
a weak energy solution of (22) thenc L>(2) whenevem < pj, ., wherep, |
Is the critical Hardy-Sobolev exponent appearing in Lemnia However, this
problem remains open to our knowledge. In section 5.2 werelitite problems
(22) and (1) in a particular case.
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The following explicit example shows that the expongnt is optimal, in the
sense that ifn > pj, , then a solutionu € D(l)f;(Q) of (22) is not necessarily
bounded. Seg(z,t) = Az| (1 + )™ !, where

N —«a

m>14+(p—1 23
s (v+1p @3
and
Vo (GEDp—a\" T (ptp—a)(m—1) +a(m—p)
' m—p m—p '
Note thatn > p and\ > 0 since (23). An easy computation shows that
1 —
U(z) = o] " =1, where r—= O FDP=@
m-—p

is an entropy solution of (22). MoreovéY, Déﬁ(Q) if and only if m > pj, ..

Therefore, ifm > p;, . thenU € D(l)f;(ﬁ) is an unbounded weak energy solution
of (22). See [7] for more details in the case= v = 0.

5.2. Applications. We consider now the case where= 2 with go back to the
result obtained in [6]. Let be the entropy solution to problem

. 9 B U .
—div (|x| VVU) = CLW +g In Q,
u = 0 on o,
wherea < Ay, := (N — 2(y + 1))%/4. We setw(z) = |z|%u(z), where

N -2 1 ——
5:: ;fy_F )_ AN77—CL>07

then it is clear thatv solves problem
—div (|2|20*AVw) = |z|Pg inQ,
w = 0 on of).

As an immediate consequence of Theorems 1.3 and 1.4 we geg¢xiheorol-
lary.

(24)

Corollary 5.1. Assume thaltr| %¢ € £4(Q) for somen andq satisfying(2). Let
(N —a)g
N—-—a—-Q2v+8)+2—a)¢

=
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Letu be the entropy solution of24), then there exists a positive const&ntde-
pending only orf2, N, o, v and  such that the following assertions hold:

() Ifa<2(y+p+1)andg > (N —a)/(2(y+ B) + 2 — a), thenu|z|® =
w € L>(Q2). Moreover,

(i) fa<2(y+pB+1andg = (N —a)/2(y + 3) + 2 — a), thenu|z|® €
L"(Q, |z|~*dz), for all 1 <r < +o00. Moreover,

1
(/Q u' M\””“) < Ol gl (0g)-

(iii) Ifeither,a = 2(y+4+1),0ra < 2(y+p+1)andl < ¢ < (N—a)/(2(v+
B) + 2 — a), thenu"|z|?" € LY(Q, |z|~*dx), forall 0 < r < r;. Moreover,

lulzllse < Clll2l™gll(ag)-

(/ " |x|’”5_o‘dx>r < Cllgla] oy, forall0<r<r,
Q

where in this case the constafitdepends also oa.
Moreover, by Theoreml.4 one gets the corresponding integrability of
V(|2 ] u)].
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