
Pré-Publicações do Departamento de Matemática
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Abstract: The Bickel-Rosenblatt (BR) goodness-of-fit test with fixed bandwidth
was introduced by Fan in 1998 [Econometric Theory 14, 604–621, 1998]. Although
its asymptotic properties have being studied by several authors, little is known about
its finite sample performance. Restricting our attention to the test of uniformity in
the d-unit cube for d ≥ 1, we present in this paper a description of the finite sample
behaviour of the BR test as a function of the bandwidth h. For d = 1 our analysis
is based not only on empirical power results but also on the Bahadur’s concept of
efficiency. The numerical evaluation of the Bahadur local slopes of the BR test
statistic for different values of h for a set of Legendre and trigonometric alternatives
give us some additional insight about the role played by the smoothing parameter
in the detection of departures from the null hypothesis. For d > 1 we develop a
Monte-Carlo study based on a set of meta-type uniforme alternative distributions
and a rule-of-thumb for the practical choice of the bandwidth is proposed. For both
univariate and multivariate cases, comparisons with existing uniformity tests are
presented. The BR test reveals an overall good comparative performance, being
clearly superior to the considered competitors tests for bivariate data.
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1. Introduction

Let X1, . . . , Xn, . . . be a sequence of independent and identically distributed
d-dimensional absolutely continuous random vectors with unknown density
function f . As it has been shown by Fan (1998) a test of the simple hypothesis
H0 : f = f0 against the alternative Ha : f 6= f0, where f0 is a fixed density
function on R

d, can be based on the Bickel-Rosenblatt (BR) statistic with
fixed bandwidth.

The classical BR statistic introduced by Bickel and Rosenblatt (1973) is
based on the L2 distance between the kernel density estimator fn of f in-
troduced by Rosenblatt (1956) and Parzen (1962), and its mathematical
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expectation under the null hypothesis,

I2
n(hn) = n

∫

{fn(x) − E0fn(x)}2dx, (1)

where, for x ∈ R
d,

fn(x) =
1

n

n
∑

i=1

Khn
(x − Xi),

Khn
(·) = K(·/hn)/h

d
n with K a kernel on R

d, that is, a bounded and in-
tegrable function on R

d, and (hn), the bandwidth, is a sequence of strictly
positive real numbers converging to zero as n goes to infinity (see also Fan,
1994, Gouriéroux and Tenreiro, 2001, and Tenreiro, 2006, for the asymp-
totic properties of the classical BR test). Analogously to Anderson, Hall
and Titterington (1994) that have used kernel density estimators with fixed
bandwidth for testing the equality of two multivariate probability density
functions, Fan (1998) uses the BR statistic with a constant bandwidth, that
is, hn = h > 0, for all n ∈ N, and shows that I2

n(h) can be interpreted
as a L2 weighted distance between the empirical characteristic function and
the characteristic function implied by the null model with weight function
t → |φK(th)|2. Moreover, he provides an alternative asymptotic approxi-
mation for the finite-sample properties of the BR test by showing that the
asymptotic distribution of I2

n(h) is an infinite sum of weighted χ2 random
variables (see also Tenreiro, 2005, 2006).

Although the asymptotic properties of the fixed bandwidth Bickel-Rosen-
blatt test for a general simple or composite hypothesis are well described in
the literature, little is known about its finite sample performance. Previous
studies undertaken by Henze and Zirkler (1990), Henze (1997), Henze and
Wagner (1997) and Tenreiro (2005) in the case of testing normality indicate
that this performance strongly depends on the choice of the bandwidth.

In this paper we explore the empirical properties of the BR statistic with
fixed bandwidth to test a univariate or multivariate uniformity hypothesis,
that is, we take f0 = U , where U is the density of the uniform density over
the d-dimensional unit cube [0, 1]d. The choice of this null distribution is
mainly motivated by its practical significance. Examples of this practical
interest are the assessing of the quality of a pseudo random number gen-
erator (see Madras, 2002, pg. 12), and the problem of goodness-of-fit to a
given distribution by using the Rosenblatt’s (1952) transformation. On the
other hand, despite testing uniformity in the unit interval [0, 1] has been
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studied by many authors (see Stephens, 1998, for a review on the subject;
see also Marhuenda, Morales and Pardo, 2005, for a recent simulation study
comparing several existing univariate uniformity tests), the corresponding
multidimensional problem seems to have received less attention in the liter-
ature. The exception seems to be the work by Liang, Fang, Hickernell and
Li (2001) where multivariate uniformity tests based on several discrepancy
criteria that arise in the error analysis of quasi-Monte Carlo methods for eval-
uating multiple integrals, are considered and compared. Although other easy
to evaluate statistics could be used to test multivariate uniformity, like the
multivariate versions of the classical Cramér-von Mises and Watson statistics
(see Shorack and Wellner, 1986, chapter 5, for the asymptotic behaviour of
the classical univariate EDF statistics), no finite sample analysis of these test
procedures is, to our knowledge, available in the literature.

The rest of the paper is organized as follows: in section 2 we briefly recall
the asymptotic properties of the BR test with fixed bandwidth and some
comments are made about the evaluation of the test statistic (1). Although
several simple choices for K are possible, in this paper we restrict our atten-
tion to the case where K is the standard normal density function. The test
of a univariate uniformity hypothesis is considered in section 3. We give nu-
merical evaluations of the principal components and most significant weights
of the test statistic as a function of the bandwidth h. Moreover, based on the
results of Tenreiro (2005), the Bahadur local slopes are numerically evaluated
for different values of h for a set of Legendre and trigonometric alternatives.
The simulation study presented in section 2 indicates that the finite sample
properties of tests I2(h) are in good accordance with the theoretical proper-
ties based on the Bahadur local slopes. We conclude that for small values of
h the BR test is appropriated to detect non-location and high order or high
frequency alternatives, whereas for large values of h the test could almost ex-
clusively detect location alternatives. Comparisons with the quadratic EDF
tests of Anderson-Darling (1954) and Watson (1961) based on the empirical
distribution function, and with the data-driven Neyman’s test introduced in
Eubank and LaRiccia (1992) are also presented. In Section 4 we consider
the test of a multivariate hypothesis of uniformity. We present a simulation
study involving a set of meta-type uniform alternative distributions that give
us some insight about the finite sample power properties of the multivariate
BR test of uniformity as a function of h. A rule-of-thumb for choosing h is
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proposed and the corresponding BR test is compared with multivariate ver-
sions of the Cramér-von Mises and Watson tests and with the multivariate
uniformity test introduced by Liang, Fang, Hickernell and Li (2001) based
on a symmetric discrepancy χ2-type statistic. The BR test reveals an over-
all good comparative performance, being clearly superior to the competitors
tests for bivariate data.

2. The fixed bandwidth Bickel-Rosenblatt test

For the sake of completeness we describe in this section the asymptotic
behaviour of the test statistic under the null hypothesis and under a fixed
alternative distribution. The convergence in distribution and the convergence
in probability will be denoted by d

n→+∞−→ and p
n→+∞−→ , respectively.

2.1. Asymptotic null distribution and consistency. The asymptotic
behaviour of the statistic I2

n(h), with h > 0, for testing a composite null
hypothesis was first obtained by Fan (1998). For a simple null hypothesis test
it comes easily from the representation of I2

n(h) as a degenerate V-statistics.
When one test the simple hypothesis H0 : f = U , it takes the form

I2
n(h) =

1

n

n
∑

i,j=1

Qh(Xi, Xj), (2)

with

Qh(u, v) = Wh(u − v) − Wh ⋆ U(u) − Wh ⋆ U(v) + Wh ⋆ Ū ⋆ U(0), (3)

for u, v ∈ R
d and h > 0, and W = K̄ ⋆ K, where ⋆ denotes the convolution

product and Ψ̄(u) = Ψ(−u). Under the null hypothesis and from the limit
distribution of degenerate V-statistics (cf. Theorem 1.2 of Gregory, 1997,
and Theorem 4.3.2 of Koroljuk and Borovskich, 1989; see also Fan, 1998,
and Tenreiro, 2005), we have

I2
n(h)

d

n→+∞
−→ I∞(h),

with

I∞(h) =
∞

∑

k=1

λk,hZ
2
k ,

where {Zk, k ≥ 1} are independent and identically distributed standard nor-
mal variables, and {λk,h, k ≥ 1}, with λ1,h ≥ λ2,h ≥ . . ., denotes the infinite
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collection of strictly positive eigenvalues of the symmetric positive definite
Hilbert-Schmidt operator Ah defined, for q ∈ L2(U), by

(Ahq)(u) = 〈Qh(u, ·), q(·) 〉, (4)

where 〈·, ·〉 denotes the usual inner product in L2(U). Moreover, under a
fixed alternative f with f 6= U , we have

n−1 I2
n(h)

p

n→+∞
−→ (2π)d

∫

|Φf(t) − ΦU(t)|2|ΦK(th)|2dt.

Therefore, assuming that the Fourier transform ΦK of K is such that {t ∈
R

d : ΦK(t) = 0} has Lebesgue measure zero, the convergence in probability
of the statistic I2

n(h) to +∞ for a fixed alternative, enable us to conclude
that the test associated with the critical regions

{I2
n(h) > φ−1

h (1 − α)},
for 0 < α < 1, where φh is the cdf of the random variable I∞(h) given before,
is asymptotically of size α and consistent to test H0 against Ha : f 6= U .

2.2. Evaluating the test statistic. From the representation (2) we easily
see that I2

n(h) can be written as

I2
n(h) = −I2,1

n (h) + I2,2
n (h) + Wh(0) + n Wh ⋆ Ū ⋆ U(0),

where

I2,1
n (h) = 2

n
∑

i=1

Wh ⋆ U(Xi) (5)

and

I2,2
n (h) =

2

n

∑

1≤i<j≤n

Wh(Xi − Xj). (6)

Therefore, the calculation of I2
n(h) can be easily performed if K is chosen such

that the convolutions W = K̄ ⋆ K and Wh ⋆ U have close forms. Even in the
case where Wh⋆ U is hard to evaluate, the calculation of (5) can be simplified
by using quasi-Monte Carlo methods to approximate the convolution Wh ⋆
U(u) =

∫

[0,1]d Wh(u−x)dx, by the sample mean 1
m

∑m
j=1 Wh(u−xj) over a set

of uniformly scattered sample points {x1, . . . , xm} ⊂ [0, 1]d (see Niederreiter,
1992).

If K is a product kernel on R
d, that is, K(u) =

∏d
i=1 k(ui), for u =

(u1, . . . , ud) ∈ R
d, where k is a kernel on R, and the functions w = k̄ ⋆ k
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and w(x) =
∫

]−∞,x] w(t)dt are easy to evaluate, the exact calculation of I2
n(h)

does not involve any problem since

Wh(u) =
d

∏

i=1

wh(ui)

and

Wh ⋆ U(u) =
d

∏

i=1

(w((ui − 1)/h) − w(ui/h)).

Several simple choices for k are possible. In the following we restrict our
attention to the case where k is the standard normal density function k(x) =
exp(−x2/2)/(2π)1/2, for x ∈ R. However, similar qualitative results can be
obtained for other kernels like the standard gamma density function k(x) =
exp(−x), for x ≥ 0. This is not surprising, because the test statistic depends
on k through the convolution k̄ ⋆ k which present a quite similar shape for
these two quite different kernels.

3. Testing univariate uniformity

In this section we consider the test of a univariate hypothesis of uniformity.
In order to get a better understanding of the role played by the smoothing
parameter in the detection of departures from the null hypothesis, and to
compare the BR tests with existing test procedures, we present in the fol-
lowing an analysis based not only on empirical power results but also on the
Bahadur’s concept of efficiency (see Nikitin, 1995).

3.1. Local alternatives and Bahadur efficiency. If {f(·; θ) : θ ∈ Θ},
where Θ is a nontrivial closed real interval, is a family of probability density
functions containing the density U , that is, U = f(·; θ0), for some θ0 ∈ Θ, it
is natural to compare a set of competitor tests through their Bahadur local
exact slopes when θ → θ0. For θ in an appropriate right neighbourhood of
the origin, in the following we consider local alternatives of the form

f(x; θ) = 1 + θ Q(x), (7)

for 0 ≤ x ≤ 1, where Q is a bounded function that belongs to the tangent
space H(U) of U defined by H(U) = {h ∈ L2(U) : 〈h, U 〉 = 0}. From the
results of Tenreiro(2005), the Bahadur local exact slope of the BR test I2

n(h)
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corresponding to the previous local alternative is given by

CI2
n(h)(f(·; θ)) = λ−1

1,h〈Wh ⋆ Q, Q 〉 θ2 (1 + o(1)), when θ→0,

where λ1,h is the largest eigenvalue of the operator Ah defined by (4).
Moreover, the previous local slope can be written in terms of the infi-

nite collection {λk,h, k ≥ 1} of strictly positive eigenvalues of Ah and of
the principal components {qk,h, k ≥ 1}, which are the orthonormal basis for
H(U) corresponding to the previous eigenvalues, that is, for all k and j,
Ahqk,h = λk,hqk,h, a.e. (U) and 〈 qk,h, qj,h 〉 = δkj, where δkj is the Kronecker
symbol:

CI2
n(h)(f(·; θ)) =

∞
∑

k=1

λ−1
1,hλk,h 〈 qk,h, Q 〉2 θ2(1 + o(1)), when θ→0.

From the previous representation, namely from the fact that the eigenvalues
(λk,h) converge to zero, it is clear that only a finite directions of alternatives
effectively contribute to CI2

n(h)(f(·; θ)). The natural question, that we discuss
in the next paragraph, is how rapidly the principal directions loose influence.

3.2. Principal components and most significant weights. As described
in the previous paragraph, the Bahadur local slope of I2

n(h) depends on the
weights (γk,h), where γk,h = λ−1

1,hλk,h, and on the principal components (qk,h).
Numerical evaluations of the most significants weights are shown in Table 1
for several values of h. These approximations have been obtained through a
quadrature method using Lapack routines (see Anderson et al., 1999). For

h = 0.01 h = 0.1 h = 1.0 A2

n U2

n

γ2,h 9.96 × 10−1 7.40 × 10−1 2.46 × 10−2 3.33 × 10−1 1.00 × 10−0

γ3,h 9.89 × 10−1 4.25 × 10−1 1.80 × 10−4 1.67 × 10−1 2.50 × 10−1

γ4,h 9.81 × 10−1 2.40 × 10−1 2.12 × 10−6 1.00 × 10−1 2.50 × 10−1

γ5,h 9.70 × 10−1 1.07 × 10−1 3.52 × 10−7 6.67 × 10−2 1.11 × 10−1

γ6,h 9.59 × 10−1 4.72 × 10−2 9.04 × 10−9 4.76 × 10−2 1.11 × 10−1

γ7,h 9.44 × 10−1 1.69 × 10−2 5.19 × 10−13 3.57 × 10−2 6.25 × 10−2

γ8,h 9.30 × 10−1 6.04 × 10−3 2.13 × 10−13 2.78 × 10−2 6.25 × 10−2

γ9,h 9.12 × 10−1 1.79 × 10−3 6.91 × 10−16 2.22 × 10−2 4.00 × 10−2

γ10,h 8.95 × 10−1 5.35 × 10−4 2.60 × 10−16 1.82 × 10−2 4.00 × 10−2

γ11,h 8.75 × 10−1 1.35 × 10−4 1.41 × 10−16 1.52 × 10−2 2.78 × 10−2

γ12,h 8.55 × 10−1 3.44 × 10−5 1.39 × 10−16 1.28 × 10−2 2.78 × 10−2

Table 1: Weights γk,h for I2
n(h) with K the standard normal density function



8 C. TENREIRO

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Component 1

Component 2

Component 3

Component 4

h = 0.01 h = 0.1 h = 1.0

Figure 1: Principal components for: I2

n(h) – solid line; A2

n– broken line;
U2

n– broken and dotted line

comparison, we also present the corresponding weights for the well known
quadratic EDF tests A2

n of Anderson-Darling (1954) and U 2
n of Watson (1961)

based on the empirical distribution function (see also Shorack and Wellner,
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1986, chapter 5). These tests are consistent against all alternatives and
have shown good performance in testing uniformity in several comparative
simulation studies (see Stephens, 1974, Miller and Quesenberry, 1979, and
Marhuenda, Morales and Pardo, 2005).

From the values shown in Table 1 and the representation for the Bahadur
local slopes given in the previous subsection, we expect that the BR test for
small values of h could use information contained in other components differ-
ent from the first ones. This conclusion is in accordance with the properties
of the classical BR test whose asymptotic power function does not depend
on the actual direction of the alternative under consideration (see Bickel and
Rosenblatt, 1973, Fan, 1994, and Gouriéroux and Tenreiro, 2001). However,
for moderate or large values of h, it appears that I2

n(h) might exclusively use
information contained in the first component. See Tenreiro (2005) for simi-
lar conclusions in the test of a simple hypothesis of normality. In these last
cases the test behaves very much like a parametric test for a one-dimensional
alternative whereas in the former cases the test behaves like a well-balanced
test for higher-dimensional alternatives.

In Figure 1 we plot the first four principal components of I2
n(h) for the val-

ues of h considered in Table 1. Since the components of the Anderson-Darling
test are the Legendre polynomials which arise from the ortogonalization of
powers, it is clear that in some sense for all values of h the first four princi-
pal components describe deviations in location, scale, skewness and kurtosis,
respectively, from the null hypothesis. Therefore, taking into account the
previous conclusions, it appears that for small values of h the BR test could
be appropriate to detect non-location and high order alternatives, whereas
for large values of h the test could, almost exclusively, detect location alter-
natives. Finally, it is interesting to remark that for very small values of h the
first and third principal components of the BR test agree quite well with the
corresponding components of the Watson test and for large values of h the
first three principal components of the BR test are close to the corresponding
components of the Anderson-Darling test.

3.3. Bahadur local exact slopes. In this paragraph the BR test with
fixed bandwidth is compared, for different values of h, with the quadratic
EDF tests of Anderson-Darling and Watson through their Bahadur exact
slopes for two sets of local alternatives of the form (7). In the first set of



10 C. TENREIRO

0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

Alternative A.1 Alternative A.2

Alternative A.3 Alternative A.4

0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

Alternative B.1 Alternative B.2

Alternative B.3 Alternative B.4

Figure 2: Local indices for: I2

n(h) – solid line; A2

n– broken line;
U2

n– broken and dotted line

alternatives that we denote by (A. j), for j = 1, . . . , 4, we take for Q the jth
Legendre polynomial defined by:
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P1(x) =
√

3 (2x − 1);

P2(x) =
√

5 (6x2 − 6x + 1);

P3(x) =
√

7 (20x3 − 30x2 + 12x − 1);
P4(x) = 3 (70x4 − 140x3 + 90x2 − 20x + 1).

These four polynomials are the first principal components of Anderson-Dar-
ling’s test and, as mentioned before, the alternatives (A. j) describe devi-
ations in location, scale, skewness and kurtosis, respectively, from the null
hypothesis. The second set of alternatives is based on the first four principal
components of Watson’s test. These are denoted by (B. j), for j = 1, . . . , 4,
and Q is one of the trigonometric functions

T1(x) =
√

2 sin(2πx);

T2(x) =
√

2 cos(2πx);

T3(x) =
√

2 sin(4πx);

T4(x) =
√

2 cos(4πx).

Since the Bahadur local exact slopes of the tests we consider take the form
θ2(1+ o(1)), up to the multiplication by a constant, when θ→0 (see Nikitin,
1995, pp. 73–81, for quadratic EDF tests), for the comparison of such tests
it is sufficient to compare the coefficients of θ2. They are usually called local
indices and are plotted in Figure 2 for h ∈ [0.01, 1.5]. We also plot the local
indices for the Anderson-Darling and Watson tests.

It is clear from Figure 2 that a moderate or large bandwidth leads to a
test with high efficiency for deviations in location whereas a small bandwidth
leads to a high efficiency test for other moments alternatives or trigonometric
alternatives. However, the gain of efficiency in the location alternative (A.1)
by taking a large value of h implies a severe loss of efficiency in non-location
alternatives.

3.4. Some simulation results. To examine the power performance of BR
tests for several choices of the bandwidth, and to determine if the previous
comparisons based on Bahadur local efficiency reflect the finite sample prop-
erties of BR tests, a simulation experiment is undertaken including the BR
tests I2

n(0.02) (small bandwidth), I2
n(0.1) (medium bandwidth) and I2

n(0.5)
(large bandwidth). These bandwidths have been chosen after some prelimi-
nar simulation work with a large set of bandwidths that allowed to identify
some systematic behaviour of the sample power of the BR test as a function
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Figure 3: Empirical power of I2

n(h) as function of h for n = 20
(solid line), n = 40 (broken line) and n = 60 (broken and dot-
ted line) at level 0.05: (a) Beta(0.75,1.125); (b) Beta(1.5,2.25); (c)
Beta(0.5,0.5); (d) Beta(2.5,2.5)

of h. In Figure 3, the graphics (a) and (b) show the general behaviour of the
power as a function of h for location alternatives and (c) and (d) reveals the
general behaviour of the power as a function of h for non-location alternatives.
These empirical results are globally in accordance with the theoretical results
based on Bahadur local efficiency presented in Figure 2. However, contrary
to the Bahadur local efficiency results, a very small bandwidth is not the
best choice for h. Also remark that the values of h that maximize the power
do not depend significantly on n.

Additionally to the EDF tests A2
n and U 2

n that as before will be use for
comparison, we also consider the data-driven Neyman’s test Znm introduced
in Eubank and LaRiccia (1992) which is based on the first m principal com-
ponents of the Cramér-von Mises EDF statistic given, for j = 1, 2, . . ., by
qj(x) = cos(πjx), 0 ≤ x ≤ 1, where m is not a fixed integer, but it depends
on the observations. The inclusion of this test procedure in our simulation
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study is motivated by the good empirical power results for the test reported
by Eubank and LaRiccia (1992) and Kim (2000).

The power properties of the previous tests are investigated under four sets
of alternative distributions:

1) Beta alternatives

f(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1, 0 ≤ x ≤ 1,

for a, b > 0, where Γ is the gamma function.
2) Legendre alternatives of the form

f(x) = 1 + ρ Pj(x), 0 ≤ x ≤ 1,

for ρ > 0 and j = 1, 2, 3, 4, 5, 6, where Pj is the jth Legendre polynomial.
3) Cosine alternatives of the form

f(x) = 1 + ρ cos(πjx), 0 ≤ x ≤ 1,

for ρ > 0 and j = 1, 2, 3, 4, 6, 8, 10.
4) Sine alternative with

f(x) = 1 + ρ sin(πjx), 0 ≤ x ≤ 1,

for ρ > 0 and j = 2, 4, 8, 12.
Some of these alternatives have been used in Eubank and LaRiccia (1992)

and Kim (2000). The Legendre alternatives permit us to describe deviations
to the null hypothesis in location (j = 1), scale (j = 2), skewness (j = 3),
kurtosis (j = 4) and high moment alternatives (j = 5, 6). For the trigono-
metric alternatives the parameter j controls the frequency of the alternative
and allows the analysis of the performance of the tests as a function of the
frequency of the alternative. For the trigonometric and Legendre alterna-
tives the parameter ρ determines the L2 distance of the alternative from the
null hypothesis. Several values of ρ where considered but similar qualitative
results were observed. A more realistic set of models for the alternative to
the null hypothesis of uniformity is given by the beta distributions. The
set of values taken for a, b > 0 lead to different shape alternatives, and, in
particular, to symmetric (a = b) and asymmetric (a 6= b) alternatives.
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a b µ σ2 n I2

n(0.02) I2

n(0.1) I2

n(0.5) A2

n U2

n Zmn

Asymmetric beta alternatives

0.5 0.75 0.4 0.107 20 0.35 0.41 0.41 0.60 0.36 0.48
40 0.62 0.68 0.62 0.82 0.62 0.77
60 0.82 0.85 0.77 0.94 0.81 0.90

0.75 1.125 0.4 0.083 20 0.17 0.24 0.39 0.37 0.15 0.27
40 0.30 0.45 0.60 0.62 0.27 0.51
60 0.42 0.61 0.75 0.78 0.36 0.65

1.0 1.5 0.4 0.069 20 0.15 0.27 0.36 0.32 0.18 0.26
40 0.25 0.50 0.62 0.61 0.33 0.50
60 0.39 0.68 0.79 0.79 0.46 0.68

1.5 2.25 0.4 0.051 20 0.23 0.42 0.36 0.34 0.43 0.32
40 0.49 0.77 0.69 0.76 0.77 0.72
60 0.75 0.95 0.89 0.95 0.93 0.91

2.0 3.0 0.4 0.040 20 0.39 0.68 0.38 0.46 0.73 0.52
40 0.81 0.97 0.81 0.94 0.97 0.95

2.5 3.75 0.4 0.033 20 0.56 0.85 0.42 0.59 0.90 0.73
40 0.95 1.00 0.86 0.99 1.00 1.00

Symmetric beta alternatives

0.5 0.5 0.5 0.125 20 0.33 0.33 0.16 0.54 0.44 0.44
40 0.60 0.59 0.18 0.79 0.74 0.74
60 0.82 0.81 0.26 0.92 0.91 0.90

0.75 0.75 0.5 0.100 40 0.12 0.13 0.09 0.16 0.18 0.17
60 0.16 0.18 0.09 0.21 0.25 0.22
80 0.20 0.25 0.10 0.28 0.34 0.30

1.5 1.5 0.5 0.063 40 0.14 0.19 0.04 0.06 0.28 0.18
60 0.21 0.28 0.04 0.11 0.41 0.27
80 0.30 0.41 0.04 0.21 0.54 0.41

2.0 2.0 0.5 0.050 20 0.21 0.29 0.03 0.04 0.39 0.24
40 0.40 0.57 0.03 0.23 0.74 0.57
60 0.63 0.80 0.04 0.52 0.91 0.79

2.5 2.5 0.5 0.042 20 0.31 0.46 0.02 0.04 0.39 0.24
40 0.69 0.87 0.03 0.56 0.95 0.87

3.5 3.5 0.5 0.031 20 0.47 0.67 0.02 0.16 0.82 0.63
40 0.96 0.99 0.03 0.95 1.00 0.99

Table 2: Empirical power at level 0.05 for beta alternatives

For all the considered alternative distributions, the empirical power results,
that we present in Tables 2-3 at level 0.05, were evaluated on the basis of 2000
Monte-Carlo samples of size n, for n = 20, 40, 60 or 80. Similar qualitative
results were observed for the levels 0.01 and 0.1. The critical values of all the
test statistics were found by simulating 104 samples from the null distribution.

From Tables 2-3, we conclude that for small values of h the BR test is
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ρ j µ σ2 n I2

n(0.02) I2

n(0.1) I2

n(0.5) A2

n U2

n Zmn

Legendre alternatives

0.3 1 0.587 0.076 20 0.13 0.22 0.30 0.27 0.15 0.20
60 0.29 0.53 0.66 0.63 0.37 0.52
80 0.38 0.66 0.78 0.78 0.49 0.66

0.3 2 0.5 0.105 20 0.12 0.15 0.08 0.14 0.19 0.15
60 0.28 0.41 0.11 0.29 0.51 0.38
80 0.37 0.55 0.12 0.42 0.64 0.54

0.3 3 0.5 0.083 20 0.10 0.11 0.06 0.07 0.11 0.10
60 0.25 0.26 0.06 0.11 0.25 0.28
80 0.34 0.38 0.06 0.13 0.35 0.40

0.3 4 0.5 0.083 20 0.10 0.09 0.05 0.07 0.08 0.11
60 0.25 0.16 0.05 0.09 0.13 0.24
80 0.32 0.22 0.05 0.11 0.17 0.33

0.3 5 0.5 0.083 20 0.10 0.07 0.05 0.06 0.07 0.08
60 0.23 0.10 0.05 0.07 0.09 0.18
80 0.32 0.14 0.05 0.08 0.13 0.26

0.3 6 0.5 0.083 20 0.10 0.05 0.06 0.06 0.05 0.08
60 0.22 0.08 0.05 0.06 0.08 0.17
80 0.28 0.08 0.05 0.06 0.09 0.23

Cosine alternatives

1.0 1 0.297 0.042 20 0.55 0.90 0.95 0.94 0.74 0.89
40 0.95 1.00 1.00 1.00 0.98 1.00

1.0 2 0.5 0.134 20 0.55 0.85 0.20 0.55 0.89 0.78
40 0.95 1.00 0.28 0.93 1.00 1.00

1.0 3 0.477 0.083 20 0.53 0.57 0.07 0.16 0.40 0.65
40 0.94 0.96 0.07 0.43 0.82 0.98

1.0 4 0.5 0.096 20 0.54 0.27 0.08 0.17 0.19 0.60
40 0.94 0.69 0.06 0.28 0.59 0.96

1.0 6 0.5 0.089 20 0.49 0.07 0.06 0.10 0.10 0.46
40 0.91 0.10 0.07 0.15 0.18 0.92

1.0 8 0.5 0.086 20 0.43 0.05 0.06 0.08 0.07 0.36
40 0.87 0.05 0.05 0.10 0.10 0.86

1.0 10 0.5 0.085 20 0.35 0.05 0.05 0.08 0.07 0.29
40 0.79 0.04 0.05 0.07 0.07 0.80

Sine alternatives

0.5 2 0.420 0.078 60 0.44 0.72 0.63 0.61 0.72 0.59
80 0.57 0.84 0.76 0.77 0.84 0.74

0.5 4 0.460 0.082 60 0.43 0.31 0.18 0.22 0.16 0.40
80 0.54 0.44 0.21 0.29 0.24 0.52

0.5 6 0.473 0.083 60 0.36 0.09 0.11 0.12 0.08 0.28
80 0.49 0.10 0.12 0.15 0.09 0.41

0.5 8 0.480 0.083 60 0.33 0.06 0.08 0.09 0.06 0.24
80 0.44 0.07 0.08 0.10 0.07 0.34

0.5 12 0.487 0.083 60 0.23 0.06 0.07 0.07 0.05 0.18
80 0.32 0.07 0.07 0.09 0.07 0.26

Table 3: Empirical power at level 0.05 for Legendre and trigonometric
alternatives
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appropriate to detect non-location, high moment and high frequency alter-
natives, whereas for large values of h the test exclusively detect location
alternatives. For high moment or high frequency alternatives (that is, Le-
gendre and trigonometric alternatives with j > 4) the best tests are the Znm

and I2
n(0.02) tests. Both EDF tests and the BR tests with h = 0.1, 0.5 have

no power for these alternatives. If we restrict our attention to low frequency
alternatives (that is, beta alternatives and Legendre and trigonometric alter-
natives with j ≤ 3), the best tests are the Znm and I2

n(0.1) tests. Remark
that although the superior results obtained by the Anderson-Darling test
for pure location alternatives and by the Watson test for scale alternatives,
these tests also reveals a poor performance for some of the considered low
frequency alternatives.

The results also confirm the good power properties of Znm test reported
by Eubank and LaRiccia (1992) and Kim (2000). This test behaves like
a omnibus test which shows a good or reasonable performance against a
large range of alternatives. Therefore, it should be used in practice if no
information is available about the alternative to the null hypothesis. This
omnibus property is also shared by I2

n(0.02). However, although for high
moment and high frequency alternatives the tests Znm and I2

n(0.02) have
obtained the best power results, for low frequency alternatives Znm is superior
to I2

n(0.02).

4. Testing multivariate uniformity

The BR test for a multivariate uniformity hypothesis is discussed in this
section. In order to describe its finite sample power performance as a function
of h, to propose a rule-of-thumb for the practical choice of the bandwidth
h, and to compare the corresponding BR test with other existing uniformity
tests, we develop in this section a Monte-Carlo study based on a set of meta-
type uniform alternative distributions.

A meta-type uniform distribution in [0, 1]d can be seen as the distribution of
the random vector (V1, . . . , Vd) that is obtained from an absolutely continuous
random vector (X1, . . . , Xd), by taking Vi = Gi(Xi), where, for i = 1, . . . , d,
Gi is the distribution function of Xi (see Fang, Fang and Kotz, 2002, for
the idea of meta-distribution). Therefore, these alternatives are appropriate
to model the situation where one does not have relevant information about
the dependence structure of the alternative to the null distribution but it is
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known that its support is contained in the unit d-cube and their margins are
uniformly distributed in the interval [0, 1].

In the simulation we choose the random vector (X1, . . . , Xd) to have one
of the following multivariate distributions where µ ∈ R

d and the matrix
Σ = [σij] := Σρ is chosen as σii = 1 and σij = ρ, with 0 < ρ < 1, for
1 ≤ i 6= j ≤ d (see Liang, Fang and Hickernell, 2001, for a similar set of
alternative distributions; see also Johnson, 1987, and Kotz, Kozubowski and
Podgórski, 2000, for relevant information about these distributions):

1) The multivariate normal distribution, Nd(µ, Σ) with mean µ and covari-
ance matriz Σ.

2) The multivariate t-distribution Td(m, µ, Σ) with density function

g(x) = C|Σ|−1/2(1 + m−1(x − µ)′Σ−1(x − µ))−(m+d)/2,

with m > 0, where, here and in the following, C > 0 is a normalizing constant
that takes possibly different values in each occurrence.

3) The symmetric Kotz type distribution Kd(N, µ, Σ) with density function
given by

g(x) = C|Σ|−1/2((x − µ)′Σ−1(x − µ))N−1 exp (−
√

(x − µ)′Σ−1(x − µ) ),

where 2N + d > 2.
4) The symmetric Pearson type II distribution Pd(m, µ, Σ) with density

function
g(x) = C|Σ|−1/2(1 − (x − µ)′Σ−1(x − µ))m,

having support (x − µ)′Σ−1(x − µ) ≤ 1 and shape parameter m > −1.
5) The logistic distribution Ld(α) with density function

g(x) = C exp
(

−
d

∑

i=1

xi

)(

d
∑

i=1

exp(−xi) + 1
)−(α+d)

,

with α > 0.
6) The asymmetric Laplace distribution ALd(µ, Σ) with density function

g(x) = C|Σ|−1/2 exp (x′Σ−1µ)

(

x′Σ−1x

2 + µ′Σ−1µ

)ν/2

×Kν(
√

(2 + µ′Σ−1µ)(x′Σ−1x) ),

where ν = (2 − d)/2 and Kν is the modified Bessel function of third kind
given by Kν(u) = uν

∫ ∞
0 t−ν−1 exp(−t − u2/(4t))dt/2ν+1, u > 0.
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Figure 4: Empirical power of I2

n(h) as function of h for n = 10 (solid
line), n = 20 (broken line), n = 40 (broken and dotted line) and
d = 2, 5, 10 at level 0.05: (a) ALd(0, Σ0.2); (b) Kd(1, 0, Σ0.5)

After some simulation work for some of the previous alternative distri-
butions, we concluded that, as in the univariate case, the value of h that
maximize the empirical power of the BR test does not depend significantly
on the sample size n but strongly depends on the underlying alternative
distribution and data dimension. This is illustrated in Figure 4 where we
present two typical behaviours of the power of the BR test as a function of h,
for n = 10, 20, 40, d = 2, 5, 10 and h ∈ [0.01, 1.2]. For the Kotz multivariate
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distribution (b) it is interesting to remark the large empirical power obtained
by the BR test for d = 5, 10 when h is very small. This type of behaviour
occurs since for small values of hd−1 the term I2,1

n (h) given by (5) dominates
the term I2,2

n (h) given by (6), and, as a consequence, it determines the be-
haviour of test statistic I2

n(h). Therefore, for such values of h the BR test
is essentially based on the sum 1

n

∑n
i=1 Wh ⋆ U(Xi), and detect alternatives

f that satisfy
∫

Wh ⋆ U(u)U(u)du 6=
∫

Wh ⋆ U(u)f(u)du. This is in par-
ticular true for U -shaped distributions like meta-uniform distribution based
on symmetric Kotz multivariate distribution, because they give significant
probability to regions in the neighbourhood of the d-unit cube frontier.

In order to use the BR test in practice and to compare it with some existent
multivariate uniformity test procedures, it is essential to propose an easy-to-
use rule for choosing the bandwidth h. Since we do not have a particular
type of alternative in mind, it is natural to expect that BR test should show
a reasonable performance against a large range of alternatives.

With this goal, for data dimensions from d = 2 to 10, for each one of
the following alternative distributions, and for n taking one of the values
n = 10 or n = 20, we calculate the bandwidth hf,n that maximizes the
empirical power over the set {0.01, 0.02, . . . , 1.2} of values of h (when the
sample power is maximized for more than one value of h, we take for hf,n the
smallest of such values of h). With the exception of the asymmetric Laplace
distribution where µ = 1 = (1, . . . , 1), we take µ = 0 and ρ = 0.2, 0.5 for all
the distributions depending on µ and on Σρ, respectively. Moreover, for the
Student distribution we take m = 3, for the Kotz distribution we consider
N = 1, for the Pearson distribution we take m = 3/2 and the value α = 0.5
is considered for the logistic distribution.

The distribution of the bandwidths hf,n for the BR test at level 0.05, is
described in Figure 5. A logarithmic regression of the bandwidths hf,n sample
medians over the data dimension, leads to the following relation that we will
use in the following as rule-of-thumb for the choice of h when the dimension
of the data is d:

h = 0.09 ln(d) + 0.036. (8)

This rule-of-thumb can also be used for the BR test at levels 0.01 and 0.1,
since the distributions of the bandwidths hf,n for these two levels are very
similar to that one shown in Figure 5.
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data dimension

Figure 5: Empirical distribution of hf,n for several values of d
at level 0.05

In the following the BR test with h given by (8) is compared with two other
easy to evaluate multivariate uniformity tests. They are the multivariate
versions of the Cramér-von Mises statistic W 2

n based on the empirical dis-
tribution function and the multivariate uniformity test introduced by Liang,
Fang, Hickernell and Li (2001) based on a symmetric discrepancy χ2-type
statistic Tn. Initially the multivariate version of the Watson statistic U 2

n was
also considered but, in general, this test revealed a very poor performance
in comparison with the other considered tests. Among the several test sta-
tistics considered by Liang, Fang, Hickernell and Li (2001) which are based
on quasi-Monte Carlo methods for measuring the discrepancy of points in
[0, 1]d, the statistic Tn considered in the following has shown the best results.
However, contrary to the considered BR tests and the previous EDF tests,
the test based on Tn is not asymptotically consistent against all alternative
distributions.

In Tables 4-5 we present the empirical power results at level 0.05 of the
BR test for h given by (8) and of the above mentioned W 2

n and Tn tests.
These results were obtained on the basis of 2000 Monte-Carlo samples of
sizes n = 10, 20, 40, 60 or 80. Similar qualitative results were observed for the
levels 0.01 and 0.1. For the evaluation of the critical values of all the involved
test statistics 104 samples from the null distribution were used. The set of
alternative distributions we consider includes some of the distributions used
to derive the rule-of-thumb (8) and some other meta-uniform distributions
based on the Student distributions with m = 1 (Cauchy distribution) and
m=5, on the Kotz distribution with N =2, on the Pearson distribution with
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d = 2 d = 3 d = 4

X-Distribution n I2

n W 2

n Tn n I2

n W 2

n Tn n I2

n W 2

n Tn

Nd(0,Σ0.2) 40 0.10 0.10 0.07 40 0.12 0.20 0.08 40 0.18 0.36 0.13
60 0.08 0.10 0.06 60 0.16 0.26 0.11 60 0.25 0.46 0.18
80 0.12 0.11 0.07 80 0.24 0.30 0.12 80 0.35 0.57 0.23

Nd(0,Σ0.5) 40 0.39 0.24 0.19 20 0.41 0.43 0.24 20 0.56 0.67 0.40
60 0.62 0.31 0.31 40 0.76 0.63 0.55 40 0.91 0.88 0.86
80 0.79 0.38 0.50 60 0.93 0.77 0.83 60 0.99 0.95 0.99

Td(5, 0,Σ0.2) 60 0.11 0.10 0.07 60 0.24 0.25 0.13 60 0.32 0.45 0.21
80 0.18 0.11 0.10 80 0.28 0.31 0.14 80 0.44 0.56 0.28

Td(5, 0,Σ0.5) 40 0.45 0.23 0.18 20 0.40 0.39 0.23 10 0.31 0.47 0.22
60 0.66 0.30 0.30 40 0.80 0.63 0.53 20 0.63 0.66 0.44
80 0.83 0.38 0.49 60 0.96 0.78 0.83 40 0.94 0.86 0.85

Td(1, 0,Σ0.2) 40 0.28 0.09 0.09 40 0.52 0.20 0.20 40 0.67 0.36 0.32
60 0.45 0.11 0.11 60 0.75 0.23 0.24 60 0.90 0.45 0.44
80 0.64 0.12 0.13 80 0.90 0.28 0.29 80 0.98 0.56 0.58

Td(1, 0,Σ0.5) 20 0.34 0.16 0.13 10 0.29 0.26 0.17 10 0.42 0.42 0.29
40 0.70 0.23 0.20 20 0.62 0.39 0.28 20 0.84 0.60 0.51
60 0.90 0.29 0.32 40 0.97 0.58 0.58 40 0.99 0.84 0.87

Kd(2, 0,Σ0.2) 40 0.52 0.17 0.44 20 0.36 0.21 0.43 20 0.40 0.34 0.52
60 0.72 0.24 0.60 40 0.70 0.38 0.73 40 0.74 0.54 0.82
80 0.89 0.37 0.77 60 0.90 0.55 0.92 60 0.92 0.71 0.96

Kd(2, 0,Σ0.5) 20 0.39 0.15 0.27 10 0.33 0.27 0.29 10 0.41 0.46 0.44
40 0.82 0.30 0.59 20 0.70 0.46 0.61 20 0.84 0.68 0.83
60 0.97 0.45 0.85 40 0.99 0.72 0.97 40 1.00 0.92 1.00

Kd(1, 0,Σ0.2) 40 0.32 0.18 0.50 20 0.37 0.27 0.80 10 0.28 0.27 0.84
60 0.47 0.23 0.65 40 0.73 0.46 0.98 20 0.62 0.42 0.98
80 0.59 0.28 0.78 60 0.91 0.66 1.00 40 0.95 0.69 1.00

Kd(1, 0,Σ0.5) 40 0.62 0.34 0.57 10 0.37 0.40 0.51 10 0.54 0.58 0.82
60 0.84 0.48 0.77 20 0.68 0.58 0.82 20 0.86 0.79 0.98
80 0.94 0.60 0.90 40 0.94 0.82 0.99 40 1.00 0.96 1.00

Pd(0.5, 0,Σ0.2) 40 0.10 0.09 0.05 40 0.17 0.23 0.09 40 0.21 0.38 0.12
60 0.13 0.10 0.06 60 0.22 0.28 0.11 60 0.30 0.48 0.18
80 0.17 0.12 0.07 80 0.29 0.32 0.14 80 0.43 0.59 0.27

Pd(0.5, 0,Σ0.5) 40 0.39 0.25 0.19 20 0.37 0.45 0.23 10 0.26 0.50 0.18
60 0.61 0.33 0.31 40 0.74 0.65 0.55 20 0.54 0.68 0.38
80 0.80 0.40 0.50 60 0.93 0.80 0.85 40 0.91 0.89 0.84

Ld(1.0) 40 0.47 0.24 0.19 20 0.42 0.42 0.24 10 0.31 0.48 0.21
60 0.70 0.33 0.32 40 0.83 0.61 0.57 20 0.63 0.67 0.43
80 0.88 0.40 0.50 60 0.97 0.77 0.86 40 0.93 0.87 0.87

Ld(0.2) 10 0.57 0.24 0.18 10 0.95 0.57 0.47 10 0.99 0.78 0.85
20 0.98 0.37 0.40 20 1.00 0.78 0.99 20 1.00 0.94 1.00

Table 4: Empirical power at level 0.05 for multivariate alternatives with d=2, 3, 4
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d = 2 d = 3 d = 4

X-Distribution n I2

n W 2

n Tn n I2

n W 2

n Tn n I2

n W 2

n Tn

ALd(0,Σ0.2) 40 0.13 0.09 0.07 40 0.28 0.20 0.12 40 0.43 0.36 0.22
60 0.21 0.10 0.09 60 0.44 0.24 0.16 60 0.63 0.45 0.29
80 0.30 0.11 0.09 80 0.59 0.29 0.19 80 0.80 0.56 0.39

ALd(0,Σ0.5) 40 0.52 0.23 0.20 20 0.48 0.42 0.25 10 0.34 0.44 0.22
60 0.74 0.30 0.29 40 0.88 0.61 0.55 20 0.72 0.65 0.44
80 0.89 0.37 0.47 60 0.98 0.76 0.81 40 0.97 0.86 0.83

ALd(1,Σ0.2) 40 0.66 0.28 0.24 20 0.62 0.48 0.31 10 0.44 0.51 0.27
60 0.87 0.39 0.42 40 0.96 0.71 0.74 20 0.81 0.75 0.54
80 0.97 0.45 0.65 60 1.00 0.87 0.94 40 0.99 0.94 0.95

ALd(1,Σ0.5) 20 0.55 0.26 0.20 10 0.51 0.42 0.23 10 0.72 0.67 0.46
40 0.94 0.40 0.54 20 0.90 0.62 0.59 20 0.98 0.87 0.89
60 1.00 0.55 0.87 40 1.00 0.86 0.99 40 1.00 0.98 1.00

Table 4 (cont.): Empirical power at level 0.05 for multivariate alternatives
with d = 2, 3, 4

m = 0.5, on the logistic distribution with α = 0.2, 1.0, and on the asymmetric
Laplace distribution with µ = 0 (symmetric Laplace distribution).

The empirical power results show that the BR test present excellent com-
parative properties for bivariate observations. It is clearly more powerful
than tests W 2

n and Tn for the considered set of alternatives. For data di-
mensions d = 3 and d = 4, the BR test reveals good performance and, in
particular, it is never the worse of the considered test procedures for any one
of the considered distributions. For large data dimensions the BR test does
not present the same good performance. Although none of the considered
tests is uniformly the best test over the considered set of alternative distribu-
tions, it seems that the Cramér-von Mises test obtain the best overall results
for d ≥ 5.
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d = 5 d = 7 d = 10

X-Distribution n I2

n W 2

n Tn n I2

n W 2

n Tn n I2

n W 2

n Tn

Nd(0,Σ0.2) 40 0.24 0.58 0.18 20 0.17 0.57 0.13 20 0.23 0.75 0.22
60 0.38 0.69 0.26 40 0.34 0.78 0.27 40 0.50 0.93 0.46
80 0.47 0.79 0.35 60 0.52 0.91 0.44 60 0.71 0.98 0.69

Nd(0,Σ0.5) 10 0.37 0.62 0.28 10 0.49 0.79 0.47 10 0.64 0.89 0.69
20 0.69 0.83 0.58 20 0.87 0.94 0.85 20 0.96 0.98 0.98

Td(5, 0,Σ0.2) 40 0.28 0.56 0.22 40 0.43 0.77 0.39 20 0.33 0.70 0.40
60 0.46 0.68 0.32 60 0.67 0.89 0.59 40 0.65 0.91 0.65
80 0.62 0.76 0.45 80 0.85 0.94 0.75 60 0.86 0.97 0.84

Td(5, 0,Σ0.5) 10 0.38 0.59 0.31 10 0.51 0.77 0.49 10 0.71 0.88 0.76
20 0.73 0.82 0.59 20 0.90 0.93 0.87 20 0.98 0.98 0.98

Td(1,Σ0.2) 20 0.43 0.34 0.31 10 0.32 0.35 0.39 10 0.48 0.42 0.60
40 0.80 0.54 0.50 20 0.61 0.49 0.52 20 0.81 0.61 0.79
60 0.96 0.67 0.67 40 0.94 0.72 0.78 40 0.99 0.86 0.98

Td(1,Σ0.5) 10 0.56 0.58 0.41 10 0.69 0.73 0.63 10 0.83 0.83 0.84
20 0.91 0.78 0.70 20 0.97 0.91 0.91 20 1.00 0.96 0.99

Kd(2, 0,Σ0.2) 20 0.36 0.40 0.51 20 0.29 0.58 0.41 10 0.13 0.54 0.20
40 0.74 0.68 0.84 40 0.61 0.82 0.76 20 0.20 0.74 0.31
60 0.93 0.85 0.97 60 0.85 0.93 0.95 40 0.43 0.93 0.65

Kd(2, 0,Σ0.5) 10 0.47 0.60 0.53 10 0.53 0.78 0.61 10 0.59 0.88 0.68
20 0.89 0.83 0.91 20 0.94 0.94 0.96 20 0.93 0.98 0.97

Kd(1, 0,Σ0.2) 10 0.36 0.36 0.97 10 0.45 0.48 1.00 10 0.85 0.49 1.00
20 0.80 0.50 1.00 20 0.98 0.64 1.00 20 1.00 0.67 1.00

Kd(1, 0,Σ0.5) 10 0.65 0.73 0.95 10 0.74 0.82 1.00 10 0.89 0.87 1.00
20 0.95 0.89 1.00 20 0.99 0.97 1.00 20 1.00 0.98 1.00

Pd(0.5, 0,Σ0.2) 40 0.27 0.60 0.17 40 0.36 0.81 0.27 20 0.24 0.76 0.19
60 0.41 0.71 0.25 60 0.55 0.92 0.45 40 0.48 0.94 0.41
80 0.53 0.80 0.37 80 0.73 0.96 0.63 60 0.72 0.98 0.67

Pd(0.5, 0,Σ0.5) 10 0.32 0.62 0.24 10 0.46 0.80 0.40 10 0.63 0.88 0.65
20 0.67 0.83 0.55 20 0.85 0.96 0.84 20 0.95 0.99 0.99

Ld(1.0) 10 0.38 0.60 0.29 10 0.54 0.77 0.50 10 0.69 0.85 0.73
20 0.75 0.81 0.63 20 0.88 0.92 0.88 20 0.97 0.98 0.98

Ld(0.2) 10 1.00 0.88 0.99 10 1.00 0.95 1.00 10 1.00 0.98 1.00

ALd(0,Σ0.2) 40 0.55 0.54 0.31 20 0.43 0.52 0.36 10 0.34 0.49 0.43
60 0.80 0.69 0.46 40 0.77 0.76 0.58 20 0.59 0.69 0.57
80 0.91 0.77 0.58 60 0.94 0.89 0.76 40 0.92 0.90 0.85

ALd(0,Σ0.5) 10 0.45 0.59 0.35 10 0.60 0.74 0.55 10 0.77 0.85 0.78
20 0.81 0.78 0.64 20 0.94 0.92 0.88 20 0.98 0.97 0.98

ALd(1,Σ0.2) 10 0.54 0.68 0.38 10 0.70 0.85 0.61 10 0.83 0.93 0.83
20 0.89 0.89 0.65 20 0.97 0.98 0.95 20 1.00 0.99 1.00

ALd(1,Σ0.5) 10 0.83 0.80 0.66 10 0.93 0.91 0.89 10 0.98 0.96 0.99
20 0.99 0.96 0.98 20 1.00 0.99 1.00 20 1.00 1.00 1.00

Table 5: Empirical power at level 0.05 for multivariate alternatives with
d = 5, 7, 10
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