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1.Introduction

Let Q2 ¢ RV, N > 1, be a bounded domain. The purpose of this paper is the
study of the obstacle problem associated with nonlinegstiellequations with
dataf € L'(Q) and principal part modeled on th¢:)—Laplacian with variable
exponent

Appyu = div |Vu|'®) 2.
These obstacle problems fall into the framework of the mpdablem
u = 0 on 01,
for a certain functions, related to a maximal monotone graph. For instance, in

the case of the zero obstacle problem, when 0 a.e. in€2, it can be shown that
(is a.e. given by the nonlinear discontinuity

0 if wu(x)>0,
Bz, u) = { —f(x) :f u(x) z 0, 2)

where f~ is the negative part of the decompositign= f* — f~. Problems
of the type (1) have been solved byé&is and Strauss [12] for linear elliptic
operatorsg(-) = 2) and general maximal monotone graghsAn L!—theory for
the case op—Laplacian type operators (with constant) has been proposed in
[8] by Bénilanet als, via the introduction of the notion of entropy solution. The
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interesting cases are thoselok p < N, since forp > N the variational methods

of Leray—Lions (see, for instance, [24]) easily apply, tbkison being bounded

and with gradient in.?(Q2). Recently, the obstacle problem with more general
data, namely withf only a measure, has been considered by several authors (see,
e.g, [15, 22, 23, 11]). In particular, Brzis and Ponce show in [11], still in the
casep = 2 and for a constant obstacle, thfat € L'(Q) + H~1(Q) is a necessary

and sufficient condition for the existence (and the unigashef a solution to (1).

On the other hand, for the case of a variable exponent, tiséegxie and unique-
ness of an entropy solution to (1), with= 0 and f € L!, has been recently
obtained by two of the authors in [29]. The result builds up®nand [4], as-
sumes the exponent to be Lipschitz continuous, and relies nori estimates
in Marcinkiewicz spaces with variable exponent. A primaiy &f this paper is
to extend this theory to obstacle problemsX v in €2), for admissible general
obstacles) = ¢ (x) and nonlinear operators with variable growth.

The natural framework to solve problem (1) is that of Sobalgaces with vari-
able exponent. Recent applications in elasticity [30],-Adewtonian fluid me-
chanics [31, 28, 5], or image processing [13], gave rise &vaal of the interest
in these spaces, the origins of which can be traced back tedheof Orlicz in the
1930’s. An account of recent advances, some open problelsreextensive list
of references can be found in the interesting surveys byibgest als. [17] and
Antontseet al. [6] (cf. also the work of Koacik and Rakosnk [21], where many
of the basic properties of these spaces are establishediefAriiroduction to the
subject, which is pertinent to the present paper can be foufa®]; we will refer
the reader to this paper, when appropriate, to avoid an @ssacy duplication of
arguments.

For quasilinear operators in divergence formpof)—Laplacian type

Au = —div a(z, Vu),

the classical obstacle problem can be formulated, usingltiadity pairing be-
tweenW()l’p(')(Q) andW 17 ()(Q), in terms of the variational inequality

ueky : /a(x,Vu)-V(v—u)de(f,v—u}, Yo € Ky, (3)
0

wheneverf ¢ W-17()(Q) and the convex subset

Ky = {v € W(}’p(')(Q) r v > a.e. inQ} (4)
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is nonempty. The former holds in the cagec L'(Q) andp(-) > N (since
then, by Sobolev's embeddingl, *")(Q) c L*(Q)) or if f € LO(Q), with
N/p(-) < r(-),for1 < p(-) < N. The theory of monotone operators then applies
to (3) (see [24, 20]), with

(f,v—u) :/Qf(v—u) dz.

As in the case of a constapt for f € L'(Q) and1 < p(-) < N, both sides
of inequality (3) may have no meaning, so we are led, follgn@] (cf. also
[10]), to extend the formulation of the unilateral problesnreplacingv — u by
its truncation’;(u — v), for every levelt > 0, whereT; is defined by

Ti(s) := max {—t, min{t,s}}, seR.

The resulting notion of entropy solution for the obstacleljdem is made precise
in the following definition.

Definition 1. An entropy solution of the obstacle problem {gt «/} is a measur-

able function: such that, > ¢ a.e. in2, and, for every > 0, T;(u) € Wol’p(')(Q)
and

[ e, V) Viie —wdo > [ fTie-wds, (1:5) 10
Q Q
forall o € I, N L>(2).

This entropic formulation is adequate since we are able éavghe existence
and uniqueness of a solution. In general, entropic solsttimnot belong tdC,,
since they do not have an integrable distributional gradieh < p(-) < 2—1/N,
they may not even b&' —functions. However, they belong i, () if p(-) >
2—1/N.

The framework is also adequate in order to obtain the cootinalependence of
the solution with respect to variations of the obstacl&ih?*)(2) and of the non-
homogeneous term in*(2), extending the results of [14] concerning the constant
exponent case.

For constanp, and certain assumptions ghand Ay, implying that Au €
LY(Q), it has been observed in [27] that the variational solutmi(3) actually
satisfies, a.e. if, an equation with a nonlinear discontinuity and, in patacu
that

Au=f, ae.in{u> ¢}, (6)
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where{u > ¢} = Q\ {u = ¢} is the complement of the coincidence $et=
Y} ={zr € Q : u(x) = ¢¥(x)}. Infact, in the free boundary domafn, >
Y}, equation (6) can be obtained as a consequence of the wallrkhewy—
Stampacchia inequalities

f<Au< f+ (A — ), ae.inQ. (7)

A second main result we obtain in this paper is the extenditimese assertions to
the general framework of entropy solutions of equationsiing variable expo-
nents. In particular, for the obstacle problem with an adibls obstacle) such
that( Ay — f)* € L(Q), we show, still in thel.! —framework, that in (1),

Bu) = —(AY — ) Xu=yy , ae.inQ,

where ys denotes the characteristic function of the Set In the special case
Y = 0, we obtain (2).

An important consequence of inequalities (7) is the reduactif the regularity
issue for the solutions of the obstacle problem to that ofthlations of the cor-
responding equations. In particular, we conclude that thendedness of and
(Ay — f)* are sufficient to guarantee the locablder continuity of the solu-
tion and its gradient for thg(-)—obstacle problem, in accordance with the case
of equations (see [3] and [19]) or that of functionals witmastandard growth
conditions ([1]).

We also extend, for a fixed admissible obstag)éhe L' —contraction property
of Brézis and Strauss [12] for the mgp— ;. The property was obtained by
one of the authors for quasilinear obstacle problems (s&e2[2]), with the aim
of estimating the stability of two coincidence séts = ¢} and{u, = '} with
respect to thé.! —norm of the difference; — f, of the corresponding variational
data. The extension of these results to entropy solutiontha context of data
merely in L!, places the stability theory of the coincidence sets (wégpect to
the variation of non-degenerate data) in its natural ancergeneral framework.

The paper is organized as follows. In sectiyrwe introduce the assumptions
and state the main results. In section 3, we prav@iori estimates for an en-
tropy solution of the obstacle problem. Section 4 deals whth existence and
unigueness of an entropy solution and its continuous degreredwith respect to
the data. In section 5, we extend Lewy—Stampacchia indopsaio the context of
entropy solutions and analyze their consequences, nalmelyjhtaracterization of
the obstacle problem ih! in terms of an equation with a nonlinear discontinuity,
and the stability of the coincidence sets.
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2.Main results

Leta : @ x RY — RY be a CaratBodory functionie., a(-, ¢) is measurable
on (), for everyé € RY, anda(z, -) is continuous oY, a.e.z € ), such that
the following assumptions hold:

a(w,€) - € > alef, (8)
a.e.x € Q, for every¢ € RY, wherea is a positive constant;
afw, )] < 7 (@) + g, (©)

a.e.z € (, for everyé € RY, wherej is a nonnegative function in?')(Q) and
v > 0;

(a(a:, 5) - CL(I, gl)) ) (5 - 5/) > O? (10)
a.e.x € (), for every¢é, ¢ € RV, with € #£ ¢,

These are standard assumptions when dealing with monopamnators in diver-
gence form, the novelty being the fact that the expopént appearing in (8) and
(9), does not need to be constant but may depend on the \eariabhe exponent
is assumed here to be a measurable fungijen: {2 — R such that

p() eWHe(Q) and 1<p<p<N\, (11)

where

p :=ess inf p(x) and  p:=esssupp(z).
o e e

The Lipschitz condition op(-) is essentially of a technical nature and is directly
related to the type of estimates we need to perform. On theargnthe second
assumption in (11) is quite natural if one wants to define gm@miate functional
setting. In particular, it puts us in the framework of reflexiSobolev spaces
with variable exponent and allows us to exploit their praojst like the crucial
Poincae and Sobolev inequalities. These generalized Soboleezpaces con-
sist of measurable functions: 2 — R, such that and its distributional gradient
Vv are inLPY)(Q), the space of functions with finite modular

o(®) = [ o) e
normed by
HUHp(.) = inf {)\ >0 : Qp(.)(?)/)\) < 1} :

Under assumption (11), the variable exponent Lebesguessgdae properties
similar to those of the classical Lebesgue spaces, beingxknefl and separable
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Banach spaces, and satisfying the continuous embeddingQ) — L)(Q),
for Q2 bounded ang(x) > ¢(z). These spaces are not invariant to translations
(see [21]) although a dlder type inequality holds. For Sobolev spaces with vari-

able exponent, we can defifié~17()(Q) as the dual space oF,”" (), where
Poincagé’s inequality is also valid. Besides, the Sobolev embegidin

Np(")
N —p(-)
still holds (see [18, 16]). Let us finally introduce the fellmg notation: given
two bounded measurable functions), ¢(-) : Q@ — R, we write

WP (Q) = LrOQ),  pi() =

q()<p() i essinf (p(z) —q(z)) > 0.

Concerning the right-hand side @f.5) s, and the obstacle we make the fol-
lowing assumptions:

FeLi(Q), »ewO(Q), and yteW PIQNL®Q). (12)

In particular, the last assumption guaranteeskhat L>($2) # 0.

Our first result concerns the existence and unigueness afteopg solution, in
the sense of Definition 1, to the obstacle problem; we alsainbégularity results
for the solution and its weak gradient. We recall from [29tth is still possible,
as in the case of a constan(cf. [8]), to define the weak gradient of a measurable
functionu such thatl;(u) € Wol’p(')(Q), forallt > 0. In fact, there exists a unique
measurable vector field : Q — R such that

VX{jul<ty = VI (u), a.e.inQ, forallt>0.

Moreover, ifu € W,"'(Q) thenv coincides withV«, the standard distributional
gradient ofu.

Theorem 1. Assumg8)12). There exists a unique entropy solutiarto the
obstacle problent1.5);.,. Moreover,|u|?) € L(), forall 0 < ¢(-) < qo(-),
and|Vu|?") € L'(Q), forall 0 < ¢(-) < ¢1(-), where

q(*) = —N]Ef S)pz)l) Nt = 1) (Jpv('z_l 2 (13)

In particular, if 2 —1/N < p(-) then

and ¢ (-) =

u € Wol’q(')(Q), forall 1 <gq(:) < q(:).
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Remark 1. Among other results, Boccardo and Cirmi prove in [9] an agais
of Theorem 1, for constant(-) = p > 2 — 1/N, and under the assumption that

€ WyP(Q) N L®(R2). Under our assumptions, singe ¢ W(}’p(')(Q) N L>(Q),
1 i1s bounded above but not necessarily bounded below.
Remark 2. Similar results of existence of entropy solutions fdr-data could be
obtained for more general elliptic operators with variaipewth in the form

Au = —diva(z,u, Vu) + H(z,u, Vu),
whereH has the natural growth with respect to the gradient; thesddvollow
as an extension of the recent results obtained in [2] for teons.

We now consider a sequen¢é,. v, }, and the corresponding obstacle prob-
lems(1.5)y, .. The next result states that, under adequate assumptienanit
of entropy solutions,, of (1.5)y, ., is the solution of the limit obstacle problem

(1.5) f.4-
Theorem 2.Let{f,, ¢, }, be a sequence ih'(Q) x W'P0)(Q). Assumé8)—(12)
and thaty,, ™ € Wol’p(')(Q) N L>(Q2), for all n. Letu,, be the entropy solution of
the obstacle problerfl.5);, 4, . If
fo—f INLYQ) and ¢, — ¢ InWPO(Q), (14)
then
u, — u In measure
wherewu is the unique entropy solution of the obstacle problgm) . If 2 —
1/N < p(-) then
up —uin Wr(Q), forall 1< q(-) < qi(-).

We also establish the so-called Lewy—Stampacchia indtpsadind deduce from

them a few interesting properties.

Theorem 3. Assumg8)<12) and Ay € L'(Q). Letu be the entropy solution
of the obstacle probleril.5);,. ThenAu € L'(Q) and the following Lewy—
Stampacchia inequalities hold

f<Au< f+(Ay — )T, ae.inQ. (15)

The most immediate consequences of the Lewy—Stampacdgaalities con-
cern the regularity of solutions. If, Ay € L™)(Q), with m(:) = (p*(-))’, then
the entropy solution of the obstacle problerfl.5);,, is the variational solution

u € W(}’p(')(Q) of (3), for which the following regularity assertions hold.
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Proposition 1. Assumd8)~(12). If f, Ay € L>(Q2) then the solution: of (3) is
such thatu € L°(Q) N C%¥(Q). If, in addition, 092 € C%! thenu € C%(Q).
Moreover, in the case thal = A, we further haver € C,)% ().

loc

The first part is a straightforward consequence of [19, Téxasrd.2—4.4], where
the Holder continuity of weak solutions of quasilinear elliptiguations with vari-
able growth is obtained; the second part follows from [1,dreen 2.2], that con-
cerns the llder continuity of the gradient of local minimizers of furenals with
non-standard growth.

Using the Lewy—Stampacchia inequalities and showing that= f, a.e. in
{u > v}, we prove that the entropy solution ¢f.5), satisfies an equation
involving the coincidence st = v }.

Theorem 4. Assumg8)—(12) and Ay € L'(Q2). The entropy solutiom of the
obstacle problentl.5) ,, satisfies the equation

Au — (AY — f)Xqu=yy = f, a.e.inf. (16)
We note that (15) and (16) imply, in particular,

(AY — F)Xumpy = (A — ) Xpumy) , @€, INQ.

The next result establishes the convergence of the coimcedget of a sequence
of entropy solutions to the limit coincidence set.

Theorem 5. Under the assumptions of Theor@rassume that
A, — Ay inLY(Q)  and Ay £ f, a.e.inQ.
Then
X{u,=,) — X{u=y} N L(Q), (17)
forall 1 < ¢ < +oc.
Finally, we obtain arl!'-contraction property for the obstacle problem and an

estimate for the stability of two coincidence sétsaand/, in terms of their sym-
metric difference

I =1y = (11 \ 12) U (12 \ 11)

The results were known for more regular solutiook (26, 27]) but meet their
natural and more general formulation in the context of gtrsolutions for data
precisely inL'(Q).
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Theorem 6. Assumég8)—(11), let f1, f> € L'(Q) and lety satisfy(12)and Ay €
LY(Q). Letu; anduy be the entropy solutions of the obstacle probléins), ,;
and(1.5), ., respectively. IE; := f; — Au;, i = 1,2, then

160 — &l < 1 fi = fallh- (18)
If, in addition, the non-degeneracy condition
fi— Ay < -A<0, ae.inD,i=1,2, (19)

holds in a measurable subsBtcC 2, then, forl; := {u; = ¢},
1
meas (11 + I2) N D) < [lfi = follr (20)

3.A priori estimates

The main purpose of this section is to obtaipriori estimates in Marcinkiewicz
spaces with variable exponent for an entropy solution ofdbhstacle problem
(1.5)f4. In face of the embedding results of [29], we then deavpriori es-
timates in Lebesgue spaces with variable exponent. Wel ribeatlefinition of
Macinkiewicz spaces with variable exponent introduce®Bi [

Definition 2. Let¢(-) be a measurable function such that- 0. We say that a

measurable function belongs to the Marcinkiewicz spasé!()(Q) if there exists
a positive constant/ such that

/ 1@ qr < M, forall ¢ > 0.
{ul>t}

The following result is instrumental in obtainirggpriori estimates for the ob-
stacle problem.

Lemma 1. Assumé8)~12) and lety € I, N L>°(2). If w is an entropy solution
of the variational inequality1.5) ., then

Vudr < c(of el 171+ | (170l + 5a)) da:) ,
{lul<t} Q

for all ¢ > 0, whereC' is a constant depending only an v andp(-).

Proof: Takey € K, N L*(Q2) in the variational inequality1.5) s, to obtain

/ alz, Vi) - V(u — ) di < / fTiu— @) de < |flht. D)
{lu—yp|<t} Q
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for all £ > 0. On the other hand, using assumptions (8)—(9) and Youngual-
ity, we have, for alt > 0,

/ a(x,Vu) - V(u— @) dx
{lu—pl<t}

> a / V'™ de — / ((@) + [Vul™@ )| V| da
{lu—¢|<t} {lu—¢|<t}

«

> — / Vu|P'®) dz — C / (|w|p<w> + j(x)p’@)) dr, (22)
{lu—e|<t} 0

where(, here and in the rest of the proof, is a constant dependingant and
p(+). Now, from (21) and (22), we obtain

2 t /
[ waera <o ] (19pp 4 ip©) a,
{lu—el<t} a Q

for all ¢t > 0. Replacing with ¢ + ||¢||~ In the last inequality, we get

/ Vu|') dz < / V') da
{lul<t} {lu—epl<t+lollsc}
< e (+IaIs+ [ (1960 +50r) as)

forall ¢t > 0. ]

In the next result we prova priori estimates for an entropy solution @f.5) .,
In Marcinkiewicz spaces with variable exponent. The prediased on Lemma 1
and the inequalities of Sobolev and Poiriar

Proposition 2. Assumg8)<12) and lety € Iy N L>(§2). If w is an entropy
solution of the variational inequalityl.5) s ,, then the following assertions hold:

(i) For everye > 0, there exist positive constantg and «, depending only
one, «, 7, N, p(+), and(?, such that

/ " @)/7' ()< g
{ul>1)

< a1 (+ lell i+ [ (15 + 196 de+1)

forall t > 0.
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(ii) If there exists a positive constaimt such that

/ 1) de < M, forallt > 0, (23)
{lul>t}

then|Vul"") € M0)(Q), wherer(-) := p(-)/(q(-) + 1). Moreover, there
exists a constant’, depending only on, v, andp(-), such that

/ 4a(®) g
{IVu[©>t}

< (@I + [ (1960 + P do) + 01 + o,
forall ¢t > 0.

Proof: (i) We proceed as in the proof of Proposition 3.2 in [29], skietghhere
only the main steps (we refer to [29] for a complete accouthetetails). Define
n := Ty(u)/t. From Lemma 1, we have

1 M.
[ e de =1 [ [OT@P dr<an 520 @)
Q Q
forall t > 0, whereM; := C}|| f||: and
Myi= G (Mol + [ (19609 40 ®) ).

for a constanC, depending only oy, v andp(-). On the other hand, using
Lemma 2.3 in [29] and Sobolev’s inequality, we estimate

p1/p2
/ '@/ @) gy < Op (/ [V (/) ) dx) ’ )
{Jul>t} ¢

where(C), is a constant depending only éhand N, and p,, p, will be chosen
later, depending only oV andp(-). Now, using (24), we obtain

/ - / M
/ |V(t1/p (I)n)\p("’”)da: < o1 </ n vil/p (I)\p(x)dx + My + 72> . (26)
9) Q
Using the following inequality, valid for any > 0,

B =\ P
(log t)"™) < (logt)? < <&> ter2/e forallt > e,
EpPae
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a Poincag type inequality, and (24), we estimate the integral in itjetshand side
of (26) by

: M.
/ I VP @@ g < My <M1 + 72> gl forallt >e,  (27)
Q

p(x) =\P
Ms; := ess sup (IVp(x)\> <M> C’ (28)
zeQ p($)2 EpPoe

and(C’ is a constant depending only én Therefore, from (25)—(27), we obtain

where

/{| | }tp*(:v)/p/(x)—g dx < 051 (273—1 (My + My + 1) (M3 + 1))p1/p2 |
ul>t

forallt > e. For0 < t < e, we have

/ @@= g < |Qf ®/P)7E < Q) @),
{lul>t}
Finally, we choose; = p* andp, = p and the result follows after some further

simple estimates.
(i) Using (23), the definition of(-), and (24), we have

/ 11 gy < / 1) do 4 / 1) g
{|Vu|r@)>t} {IVul"@>t}n{[ul<t} {lul>t}

< / e (WUW))MWM dz + M
R t

1
— —/ VT, (u)|P@) dx + M
EJ{Jul<ty

< (@ Iellfli+ [ (96l + il ™) do) + b
forall ¢t > 1, whereC'is a constant depending only erandp(-). Noting that
/ 1@ e < |Q|,  forallt <1,
{IVul"()>t}

we conclude the proof. |

Using Proposition 2 and Proposition 2.5 in [29] one obtamesfollowing result
(see the proofs of Corollaries 3.5 and 3.7 in [29]).
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Corollary 1. Assumé8)<12). Let

N(p()—1) _p"()
D = = and )=
If « is an entropy solution of the variational inequality.5) s ,,, then there exists
a constant’, which is independent af, such that

N (p(-) —1)
T (29)

/ |’ de < ¢, forall 0 < ¢(-) < qol-), (30)
Q

and
/ IVu|!® de < C, forall 0 < q(-) < qi(-). (31)
Q

In particular, |u|?") € L'(Q), for all ¢(-) such thatd < ¢(-) < qo(-), and
|Vu|?t) € LY(Q), for all ¢(+) such tha) < ¢(-) < ¢1(-).

4.Existence and uniqueness of entropy solutions

In this section we prove the existence and uniqueness oftampgrsolution to
the obstacle problerl.5),,,. We also prove the continuous dependence of the
solution with respect to the right—hand sifl@nd the obstacle.

We start by proving that a sequenge, },, of entropy solutions of the obstacle
problems(1.5);, ,, converges in measure to a measurable functioWe also
show that the sequence of weak gradiegiNa., },, converges in measure Wu,
the weak gradient af. Finally, we prove some regularity properties using Propo-
sition 2 and Corollary 1.

Proposition 3. Let { f,, ¢, },, be a sequence ih'(Q) x WrH)(Q). Assume8)-

(12)and that,, ™ € W&’p(')(ﬂ) N L>(Q), for all n. Letu,, be an entropy solution
of the obstacle problerfi.5);, ;. . If

fo— f InLYQ)  and Y, — ¥ InWPOQ), (32)

then the following assertions hold:

(i) There exists a measurable functiosuch that:, — « in measure.
(i) Vu, converges in measure ¥u, the weak gradient af.
(i) a(x, Vu,) converges ta(z, Vu), strongly inL!(Q).
(iv) a(z, Vu) € L1O(Q), forall 1 < ¢(-) < N/(N —1).

(v) v and Vu satisfy(30) and (31).
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Proof: Lety € K, NL>(Q),e.g.¢o = ¢", and note thap,, := ¢ + (¢, — )" €
L>(Q) sinceyp € L>(Q)) andy, is bounded above (see Remark 1). In particular,
©on € Ky, N L>*(€2). Moreover, by (32), there exists a constahtndependent of

n, such that

[fallh < O fll+ 1), lenlloo < C(llello + 1), (33)
and

/ V[P de < C ( / IVP® dg 4 1) , foralln. (34)
Q Q

(i) Let s, ¢, ande be positive numbers. Noting that
meas{|u, — u,| > s} < meas{|u,| >t} + meas{|u,,| >t}
+ meas{|T;(u,) — Ti(uy)| > s}, (35)
from Proposition 4)) and (33)—(34), we can choose- ¢(¢) such that
meas{|u,| >t} <¢/3 and meag|u,,| >t} < e/3.
On the other hand, from Lemma 1 appliedipand (33)—(34), we obtain

| T e < € ((t+ el + D017+ 1)

-I—/Q (lVg&lp(I) +j(a:)p/(“’)> dr + 1),

for all t > 0, whereC'is a constant depending only en~ andp(-). Therefore,
we can assume, by Sobolev embedding, ##&f«,)}, is a Cauchy sequence
in L10)(Q), for all 1 < ¢(-) < p*(-). Consequently, there exists a measurable
functionu such that

Ti(u,) — Ty(u), in L0 (Q) and a.e. in.
Thus,
meas([Ti(u,) ~ Ti(u)| > s} < |

Q
for all n, m > ng(s, €). Finally, from (35), we obtain

dr < =
S 3:3

(\Ttwn) — Tt(um)|>q(x) ¢

meas{|u, — u,| > s} <e€, foralln,m > ny(s,e),
i.e, {u,}, is a Cauchy sequence in measure. The assertion follows.

(i1)—(v) The proof of these parts is entirely similar to the corregpog ones in
Proposition 5.4 of [29]. We omit the detalils. |



THE OBSTACLE PROBLEM FOR EQUATIONS WITH VARIABLE GROWTH 15

At this point, we prove Theorem 2 using Proposition 3.

Proof of Theoren2. Lety € Iy N L>(2) and definep,, := ¢ + (¢, — ¢)". Note

thaty,, € ICy, N L>(2) and thatp,, converges strongly tg in W(}’p(')(Q), due to
(14). Takingy, as a test function ifl.5), ., , we obtain

/ a(x, Vuy,) - VT (u, — @) do < / fu(@)Ti(un — on) du.
Q Q

Next, we pass to the limit in the previous inequality.

Concerning the right-hand side, the convergence is obwsoe® f,, converges
to f, strongly inL(Q2), andT;(u,, — ¢,) converges td}(u — ¢), weakly- in L>
and a.e. irf). To deal with the left-hand side we write it as

/ a(x,Vuy,) - Vu, dx — / a(x,Vuy,) - Vo, dx (36)
{|un_9‘7n|§t}

{lun—wpn|<t}

and note thaf|u,,—¢,| < t}isasubsetof|u,| < t+C(||¢|l~+1)}, whereC'is a
constant that does not dependio¢see (33)). Hence, taking= t+C'(||¢]|oo+1),
we rewrite the second integral in (36) as

/ a(z, VT(uy,)) - Vi, dx.
{lun—epn|<t}

Sincea(x, VT,(u,)) is uniformly bounded iff L7 *)(Q))" (by assumption (9) and
Lemma 1), it converges weakly tdz, VT,(u)) in (LP)(Q))", due to Proposi-
tion 3(ii). Therefore the last integral converges to

/ a(x,Vu)) - Vo dz.
{lu—e|<t}

The first integral in (36) is nonnegative, by (8), and it cages a.e. by Proposi-
tion 3. It follows from Fatou’s lemma that

/ a(x, Vu) - Vu dr < lim inf/ a(xz, Vuy,) - Vu, dx.
{lu—p|<t} {lun—en|<t}

n—-+o00

Gathering results, we obtain

/ a(z, Vu) - VIi(u — ¢) de < / fTiu— o) de,
0 0

l.e., u is an entropy solution ofL.5) ¢ ;. m

Finally, we prove Theorem 1, as an application of Theorem 2.
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Proof of Theoreni. Let us consider the sequence of approximated obstadbe pro
lems(1.5), 4, where{ f,,}, is a sequence of bounded functions strongly converg-
ing to f in LY(Q). Itis straightforward, from classical results (see [24]) 2

prove the existence of a unique solution e W(}’p(')(Q) of the obstacle problem
(1.5)f,.. Noting that a weak energy solution is also an entropy smiytive may
apply Theorem 2 to obtain that, converges to a measurable functiemwhich
is an entropy solution of the limit obstacle probl¢in5) . Now, the regularity
stated in the theorem follows immediately from Corollary 1.

Finally, we prove the uniqueness. Letindv be entropy solutions dfL.5) ¢ .
Sinceyt € W™(Q) N L¥(Q) andy < ||t ||, Thu andT,v belong to the
convex setC,, for h > 0 large enough. Now, we proceed as in the proof of
Theorem 4.1 in [29]. We write the variational inequalitl.5) s, corresponding
to the solutiornu, with 73,v as test function, and to the solutionwith 7,u as test
function. Upon addition, we get

/ a(x,Vu) - V(u— Tho) dx + / a(x,Vv) - V(v —Thu) dz
{Ju—Trv|<t} {lv=Thu|<t}

< /Qf (Tt(u — Tho) + Ti(v — Thu)) dz.

We leth go to infinity in this inequality. By Proposition B( it is easy to prove that
the right-hand side tends to zero. Moreover, using assomp{i8)—(9), Hlder’s
inequality, and Proposition 2] to study the left-hand side, we obtain

/ (a(z, Vu) —a(x,Vv)) - V(u—v)dx <0, forallt> 0.
{lu—v|<t}

By assumption (10), we conclude thet: = Vv, a.e. in(2, and hence, from
Poincaé’s inequality, it follows that, = v, a.e. inf). |

5.Lewy—-Stampacchia inequalities and stability of the coioiden-
ce set

The aim of this section is to prove the Lewy—Stampacchiauaétes and the
resulting properties stated in Section 2.

In order to prove Theorem 3, we consider a sequence of appabed obstacle
problems for which the abstract theory developed in [25pplias. Once we have
the Lewy—Stampacchia inequalities for the approximatedtlems, we may pass
to the limit using Proposition 3.
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Proof of Theoren8. Consider a sequendg,,}, of L>°(Q2) functions such that

fo— finLY(Q). Letu, € Wol’p(')(Q) be the unique weak energy solution of the
obstacle problem

u, € Ky = (Auy — fr,v —up) >0, Yu e Ky.

SinceV = W(}’p(')(ﬂ) is a reflexive Banach space apd: V' — V' is strictly
T-monotone, it follows from the abstract theory developef2b] that

fo < Aup < fot (AY— )7 in V.

In particular, these inequalities hold in the sense of ithgtions.
Let0 < ¢ € D(Q); then

/ fop da < / a(x,Vuy,) - Ve dr < / [fn + (AY — fn)ﬂ o dx.

Q Q Q

We can pass to the limit in this expression using the facts tha—» f in L!(Q)

anda(z, Vu,) — a(z, Vu) in L}(Q) (see Proposition 8()), and obtain
f<Au< f+(AY—f)" inD(Q).

Finally, sincef and f + (Ay — f)™ are L(Q) functions, we conclude that also
Au € L1(Q) and (15) follows. m
In order to prove Theorem 4 we need two preliminary lemmas.

Lemma 2. Letw; be measurable functions such thatw;) € W(}’p(')(Q), for all
t>0,a(x, Vuw;) € [Ll(Q)}N, and Aw; € L'(Q), fori =1,2. Then
Awy = Awy  a.e.in{w; = wy}. (37)
Proof: Let
LL(Q) = {g e [L')]" : dive e Ll(Q)} .
Since [Cl(ﬁ)]N is dense inLi,(Q2) for the graph norm, it follows from the argu-
ments inLemmataA3 and A4 of [20, pages 52-53] that the following property
holds inLg, (2):
divE =0 a.e.in{¢=0}.

Due to the assumptions(z, Vw;) — a(z, Vwy) € Ly (), so we have

Awy = Awy,  a.e.in {a(z, Vwy) = a(z, Vw,)} . (38)
Finally, it is standard that

VTi(wy) = VTiy(wy) a.e.in {w; = ws},
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for anyt > 0, so the weak gradient8€w,; and Vw, coincide in{w; = w-} and
the conclusion follows from (38). |

The other lemma requires a definition of the coincidence @ethfe obstacle
problem, which poses a difficulty in face of the availableulagty for the solution
and the obstacle. Indeedifand are continuous functions, the coincidence set
Is defined as the closed subsetbf

{z e ul@)=v@)}=(u-1)" ({0}

and this definition is unambiguous. But, in general, theatrsolution is not
necessarily continuous, and we are not making that assomfatr the obstacle
either. So we need to interpret the coincidence set in ardifteand more elaborate
sense.

We first define th@on—coincidence sédt: > v}. Sincey is bounded abovecf.
Remark 1), we can take > supg, «. The functionT;(u) belongs toWOLp(')(Q),
by the definition of entropy solution. Then

(u> ) = {x €Q : (Ty(u) — ¥) () > 0in the sense oWLP(-)(Q)} .

Givenw € W'?1)(Q), we say thato(x) > 0 in the sense ofV’*()(Q) if there
exists a neighborhood of, N, C Q, and a nonnegative functighe W1 ><(N,),
such that(z) > 0 andw > ( a.e. iInN,. The definition is clearly independent of
the choice ofs and it turns out thafu > 1} is necessarily an open subset(bf
We then define theoincidence seds

{u=1v}:=Q\{u>1}.

Lemma 3. Assumg8)—12). The entropy solution of the obstacle problgn®) ,,
solves

Au=f, ae.in{fu>y}. (39)

Proof: To simplify, let us denoté\ = {u > v}, which is an open subset 6.
Letp € D(A). Leth > supg v and choose > 0 small enough such that

U:Th(u)ﬂzegp c IC¢QLOO(Q).

Takingv as a test function ifl.5) s, we obtain

/ a(x, Vu) - VT (Th(u) £ ep —u) dx > / T (Th(u) £ep —u) du.
0 0
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From (8), it follows that
ie/ a(x,Vu) -V dr > / T (Th(u) £ep —u) du.
{|Tn (u)£ep—u|<t} Q
Choosing > ¢||¢||~ and lettingh — oo, we obtain

ie/a(x,Vu)-Vgp dx > ie/fgp dx,
A A

and, hence, we conclude that
Au=—diva(z,Vu)=f in D'(A)
and the result follows. |
We prove Theorem 4 as a consequenceashmata? and 3.

Proof of Theorend. By the previous lemma, we have: = f, a.e. in{u > ¥ }.
The result follows from the fact thatlu = Ay, a.e. in{u = v}, which is a
consequence of Lemma 2, sinde. € L'(Q2) by Theorem 3. |

Using Theorems 2 and 4 we prove the convergence of a sequietmeadence
sets to the coincidence set of the limit.

Proof of Theorend. Letu,, andu be the entropy solutions of the obstacle problems
(1.5)f, .4, and(1.5) ., respectively. By Theorem 2,, converges ta in measure,
and hence, a.e. ift. Moreover, by Theorem 4, and denotiRg = X{u,—y,.}» Un
satisfies

Au, — (A, — fr)x, = fn, a.e.inQ, for all n. (40)

Since0 < x. < 1, there exists a subsequence (still denoteg hyand a function
X € L*(Q), such that

X, — x weakly— % in L>(Q).

Hence, sincedy,, — Ay andf,, — f, strongly inL!(£2), taking the limit in (40)
we obtain
Au— (AY — fix = f, a.e.in.

On the other hand, by Theorem# also satisfies the previous identity with
replaced byy,—.1. Therefore, usingdy # f, a.e. in(2, the whole sequenceg,
converges to the characteristic functipp,—,, and satisfies (17). The theorem is
proved. |

Finally, we prove Theorem 6 using again Proposition 3 and_gvey—Stampa-
cchia inequalities.
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Proof of Theoren®. First, we claim that

/Q(Aul — Aug) pdz >0, Vo€ o(u(z)—ux)). (41)

Hereo denotes the maximal monotone graph associated to the sighdu (.e.,
o=0r,r(t)=|t]).

Indeed, let{ f/'},, be a sequence of bounded functions strongly converging in
LYQ)to fi (i = 1,2), and letu? € W(}’p(')(Q) be the corresponding weak energy
solutions of(1.5): ;. Let (0.).-0 be a sequence of smooth functions satisfying
0-(0) =0, |o-(t)| < 1andol(t) > 0, forallt € R, such that.(¢) — sign(t) as
e | 0. Integration by parts and the use of assumption (10) yieddrtbquality

/(Au’f — Aub) o-(u] — uy) de
Q

= / (a(z, Vuy}) — a(z, Vuy)) - V(u] — ub) on(uj — uy) de > 0. (42)
Q
We now pass to the limit as — oo. To start with, we have (for a subsequence,
relabeled if need be)
Auf — Aul) — Auy — Auy,  weakly inL'(Q).

This follows from Dunford-Pettis Theorem (the hypothesismhich are satis-
fied due to the Lewy—Stampacchia inequalities), and theliattthe convergence
holds in the sense of distributions since, by Propositiain)3(

a(z, Vu}) — a(z, Vuy) — a(z, Vuy) — a(z, Vug), in LY(€Q).
On the other hand, by Proposition 3(
o-(ul —uy) — o-(up —uz), a.einfd.

Fix an arbitraryo > 0. Again from the Lewy—Stampacchia inequalities, we can
find v > 0 such that, for alld C ),

measA) < v = / |Au} — Auy| dz < % , forall n. (43)
A
By Egorov’s Theorem, there exists a measurable subset) such that

meag\w) <v (44)

and
o-(u] — uy) — o-(uy — ug), uniformly inw. (45)
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To lighten the notation, we put” = Au} — Auy andGL = o.(u] — uy) —
o-(u; — us). Then,

/ F'(z) G (x) dx +
0

/ F'(z) G (x) dx
Nw

/an(,I) GI(z) dx

< 9 /Q ) des / F(2)] |G ()] da

<25+ )
—_— /{_
- 4 2K

= 4, (46)

for all n > ng, using (44) and (43) to bound the first term and (45) to boued th
second. Here: > 0 is a constant (which exists due to the Lewy—Stampacchia
inequalities) such that

/|F"(:z:)\ do < / A" — Aull dz <k, Vn.
Sinced > 0is arwbitrary, we COﬂC;?Jde from (46) that
[ (Aut = A) [~ 08) = . — )] dr — 0
SO we can p;ss to the limit in (42) to obtain
/Q(Aul — Aus) 0-(uy — us) dz > 0.

Finally, lettinge | 0, we obtain (41) withp = sign(u; — us). Since, by Lemma
2,
(Auy — Aug) ¢ = (Aup — Ausg) Sign(u; — ug), a.e.x € Q,
for all p € o(u; — us9), the claim follows.
To conclude the proof, take € o(u; — us), defined by

{ —1 in {u1 < UQ} U {51 < 52}
QY= 0 on {u1 = UQ} N {fl = 52}
L oin {u; >ut U{& > &}
Multiplying

§1— &= (fi — f2) — (Aus — Aug)
by ¢, integrating in(2, and using (41), we obtain

/Q|§1—52\65%:/9(51—52)%0d$§/Q(fl—f2)90dl‘§/ﬂ|f1—f2|d$,
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proving (18). Finally, by Theorem 4, we hage= (f; — AY) X {y,—y}, fori = 1, 2.
Therefore

1 :
X fur=¢) = Xup=y}| < X‘fl — &, a.e.inD,
due to assumption (19). The theorem follows by integratvey @. |
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