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ABSTRACT: We find a quaternionic module structure on the odd cohomology spaces
of compact 3-cosymplectic manifolds. This gives rise to some topological obstruc-
tions to the existence of such structures, expressed by stronger bounds on the Betti
numbers compared to those known for the hyper-Kahler case. Nevertheless, we
present a nontrivial example of compact 3-cosymplectic manifold which is not the
global product of a hyper-Kéhler manifold and a flat 3-torus. We also show that
there is an action of the Lie algebra so(4,1) on the cohomology spaces of a compact
3-cosymplectic manifold which is the odd-dimensional counterpart of the result of
Verbitsky for hyper-Kéahler manifolds.
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1. Introduction

Cosymplectic geometry is considered to be the closest odd-dimensional ana-
logue of Kéhler geometry (see e.g. [2, Section 6.5], [9, Section 14.5]). This
becomes even more evident when one passes to the setting of 3-structures.
Indeed, while both cosymplectic and Sasakian manifolds admit a transver-
sal Kahler structure, only 3-cosymplectic manifolds do admit a transversal
hyper-Kéahler structure (cf. [6, Theorem 3.8]).

In the fundamental paper [8], Chinea, De Leén and Marrero studied the
topology of cosymplectic manifolds, refining the previous results of Blair and
Goldberg ([3]). They proved a monotonicity result for the Betti numbers of
a compact cosymplectic manifold M?**! up to the middle dimension. Next,
the differences bgy1 — by (with 0 < p < n) were shown to be even integers
(in particular, b; is odd). Moreover, they found an example of a compact
cosymplectic manifold which is not the global product of a Kahler manifold
and the circle. Later on, other nontrivial examples were provided (cf. [18,
11]). More recently, Li ([17]) gave an alternative proof of the monotonicity
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property of the Betti numbers of cosymplectic manifolds (which he prefers
to call co-Kahler) by using topological techniques.

A 3-cosymplectic manifold (see e.g. [5, Section 13.1]) is a smooth manifold
endowed with an almost contact metric 3-structure such that each structure
is cosymplectic. This class of manifolds is contained in the wider class of
3-quasi Sasakian manifolds. Every 3-cosymplectic manifold is in particular
cosymplectic hence all the previously mentioned results still hold. A natural
problem is whether the quaternionic-like conditions which relate the struc-
ture tensors of 3-cosymplectic manifolds can induce additional rigidity to the
underlying topological structure. The aim of this paper is to give an an-
swer to this question. First of all, we find a suitable decomposition of the
cohomology spaces of any compact 3-cosymplectic manifold M, as well as a
family of isomorphisms relating some of the components. This leads to the
following key relation between the Betti numbers of the de Rham cohomology
of the manifold and the dimensions bﬁ of the spaces Q%’OOO (M) of horizontal
harmonic p-forms

by = by + 3bj_, + 3b) 5+ b . (1.1)

Moreover, we prove that the graded vector space Qoo (M) of horizontal
harmonic forms admits an action of the Lie algebra so(4,1). This is the
odd dimensional counterpart of the remarkable result obtained by Verbitsky
in [26] for the cohomology ring of a compact hyper-Kéhler manifold.

In Theorem 5.2 we show that the spaces szj{,ooo (M) also admit an H-module
structure for odd p. As a consequence the odd horizontal Betti numbers bgp i
are divisible by four. Combining this with (1.1) we get that

bgp + bgp+1 = 4k

for some integer k. We also recover the lower bound of Wakakuwa [27] on
the even Betti numbers of compact hyper-Kahler manifolds for the horizontal
Betti numbers of compact 3-cosymplectic manifolds

2
bng(p;> for 0 < p <n.

Furthermore, for the Betti numbers of a compact 3-cosymplectic manifold
we obtain the following stronger lower bound

2
bpz(p;) for 0 <p<2n-+1.
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All results on the Betti numbers could also be derived from the existence of
a so(4, 1)-action on the space 3y (M) by the use of representation theory.
However, we chose a more elemeﬁtary approach in this article.

From the above considerations one can see that there are strong obstruc-
tions to the existence of compact 3-cosymplectic manifolds. On the other
hand, every compact 3-cosymplectic manifold is a local Riemannian product
of a hyper-Kahler factor and an abelian three dimensional Lie group. This
probably explains why so far the only known examples of such manifolds in
the compact case were global Riemannian products of compact hyper-Kahler
manifolds with the flat 3-torus. However, we provide a method for construct-
ing compact 3-cosymplectic manifolds exhibiting at least one example which
is not the global product of a compact hyper-Kahler manifold with the flat
3-torus.

2. Preliminaries

An almost contact manifold is an odd-dimensional manifold M which car-
ries a field ¢ of endomorphisms of the tangent spaces, a vector field &, called
characteristic or Reeb vector field, and a 1-form n satisfying

o’ =—-T+n®¢ 1) =1,

where I: T'M — T'M is the identity mapping. From the definition it follows
that ¢ = 0, no ¢ = 0 and that the (1, 1)-tensor field ¢ has constant rank
2n (cf. [2]). An almost contact manifold (M, ¢,&,n) is said to be normal
when the tensor field Ny, = [¢, ¢] + 2dn ® £ vanishes identically, where [¢, ¢]
is the Nijenhuis torsion of ¢. It is known that any almost contact manifold
(M, ¢, &,m) admits a Riemannian metric g such that

9(9E,¢F) = g (E, F) —n(E)n (F) (2.1)

holds for all £, F' € I'(T'M). This metric g is called a compatible metric and
the manifold M together with the structure (¢,&,n,g) is called an almost
contact metric manifold. As an immediate consequence of (2.1), one has
n=g(,¢) and g(¢pE, F)=—g(F,¢F). Hence ® (E, F) = g (E, ¢F) defines
a 2-form, which is called the fundamental 2-form of M. Almost contact met-
ric manifolds such that both n and ® are closed are called almost cosymplectic
manifolds and those for which dn = & are called contact metric manifolds.
Finally, a normal almost cosymplectic manifold is called a cosymplectic man-
ifold, and a normal contact metric manifold is said to be a Sasakian manifold.
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In terms of the covariant derivative of ¢, the cosymplectic and the Sasakian
conditions can be expressed respectively by
Vo =0
and
(Veo) F=g(E,F)§—n(F)E,
forall B, F e ' (T'M).

It should be noted that both in Sasakian and in cosymplectic manifolds &
is a Killing vector field. The Sasakian and the cosymplectic manifolds repre-
sents the two extremal cases of the larger class of quasi-Sasakian manifolds
(cf. [1]). Recently, a study of geometrical structures of odd dimensional
manifolds generalizing cosymplectic and quasi-Sasakian structures from the
non-metric point of view has been presented in [14].

An almost contact 3-structure on a (4n + 3)-dimensional smooth mani-
fold M is given by three almost contact structures (¢1,&1,m1), (P2, &2, m2),
(03, &3, m3) satisfying the following relations, for every a, § € {1,2, 3},

3

oy =13 @ o = Y €apyy — bapl, (22)
y=1
3 3
¢a£ﬁ = Z eaﬁvgfya Tla © ¢ﬁ = Z €afByTy, (2'3)
y=1 y=1

where €,3, is the totally antisymmetric symbol. This notion was introduced
by Kuo ([16]) and, independently, by Udriste ([25]). In [16] Kuo proved that
given an almost contact 3-structure (¢, &n,Ma), @ € {1,2,3}, there exists a
Riemannian metric g compatible with each of the structures and hence we
can speak of almost contact metric 3-structure. It is well known that in any
almost 3-contact manifold the Reeb vector fields &, &, &3 are orthonormal
with respect to any compatible metric g and that the structural group of the
tangent bundle is reducible to Sp(n) x {I3}. Moreover, the tangent bundle
of any almost 3-contact metric manifold splits up as the orthogonal sum
TM = H &V, where the 4n-dimensional subbundle H = ()°_, ker (1) is
called the horizontal distribution and V = (&1, &2, &3) is called the vertical (or
Reeb) distribution. An almost 3-contact manifold M is said to be normal
if each almost contact structure (¢q,&q, No) is normal. Let (¢q, &q, 0, g) be
an almost contact metric 3-structure. When each structure is Sasakian M is
called a 3-Sasakian manifold.
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By an almost 3-cosymplectic manifold we mean an almost 3-contact metric
manifold M such that each almost contact metric structure (¢a,&n, o, 9)
is almost cosymplectic. The almost cosymplectic 3-structure (¢q, &u,s Mo, g) 18
called cosymplectic if it is normal. In this case M is said to be a 3-cosymplectic
manifold. However it has been proved recently that these two notions are
the same:

Theorem 2.1. ([10, Theorem 4.13]) Every almost 3-cosymplectic manifold
15 3-cosymplectic.

Just as in the case of a single structure, the 3-Sasakian and the 3-cosymplectic
manifolds represents the two extremal cases of the larger class of 3-quasi-
Sasakian manifolds (cf. [7]).

In any 3-cosymplectic manifold the forms 7, and ®, are harmonic ([12,
Lemma 3]). Moreover, we have that &, 1., ¢o and ®, are V-parallel. In
particular

0,85l = Ve, 5 — V6o =0 (2.4)

for all o, 3 € {1,2, 3}, so that V defines a 3-dimensional foliation F3 of M43,
Since each Reeb vector field is Killing and is parallel, such a foliation turns
out to be Riemannian with totally geodesic leaves. Concerning this foliated
structure we recall the following result.

Theorem 2.2. ([6, Corollary 3.10]) Let (M4"+3, Oas Eay Nas g) be a 3-cosymplectic
manifold. If the foliation F3 is reqular (cf. [22]), then the space of leaves
M3 ) Fs is a hyper-Kdihler manifold of dimension 4n. Consequently, every
3-cosymplectic manifold is Ricci-flat.

Remark 2.3. If we drop the assumption of regularity in Theorem 2.2 and we
assume instead that the vertical foliation has compact leaves, then the space
of leaves is a hyper-Kahler orbifold, i.e. a second countable Hausdorff space
locally modeled on finite quotients of R™. We refer to [21] for the formal
definition and properties of orbifolds and to [23] for the generalization of
geometric objects to the orbifold category.

Concerning the horizontal subbundle, note that — unlike the case of 3-

Sasakian geometry — in any 3-cosymplectic manifold H is integrable. Indeed,
for all X,Y €T (H), n, ([X,Y]) = —2dn, (X,Y) = 0 since dn, = 0.
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3. Decomposition of the cohomology of 3-cosymplectic
manifolds
In this section we investigate some algebraic properties of the de Rham
cohomology Hp (M) of a 3-cosymplectic manifold M*"*3. By the Hodge-de
Rham theory the vector space H', (M) can be identified with the vector
space Q% (M) of harmonic k-forms on M.
For o € {1, 2,3} we define linear operators A, and [, by

lo: QF (M) — QFH (M) Aot QL (M) — QF (M)
W Ny AW W e, W.

We denote by {A, B} the anticommutator AB + BA of two linear operators
A and B. From 7, (£3) = 45 it follows that

Dy 15} = . (3.1)

Moreover

{Aas Agt = {la, s} = 0. (32)
Define e, = [, A\,. Then it follows from (3.1) that e, are idempotents. In fact
€ala = laralora = =l o o Aa + LAy = €4

Moreover from (3.1) and (3.2) it follows that [e,, eg] = 0, for o # . Thus
{e1, €9, e3} are pairwise commuting idempotents.

By [8, Proposition 1] all operators [,, A,, and thus e,, preserve harmonic
forms. Now we fix £ € {0,...,4n + 3} and consider the restrictions of the
operators e, on Q% (M), a € {1,2,3}. Note that QF (M) is a finite dimen-
sional vector space over R. As e, is idempotent, its minimal polynomial
me () is a divisor of x (x — 1). Therefore the only possible eigenvalues of
e, are 0 and 1. Moreover, since m, (z) does not have multiple roots, the
operator e, is diagonalizable with 0 and 1 on the diagonal. As the operators
{e1, €9, €3} commute with each other, by [4, Proposition VII.13] they can be
simultaneously diagonalized. Define for all triples €1, €9, 3 € {0, 1}

QF (M):{wEQ'Ii,(M)|eaw:5aw,a:1,2,3}.

H,€1€2€3
Since ey, ey, e3 can be simultaneously diagonalized on Q% (M) we get that

Qr(M)= B e, (M), (3.3)

81,627836{0,1}
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Now let w € Q... (M). Then hw € Q3L _ . In fact

erliw = L liw = —M\Nljlhiw+Lhw=1[
eiw = lhew =¢eliw, a=2,3.
Similarly if w € Q’;jff@% (M), then \w € Q]}{,OEQEB (M). Therefore, we get
maps of vector spaces
liQEB: 91.21—705253 (M) - Q];{—t—115253 (M) )

)‘?EB . QI_;‘;,_].15263 (M) - Q];{,Osgeg (M) :

Now 172\ is the restriction of e; on QF"L (M) and thus (AP = id.
A Hle5e5 1M

Analogously the composition A7***1{*** is the restriction of
ll)\l =1id — )\1l1 =1id — €1

on Q% ... (M) and thus \***{7>** = 1. Thus A\{*** and [{*** are inverse isomor-
,UE2E3

phisms between the vector spaces Q. _ (M) and Q]E’f@% (M). Replacing
1 with 2, 3, and putting all together we get for every 0 < k < 4n the cube

lo
QIIC:IJ,F1100 (M) QIIC—IJ,F1210 (M)
l1 Zl
/ I3 ; /
2
QIIC{,OOO (M) Qlf?,rolm (M) l3
lo
s Uyion (M) Qi (M)
/ I /’
Iy
Iy
Qoo (M) Qi (M)

whose faces are anti-commutative and edge arrows are isomorphisms of vector
spaces. Therefore the whole information about cohomology groups of M is
contained in the vector spaces QF ,,o(M), 0 < k < 4n.

Remark 3.1. It is easy to see that Q]IC{,OOO (M) is precisely the space of all basic
harmonic forms with respect to the Reeb foliation on M.
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Denote by b} the dimension of Q’}{,OOO(M ). Then
dim Qf; 1y, = dim Qf; 5y = by, k> 3.

Therefore, from the decomposition (3.3) we get

by = b

by = b} + 3b (3.4)
by = by + 30 + 3bf

by = b +3b) | 4+ 300, + b, 3<k<d4n+3.

4. Action of s0(4,1) on the cohomology of 3-cosymplectic
manifolds

In this section we will show that Q]IC{,OOO (M) admits an action of the Lie
algebra so(4,1). This result is the odd-dimensional analogous of the one
obtained by Verbitsky in [26] about the action of so(4,1) on the cohomol-
ogy groups of a hyper-Kihler manifold M*". In fact, intuitively the space

izo Ql}{,ooo (M) can be thought of as a cohomology ring of the hyper-Kéahler
orbifold obtained from M?*"*3 by taking the quotient under the action of the
three Reeb vector fields.

For every cyclic permutation (a, (3, 7) of (1, 2, 3) we denote by =, the 2-form

1]

1
Za = 5 (®a 205 A1) (4.1)

Define the operators Ly : QF (M) — QF2 (M) and A,: Q2 (M) — QF (M)
by Low = Z4 Aw and A, := xL*.
We will give now a local description of these operators. Let

{X17 ¢1X17 ¢2X17 ¢3X17 I Xn7 ¢1Xn7 ¢2X717 ¢3X717 517 527 53}

be an orthonormal basis of vector fields in some open subset U of M. Denote
by (s the 1-form dual to X, that is (; = ¢ (X, —). Then

iéf)aXs (CbZCt) =g (X57 Qba (CbaXt)) =g (Xs, QbiXt) = _5st7 (42)
for 1 <s,t <n. Therefore the set

{Ch ¢>{Cl7 ¢§C17 ¢§C17 SR Cna ¢>{Cn7 ¢§Cﬂ7 ¢§Cﬂ7 s 12, 773} (43)
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is a basis of 1-forms on U.
Proposition 4.1. Let (o, 3,7) be a cyclic permutation of (1,2,3). Then

n

Bo =2 (G ABEC — G5Cs A DLC) — 2n5 Ay (4.4)
s=1
and therefore
Zo = ) (A GG — 653G A 61Cs) - (4.5)
s=1

Proof: Let us denote by (, ) the natural pairing between k-forms and k-
vector fields. By definition of &, we have

<(I>aa X A ¢aXs> =9 (X57 QD(QXXS) =—1
<(I)om QbﬂXs A\ ¢7Xs> =g (QbﬂXs’ ¢a¢7Xs) =g (QbﬂXs) _qbﬂXs) =—1
(Do, m5 Any) = g (Mg, banty) = g (03, —1p) = —1,

and (@, V) = 0 for any other element V' of the basis of the space of bivector
fields on U. On the other hand,

(G A 660 Xa N 6uXa) = 56 (X0 636 (60X0) = —

(85 A 83Gs, 63X N §,X,) = %q%(s (65X5) 92 (0,X) = %
1 1
(5 A 11y, € A &) = 5115 (€3) 11 (&) = 5

Note that for any k-form w on M, any vector field Y of unit norm, and p
the dual 1-form such that p(Y) = 1, we have

% (p A xw) = (=1)ImT3RED 50, (4.6)

From (4.2), (4.5), (4.6), and the fact that x> = x for odd dimensional mani-
folds, it is easy to obtain the formula

n
Ao =Y (ix,ig,x, +igyx.is x,) -
s=1
From the explicit formulas for =, and A, it follows that the operators L,
and A, commute with the operators es for any pair 1 < «, 8 < 3.
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Remark 4.2. From [3, Lemma 2.3] it follows that the operators w — &, A w
preserve harmonic forms. Since the operator w — ng A 1y A w is equal to
lgl, it also preserves harmonicity. Then, by definition of the operators L,,
they preserve harmonicity as well. Since the Hodge star * preserves harmonic
forms we get that also A, preserves them. As consequence, we can restrict
the operators L, and A, to Q0 (M). From now on, we will consider L,
and A, as endomorphisms of Q7 ;40 (M).

Define the operator H: Qoo (M) — QY 499 (M) by Hw = (2n — k) w.
Proposition 4.3. We have [Lo, Ao] = —H on ;g0 (M).

Proof: Every element of Q]IC{,OOO can be locally written as a linear combination
of wedges of elements in

{Cla ¢>{C17 ¢§C17 ¢§Cl7 SRR CTU ¢>{Cn7 ¢§CN7 ¢§CN} : (47)
We have

n

[Lom Aa] - Z (Ks A (/bj;(s At iXsi¢aXs]

s=1

— [05¢ AL A = iguxiio x.]) (4.8)

where (a, 3,7) is a cyclic permutation of (1,2,3). For any linear operators
a, b, ¢, d, we have
[ab, cd] = [ab, c] d + ¢ [ab, d]
=(a{b,c} —{a,c}b)d+ c(a{b,d} — {a,d} D)
=a{b,c}d—{a,c}bd + ca{b,d} — c{a,d} b
=a{b,ctd—{a,ctbd —ac{b,d} — c{a,d}b
+ {a,c} {b,d}. (4.9)

It is also obvious that for arbitrary a, 3 # ~:
{G A —ig,x,} =0 {¢n—ix}=1

{636 A —rig,x,} =0 {d53¢s A —sigox,} = —1 (4.10)
{pr¢s N —ix,} = 0.
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Therefore, using (4.9) we get

n

(Lo Na) =D (—04Cs Nig,x, + (o Nix, — 1

s=1
- (¢Ty<s A Z'qwas + ¢2Cs A i¢BXs) + 1)

n
=20+ (G Aix, — 5l Nig,x,
s=1

—¢5Cs Nigyx, — 95C Nig. x,) -

Now the sum in the last row operates on any fixed-degree form involving only
elements in (4.7) by multiplying the form by its degree. Hence

(Lo, Ao]w=—Hw
for all w € Q7 0. |
For every cyclic permutation («, 3,7) of (1,2, 3) we define the operator

n
Ko=) (605G Nix, + G Nig,x, + $1C Ngyx, — GG Mg x,)

s=1

Let p1,..., pr be a sequence of elements in (4.7). Then from (4.2) and
¢Z¢Z - _¢iky7 ¢E¢Z - ¢j;,

it follows that

(=" pr A AL A Ay
1

Ka(ﬂl/\"'/\Pk):

k
j:

Proposition 4.4. For any cyclic permutation (o, 3,7) of (1,2,3) we have

on Qf‘{,ooo (M)

Lo, Ag] = K, (4.11)
Lo, A] = — K. (4.12)

In particular K, is globally defined, for each o € {1,2,3}.



12 B. CAPPELLETTI MONTANO, A. DE NICOLA AND I. YUDIN

Proof: We have

n

(Lo Mgl = ([6e A @56e A =iy, ]

s=1
+ [Gs A PLC N —,ig X, ig, X, ]

- [¢E<s A ¢iky<8 N —, iXsi¢ﬁXs]
— [#5C A DG A =g x,10,x.]) -

Now, by (4.9) and (4.10) we get

n

[La, Ag] = Z (—@hCs Ngox, +Cs Mg x,

s=1

—ix, (5¢s N =) + ¢3¢ Nig, x,)

3

- Z (Cs A Z.d)st + gbj(st A /I:Xs

s=1

+¢g<5 A Z'(baXs - ¢ZC§ A Z'(bﬂXs)
K,

Equation (4.12) is proved as follows. We have

n

[La, Ay] = Z ([¢s AN OhCs A —,ix g, x.,]

s=1

+ [G A DLC A =g, X, 19y, ]
- [¢E<s A ¢:<s N =, Z'XSZ'QLYXJ

— [95C N GG N =g x.inex.]) -
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Again by (4.9) we get

(Lo, Ay] = Z (=05Cs Nig,x, — Gs Nig,x,

s=1

— P3G Nix, — i, X, (Gbikyfs A=))
= — Z (Cs Nigox, + @5Cs Nix,
s=1

G N g x, — GG N, x,)
— —Kj.

Theorem 4.5. The linear span g of the operators
{LaaAaaKaaH‘O‘ - 17273}
on Qi g0 (M) is a Lie algebra.

Proof: We have to check that g is closed under taking commutators. Clearly
it is enough to check that the commutator of any two operators from the
set { Lo, Aoy Koy H | oo =1,2,3} lies in g. It is obvious that [L,, L] = 0 and
[An, Ag] = 0 for any pair 1 < «, f < 3. Since K, does not change the degree
of forms, L, raises the degree by 2 and A, decreases the degree by 2, we get

(Ko, H] =0 (Lo, H] = 2L, [Au, H] = —2A,. (4.13)

Furthermore, by Proposition 4.3 we know that [L,, A,] = —H, and by Propo-
sition 4.4 that [L,, Ag] = K, for any cyclic permutation («, 3,7) of (1,2, 3).
Therefore it is left to check that the commutators [K,, L], [Ka, Lgl, [Ka, Adl,
(K., Lg] and [K,, K] for all pairs 1 < o, 5 < 3 lie in g.

For any cyclic permutation («, 3,7) of (1,2,3) we have

Ko, Lo) 2 [[Ls, A3, La] = [Ls, Lol , M) + (L, [As, La]]

= [Lg, K]
= —[Kp, Lg].
As (a, 3,7) is an arbitrary cyclic permutation of (1,2,3) we get also
[Kﬁ7 Lﬁ] - = [K% LV] [K% LV] - [KOU LOé]
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and combining we obtain [K,, L,] = — [K4, La], which implies [K,, L,] = 0
for all 1 < o < 3. Similarly, we have [K,, A,] = 0.
Now for any cyclical permutation («, 3,7) of (1,2,3) we have

(Ko, Lg| = = [[Ly, Al , Lg] = = [Ly, [Ag, Lg]] = = [Ly, H] = =215,
(Ko, Ly] = [[Lg, Ay], Ly] = [Lg, [Ay, Ly]] = [Lg, H] = 2Ly,
(Ko, Ag] = [[Lg, Ay, Al = [[Lg, Mgl Ay = [-H, Ay] = =24,
[Ka; Ay] = = [[Ly, Ag], Ay] = = [[Ly, A, Ap] = [H, Ag] = 2Ag,
(Ko, Kg] = [[Lg, \y], K] = [L, [Ay, K]] = [Lg, 2A0] = —2K,.

Now we prove that the Lie algebra g can be identified with the Lie algebra
so(4,1). Let us recall the definition of so(4,1). We denote by F; the matrix

diag (1,1,1,1, —1).
Then
so(4,1):={ A€ Ms(R)|AE, = —E, A"}

as a set. The Lie bracket on so(4,1) is given by the usual commutator of
matrices. We denote by e;; the matrix with 1 at the place (7, j) and zeros
elsewhere. Define for 1 <7< j <5

, o Jeistesi J=5
17 .
! ei; — ej; otherwise.

Then the set {¢;; |1 <i < j <5} is abasis of so(4,1). A direct computation
shows that

tij tie] = —tie [t tipl =t [t = —ti; i<j<k<5
[tijs tis] = —tjs [tij, tjs] = tis [tis, 5] = tij i<j<bh
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We will also use t;; to denote —t;; for 1 < < j < 4. Now for any cyclic
permutation (a, 3, ’y) of (1,2,3 We have
[tas + tas tas — tas] = [tas, —taa] + [tas, tas] = —2ts5
[toz5 + toz47 2t45 2(t ( a4l + ta5)
[t oz4a 2t45 2(t ( ad — ta5) —2 (toz5 — toz4)

)
]
]
]
[tas + taa, tps +tpa] = tag — tag =0
[tas + tad, tas — tpa] = aﬁ +tap = 2tap
[tas + taa, tys — tya] =
2t tas + tpa] = — (vmﬂg
D%wa+td==(%5+%ﬁ
[2tﬁ st tﬁ4] - ( 75T tv4)
[Qtﬁ'ya 75— tya] = 2 (tgs — tpa) -

Therefore the assignment
H — 2t45 La = ta5 + tad Aa = ta5 — tad Ka = 2t6,’y

induces an isomorphism of Lie algebras so(4,1) — g. Thus we have proved
the following result.

Theorem 4.6. The operators L., A,, o € {1,2,3}, give a structure of
so (4,1)-module on Q450 (M).

5. Action of H on Q%! (M) and Betti numbers of com-
pact 3-cosymplectic manifolds
Let U C M be an open subset and

{Cla quCla qb;Cla qb;Cla ceey Cna befna @;Cnﬁb;@a 11, 12, 773}

an orthonormal basis of 1-forms on U. Define €2, (U) as a linear span with
coefficients in C* (U) of the set

Y = {Cla ngCl? gb;Ch ¢§Cl? R CTL? QbTCn) Cb;Cn; qb;;CR} ’

Then Q37 o (U) is a subspace of Qg (U). Define the operator I, on Qg (U)
extending by linearity the map

PLA - NP Gopr N N Oppr pi,- - pr €Y.
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Proposition 5.1. The operators I, a € {1,2,3}, are well-defined on 2y, (M).
Moreover, they preserve harmonic forms. In particular, we can consider I,
as an endomorphism of Qoo (M).

Proof: For 1 < s < k, we define the operators K, ; on QF, (U) extending by
linearity the map

prA-Ape— Y (DT A A A

1<ji<<Jjs<k
NG N A
where pi,...,pr € Y. We also denote the identity operator by K,o. Then
Ky1 =K, and K, = (—1)(%1) I,. It is easy to check in local coordinates
that
KiKos=(s+1)Kqs41 —(k—s+ 1)K, 1.

These formulae can be used to show that K, s is a polynomial in K, with
constant coefficients which do not depend on the used local chart. Since K|,
are globally defined and preserve harmonic forms we get that the operators
K, s are globally defined and preserve harmonic forms for all s. In particular,
I, is a well-defined operator on €),, (M) and preserves harmonic forms. m

[t is straightforward to see that the operators I, a € {1,2, 3}, restricted to
QOHd,C(l)OO (M) satisty the same relations as the units of the quaternion algebra
H. Therefore we get

Theorem 5.2. Let k be odd. Then Ql}{,ooo (M) is an H-module.
Corollary 5.3. Let k be odd. Then bl! is divisible by 4.

Proof: Every finite dimensional module over H is a direct sum of regular
modules. As the dimension of the regular module is 4, the result follows. m

We denote by (d) the principal ideal in Z generated by d. In other words,
(d) will be the set of the integers divisible by d.

Corollary 5.4. Let M be a compact 3-cosymplectic manifold. For any odd
k we have by_1 + by, € (4).

Proof: Using (3.4) we get for k =1
bo + by = bl + b + 3b) = b +4b) € (4).
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Similarly, for k£ = 3 we get
by + by = by + 3b + 308 + b + 305 + 3b + B!
— bl 4 4bl 4 6D + 48 € (4).
Finally, for odd k£ > 5 we have
bp_y b =) |+ 300 o+ 3V b bl 3bE 4 3b b,
= b+ 4b} | +6b AL} b, € (4).

6. Inequalities on Betti numbers

In this section we give a bound from below on the Betti numbers of a
compact 3-cosymplectic manifold. We start with the following statement
about horizontal Betti numbers, which is a generalization of Wakakuwa’s
Theorem 9.1 in [27].

Proposition 6.1. Let M be a compact 3-cosymplectic manifold of dimension
dn 4+ 3. Then for 0 <k <n

k -+ 2
bl > .

Proof: Recall the definition (4.1) of the 2-forms =,. Let us fix 0 < k < n.
We consider the set

—k —k — ke
Sk = {:11 N 252 N Eg°

h+%y+@=k}

All the elements of S) can be obtained from the constant O-form 1 on M
by successive applications of operators L., a € {1,2,3}. Therefore by Re-

mark 4.2 we get Sy C Q%{k,ooo(M ). Thus to prove the proposition, it is enough

to show that S contains (k;rQ) linearly independent elements. This can be

checked locally. Let U be a trivializing neighbourhood like in Section 4. We
order the elements of the basis (4.3) of 1-forms on U by

Q<< <6< << - <P,
< P3G < < P5Gn < P3¢ < e < P3G, <My < 12 < .

Then we get an induced lexicographical ordering on the basis of Q¥ (U). By
using the local expression (4.5) of Z,, a € {1,2,3}, we see that the first basis



18 B. CAPPELLETTI MONTANO, A. DE NICOLA AND I. YUDIN

element with respect to this ordering that enters =" AZ52 AZ5* with non-zero
coefficient is

Cl A quCl A C2 A\ ¢>1FC2 JARERWAN Clﬁ A qbikclﬁ A Ck1+1 A\ ¢§Ck1+1 JAERA Ck1+k2
A O5Ck 1y N Chythgt1 N O5Chky+hg+1 A = A Choythgthes AN P3Cky +ky+-les -

Since for different triples (ki, ko, k3) such that ki + ko + k3 = k the above

basis elements are different, we get that S; contains (k;%) elements and they

are linearly independent. u

As a consequence we get the following lower bound on the Betti numbers
of a compact 3-cosymplectic manifold.

Theorem 6.2. Let M be a compact 3-cosymplectic manifold of dimension
dn + 3. Then for 0 <k <2n+1

k42
bk2(+).
5

Proof: For k = 0 we have obviously by = 1 = (;) First we consider the case
k=2l,1<1<n. Then by (3.4) and Proposition 6.1

by = bl + 305, | + 3bh, ., + bl .

> (l22)+3-0+3<l_;+2>+0
_ (z+2)(z+1)+3(z+1)z (I+1)(1+2+3l)

2 2

_ (24 2)2(2l (k + 2)

Now, suppose that &k = 2l + 1, 0 < [ < n. Then, again by (3.4) and
Proposition 6.1

b = by + 3bh; -+ 3bh,_y + by,

[+2 [—1+2
ZO—I—S(;)-I—S'O—I-( 2+)

LU0+ (Dl (1) EL+6+])
2 tTy T 2

_(20+2)(2043) _ <2l+3> _ <k+2).

2 2 2
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7. Nontrivial examples of compact 3-cosymplectic man-
ifolds

The standard example of a compact 3-cosymplectic manifold is given by the
torus T3 with the following structure (cf. [19, p.561]). Let {0y, ..., 04,13}
be a basis of 1-forms such that each 6; is integral and closed. Let us define a
Riemannian metric g on T4 by

4n+3

1=1

For each a € {1, 2,3} we define a tensor field ¢, of type (1,1) by

¢oz — Z (Ean+i & ez - Ez' & (904—1-2' + E’yn-i—i & eﬁn—i—i
=1
_Eﬁn—i-i 02y efyn-i-i) + E4n+’y & e4n+ﬁ - E4n+ﬁ ® e4n+77

where {F1, ..., Ey,13} is the dual (orthonormal) basis of {6y, ..., 04,.3} and
(e, B,7) is a cyclic permutation of {1,2,3}. Setting, for each « € {1, 2, 3},
£y = Fipia and 1y := 04,10, one can easily check that the torus T3
endowed with the structure (¢q, &q, 74, g) 18 3-cosymplectic.

On the other hand, the standard example of a noncompact 3-cosymplectic
manifold is given by R*""3 with the structure described in [6, Theorem 4.4].

Both the above examples are the global product of a hyper-Kahler manifold
with a 3-dimensional flat abelian Lie group. In fact, locally this is always
true.

Proposition 7.1. Any 3-cosymplectic manifold M*"*3 is locally the Rie-
mannian product of a hyper-Kdahler manifold N** and a 3-dimensional flat
abelian Lie group G3.

Proof: The tangent bundle of M43 splits up as the orthogonal sum of the
vertical distribution V' and the horizontal distribution H, which define Rie-
mannian foliations with totally geodesic leaves. Therefore, by the de Rham
decomposition theorem the manifold M is locally the Riemannian product of
a leaf N*" of H and a leaf G® of V. The structure tensors ¢1, ¢, ¢3 induce an
almost hyper-complex structure (Jy, Jy, J3) on N4, Furthermore, for each
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a € {1,2,3} and for all X, X’ € T(TN*") =T'(H),
1
o Ja) (X, X) = NSD(X, X') — 2dna (X, X')€, = 0,

as M*"*3 is normal and 7, is closed. Consequently, the structure is hyper-
complex. Finally, the induced metric is clearly compatible with such a hyper-
complex structure, so that N*" is hyper-Kahler. On the other hand, from
Lie group theory (see e.g. [24, p. 10]) it follows that G* is an abelian Lie
group. Since the Reeb vector fields are parallel, we get

R(&a,p)8y = Ve, Ve, &y — Ve, Ve & — Vig, 6 = 0, (7.1)
Therefore G? is flat. ]

When n = 0 of course we have no splitting, and M is necessarily a 3-torus
in the compact case, as it is shown in the following proposition.

Proposition 7.2. Suppose M3 is a compact three dimensional 3-cosymplectic
manifold. Then M? is a three dimensional torus.

Proof: First of all M? is clearly flat. Indeed, in this case the three Reeb
vector fields span all the vector fields over the ring of smooth functions.
Furthermore, they commute with each other and are parallel. Thus, similarly
to (7.1) we get R(&,,&5)E, = 0 for any triple of indices 1 < «, 3,7 < 3.

The manifold M? is orientable, since 71 A m2 A 13 # 0 is a volume form
on M3. Moreover 1, 12, 13 are three linear independent harmonic forms
of degree 1, so that b; (M 3) > 3. The complete list of compact orientable
Euclidean three-dimensional manifolds was obtained in §2-3 of [13]. The
unique manifold with by > 3 in this list is the three dimensional torus. |

Due to Proposition 7.1, it is natural to ask whether there are examples
of 3-cosymplectic manifolds which are not the global product of a hyper-
Kahler manifold with an abelian Lie group. We will give an example of a
compact 3-cosymplectic manifold in dimension seven that is not a product
of a hyper-Kahler manifold and a three-dimensional torus. Before describing
the construction, we remind the following well-known result.

Proposition 7.3. If M* is a compact four-dimensional hyper-Kdihler mani-
fold, then M* is either a K3 surface or a four dimensional torus.

Proof: From [27, Theorem 8.1] it follows that b;(M?) is even. Moreover,
since every hyper-Kihler manifold is Calabi-Yau, M* has a trivial canonical
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bundle. Therefore, by the Kodaira classification (cf. [15, Section 6A]) M* is
either a K3 surface or a 4-torus. ]

Let (M, J,,G) be a compact hyper-Kéhler manifold, where (Jy, J3, J3)
is the hyper-complex structure of M*" and G is the compatible Riemannian
metric. Let f : M* — M?" be a hyper-Kéihlerian isometry, that is f is an
isometry such that

f*OJOz:Jaof* (72)

for each o € {1,2,3}. Let us define the action ¢ of Z3 on the product
manifold M*" x R3 by

¥ ((kh k27 k3) ) (IC, tl) t27 t3)) — (flierJrkS(x)? t1+ kl) lo + k?a s + k3) .

Note that the action ¢ is free and properly discontinuous, hence the or-
bit space M}L”JFS = (M*™ x R?)/Z3 is a smooth manifold. We define a
3-cosymplectic structure on ]\4;?”+3 in the following way. Let 51 52 53 be the
vector fields on M*" x R? given by fa =

defined by 7 := §(-, &), where

at , and let 71, 72, )3 be the 1-forms

Q=G+dt1®dt1+dt2®dt2+dt3®dt3.

Let ¢, be the tensor field of type (1,1) on M*" x R3 defined as follows. Let
E be a vector field on M. We can uniquely decompose E into the sum of a
vector field X tangent to M*" and its vertical part 2221 ng(E)Es. Then we
set

~

3
G =T X + > eapyiip(E)S,.
6;’7:1

By a straightforward computation one can check that (gﬁa, éa, Na, §) defines
an almost cosymplectic 3-structure on M*" x R3. Then, normality is granted
by Theorem 2.1.

Since f is an isometry, g descends to a Riemannian metric on the quo-
tient manifold M}L”JFS. Furthermore, the vector fields 51, 52, 53, together
with their dual 1-forms 7,12, 73, are clearly invariant under the action ¢.
Finally, because of (7.2), also the endomorphisms gga induce three endomor-
phisms on the tangent spaces of M}“HB. We denote the induced structure by

(has€asNas 9), @ € {1,2,3}. Thus, (M;}”‘L?’,gba,ga,na,g) is a 3-cosymplectic
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manifold. Moreover, M}L”JFS is not in general a global product of a hyper-
Kahler manifold by the torus T?. To see this we will consider the following
more specific seven-dimensional example.

Let H be the algebra of quaternions. We consider H as a hyper-Kahler
four-dimensional manifold with a hyper-complex structure given by left mul-
tiplication by i, j, k. Define the action of Z* on H by

7« H — H
((a,b,¢,d),q) — q+ a+ bi+ cj+ dk.

By distributivity of multiplication in H this action commutes with the left
multiplication by i, j, and k. Furthermore, the Euclidean metric on H is
translation invariant. Thus the quotient space I / 74 is diffeomorphic to T*
and inherits a hyper-Kahler structure from H.

Let f: H — H be the map given by the right multiplication by i. Then
from associativity of multiplication on H it follows that f commutes with
the hyper-complex structure maps on H. Moreover, from the distributivity
of multiplication in H it follows that f induces a hyper-Kihlerian isometry

f on H/ 71
Proposition 7.4. Let M* =T* and f be as above. Then MJZ 1s not a global
product of a compact hyper-Kdihler four-manifold and the torus T3.

Proof: The idea of the proof is to compare the cohomology groups of MJZ with
the cohomology groups of spaces K* x T3, where K% is a four dimensional
hyper-Kahler manifold. Note, that by Proposition 7.3 there are only two
possibilities for K*: either K* =~ H / 74 or K* is a complex K3 surface. In
the first case the Hilbert-Poincaré series of K4 x T3 is (1 +¢)" = 1 + 7t +
21t? 4 ..., in the second case it equals

(1+ 2262 +tM (1 +1)> =14 3t +256* + . ..

We will show in Proposition 7.7 that by(Mj) < 21. This will imply that
M}l does not fail in either of two classes described above. ]

To get an estimate on bQ(MJZ) we will define a structure of C'W-complex
on M}

Recall the definition of C'W-complex (cf. [20, Definition 7.3.1]). We will
modify it by replacing the balls in R" by cubes

Q'={zeR"|0<a, <1, i=1,...,k}.
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Definition 7.5. A CW-complex is a Hausdorff space X, together with an
indexing set I for each integer £ > 0 and maps ¢*: Q¥ — X, k>0, a € I,
such that

( ) X = UkZO Uae]k CbZ(Qk);

(2) ¢k (Q )ﬂqbﬁ(@) () unless k = [ and a = f3;

(3) q§k|Qk is one-to-one;

(4) Let X* = U <, Uaer, &1 (Q7). Then ¢F (0Q%) c X*! for each k > 1
and o € A,. ’

(5) A subset Z of X is closed if and only if (¢§)_1 (Z) is closed in Q" for
each £ > 0 and a € [.

(6) For each £ > 0 and «a € I}, the set qﬁk(Qk) is contained in the union of
a finite number of sets of the form gbﬁ(Q ).

Let X be a CW-complex. Then we have the induced maps
ol 8" = Qk/an - Xk/Xk—l :

We will denote the image of this map by S*. By [20, Example 7.3.15] we get
a homeomorphism of topological spaces

F=\ ok V @ fogr— ) si= X[ xi1,

aEly aEly aEly

where \/, ., St denote the one point union (see e.g. [20], page 205). We
denote by gg the map from \/ .. S* to S’g that acts as the identity on Slg
and collapses all the other spheres to the basic point.

Now we explain how the homology groups of a CW-complex can be com-
puted. We define Cj, (X) to be the free abelian group generated by I.. Now
for every pair o € I, and 8 € I}~ we define the map d, g to be the compo-
sition

k=1 ~ ank %6 vk—1 T k—1 B bl 95 ol
e R B e VA
YEIk
We denote by [d, 3] the degree of the map d, 3. Now define the differential
9: Cp(X) = Cp1 (X) by 9(a) = > 5¢q, , [dap] B. Tt is proved in Chapter 8

of [20] that the homology groups of the complex (C, (X),d) are isomorphic
to the integral homology groups of the space X.
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Since R is torsion free and C} (X) are free Z-modules, it follows from the
universal coefficient theorem that

H, (C.(X)®zR) = H, (C, (X)) @z R = H (X), k> 0.

If X is an m-dimensional compact Riemannian manifold then we have by the
Poincaré duality

HF (X)) = Hp R (X) =2 op k(X)) 0<k<m.
Define 7: HXR3—>M} to be the composition
3 m 3 ™ 7
H xR —>(H/Z4)><R — My,

where 71 and 7w are the natural projections.
Now we describe the cellular structure on M} For every k = 0,...,7 we

denote by I}, the set of k-subsets in {1,...,7}. For every S € I and o € Q"
define g (x) to be the element of R” = H x R3, obtained from z by order
preserving placing of coordinates of x into the places s € S and putting at
all other places 0. Now we define ¢’§: QF — MJZ to be the composition 7o fg.

Proposition 7.6. The maps { qﬁg ! Sel,, k=0,..., 7} giwe a CW-complex
structure on M}

Proof: The topological space MJZ is Hausdorff since it is a manifold. Now

we show that the restriction of 7 to [0, 1)7 is a bijection. For any x € R we
denote by |z] the integral part of x and by {z} the fractional part x — | x|
of x.

Let [[q], 7] € M. Then

lq] ) = [ [qi ot | g} oo}, fas}

in MJZ by definition of the action of 73 on H / 74 x R3. Thus the restriction

of my to H/ 74 % [0,1)° is a surjection. To see that m is a bijection we note
that the map

f: H/Z4 x R? — H/Z4 x R3
(fg), ) = (|ai bl | Lo} o} s}

is Z3-invariant. Since for different points of H/ 74 x R? the values of f
are obviously different we see that the restriction of m to H/ 74 x [0, 1)% is
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injective. Similarly we can show that the restriction of m; to [0, 1)7 gives a
bijection between [0, 1)" and H /74 %0, 1)°. Thus we get that the restriction
of m on [0,1)" gives a bijection between [0,1)" and Mj.
Now we check that the maps gbg satisfy the properties of CW-structure.
(1) We have

7

JUe(Q) =00,

k=0 Sel}

which implies that the similar union with ¢% in place of 0% gives MJZ
(2) Let S € Iy and T € I;. Then the points of 0% (Qk) have non-integer

coordinates at places s € S and integer coordinates in all other places.
Similarly for the points of QZT (Ql) This implies that if S = T then

there are no common points in the sets 9@ (Qk> and 6, (Ql> As the

restriction of 7 on [0, 1)7 is a bijection the same property holds for
o (Qk> and ¢ (Ql>

(3) As 0% (Qk> c [0, 1)7 we see that the restriction of ¢% to Q* is one-to-
one, for any 0 < k <7, S € Ij.

(4) From the considerations at the beginning of the proof we can see that if
two points (¢, z), (¢, ") € HxR? are representatives of the same point
in M7 then the number of integer coordinates in (¢, ) and (¢', 2') is the
same. Now X" C M{ can be identified with those points [[g] , z] € M}
such that (¢, x) has at most k fractional coordinates. Now every point
OQF contains at least one integral coordinate. Therefore for S € I,
0% (8@’“) contains at least 7 — k + 1 = 8 — k integral coordinates,
or, in other words, at most £ — 1 non-integral coordinates. Thus
0 (8@’“) =mok (8@’“) is a subset of X*~1,

(5) If 7 € M} is closed then for any 0 < k£ < 7 and S € I}, the sets
(qblg)*l (Z) are obviously closed, as the maps ¢* are continuous. Sup-

pose now that for every 0 < k <7 and S € I} the sets (¢]§)_1 (Z) are
closed. As MJZ has the quotient topology under the projection m, we

have to show that 771 (Z) is a closed subset in H x R®. Let (g, Z,)
be a sequence in 71 (Z) that converges to (¢, Z) € H x R?. We have
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to show that (¢,7) € 71 (Z). Let i € {1,2,3}. If 2’ is fractional,
then starting from some n we have |z} | = |27|. If 2 is integer then
for infinitely many n we have z!, < LxZJ or WJ < 2!, By passing
to an appropriate subsequence we can assume that for all n either
Lxu = WJ —1or WH = LxZJ We denote the common integer part

of ¢ by Z'. Define

Then (¢, ") is a sequence of points in 7! (Z) that converges to

(¢',2'). Moreover (¢/,2") € 71 (Z) if and only if (¢,2) € 71 (Z). We
also have 0 < (/) < 1 and ' € [0,1].

Now, similarly to the considerations above, by passing to an ap-
propriate subsequence we can assume that the integer parts of the
coefficients of ¢/, does not depend on n. Denote by ¢ the quaternion
with coefficients equal to the integer parts of ¢/,. Define ¢/ = ¢, — q
and ¢" = ¢ — ¢. Then (¢/,2!) € 771 (Z) converges to (¢”,2"). More-
over, (¢",2') € 71 (Z) if and only if (¢/,z') € 7= (Z) if and only if
(q,2) e m71(2).

Let S = {1,...,7}. Note that 65: Q7 — R is the identity map
on Q7. Therefore (qbg)fl (Z) = Q"N w1 (Z). Thus the intersection
Q'Nn~ 1 (Z) is closed in Q7 and thus in R”. Since the sequence (¢, z”")
lies in Q" N7~ (Z) we get that also its limit (¢”, 2") is an element of
Q'nr 1 (Z)cnt(2).

(6) Obvious, as we have only finitely many cells at every dimension.

With the cellular structure on MJZ given in Proposition 7.6 we get

Proposition 7.7. The degree of the map dy3 5y 3y is 1. Therefore 0 ({3,5}) #
0. In particular,

by (MJZ) = dim (Hy (MJZ)) < dim (ker (02)) < 21.

Proof: Below we identify R” with H x R?. Note that X° consists of one point
[[0],0,0,0]. Therefore Xl/XO = X! Now we describe the image of 9Q?
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in X! under ¢35y We have
0Q°={(0,2)|0<z<1}U{(z,1)]0<x <1}
U{(L,x)|[0<z<1}U{(z,0)|]0<z <1}

in R?2. Now forall 0 < x <1

¢%3,5} (0,z) = [[0],2,0,0] = ¢%5} (x) € 5{15}
Olasy (2, 1) = [[2j], 1,0,0] = [[2j (1)] . 0,0,0] = [[zk], 0,0, 0]
= ¢%4} () € 5{14}
sy (L) = [[i], 2,0,0] = [[0],2,0,0] = 615, (v) € Sy
0551 (2,0) = [[23],0,0,0] = g5 () € S).
Therefore after composing ¢35y with g3y we get that for 0 <x <1

diz sy (0,2) = digsypay (2.1) = dig 53y (1,2) = [[0],0,0,0] € Spy
d{3,5}{3} (.T, 0) - [[.%'J] ,0,0, O] < 3%3}

Now it is obvious that the degree of dy35) (3} is one. u

8. Acknowledgments

The first author was partially supported by a research grant from Re-
gione Puglia. The second author is partially supported by the FCT grant
PTDC/MAT/099880/2008 and by MICIN (Spain) grant MTM2009-13383.
The last author is supported by the FCT Grant SFRH/BPD/31788/2006.
All the authors want to thank CMUC for hospitality and support.

References

[1] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967), 331—
345.

2] , Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics,
vol. 203, Birkh&auser Boston Inc., Boston, MA, 2010.

[3] D. E. Blair and S. I. Goldberg, Topology of almost contact manifolds, J. Differential Geometry
1 (1967), 347-354.

[4] N. Bourbaki, Algebra. II. Chapters /-7, Elements of Mathematics (Berlin), Springer-Verlag,
Berlin, 1990, Translated from the French by P. M. Cohn and J. Howie.

[5] Charles P. Boyer and Krzysztof Galicki, Sasakian geometry, Oxford Mathematical Mono-
graphs, Oxford University Press, Oxford, 2008.

[6] B. Cappelletti Montano and A. De Nicola, 3-Sasakian manifolds, 3-cosymplectic manifolds
and Darbouz theorem, J. Geom. Phys. 57 (2007), no. 12, 2509-2520.




28

[7]

[16]

B. CAPPELLETTI MONTANO, A. DE NICOLA AND I. YUDIN

B. Cappelletti Montano, A. De Nicola, and G. Dileo, The geometry of 3-quasi-Sasakian man-
ifolds, Internat. J. Math. 20 (2009), no. 9, 1081-1105.

D. Chinea, M. de Le6n, and J. C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures
Appl. (9) 72 (1993), no. 6, 567-591.

S. Dragomir and L. Ornea, Locally conformal Kdahler geometry, Progress in Mathematics, vol.
155, Birkh&user Boston Inc., Boston, MA, 1998.

M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian submersions and related topics, World
Scientific Publishing Co. Inc., River Edge, NJ, 2004.

A. Fino and L. Vezzoni, Some results on cosymplectic manifolds, Geom. Dedicata 121 (2011),
41-58.

S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math.
31 (1969), 373-382.

W. Hantzsche and H. Wendt, Dreidimensionale euklidische Raumformen, Math. Ann. 110
(1935), no. 1, 593-611.

J. Janyska and M. Modugno, Generalized geometrical structures of odd dimensional manifolds,
J. Math. Pures Appl. (9) 91 (2009), no. 2, 211-232.

K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86
(1964), 751-798.

Ying-yan Kuo, On almost contact 3-structure, Téhoku Math. J. (2) 22 (1970), 325-332.
Hongjun Li, Topology of co-symplectic/co-Kdahler manifolds, Asian J. Math. 12 (2008), no. 4,
527-543.

J. C. Marrero and E. Padron, New examples of compact cosymplectic solvmanifolds, Arch.
Math. (Brno) 34 (1998), no. 3, 337-345.

F. Martin Cabrera, Almost hyper-Hermitian structures in bundle spaces over manifolds with
almost contact 3-structure, Czechoslovak Math. J. 48(123) (1998), no. 3, 545-563.

C. R. F. Maunder, Algebraic topology, Cambridge University Press, Cambridge, 1980.

P. Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhduser Boston Inc.,
Boston, MA, 1988, Translated from the French by Grant Cairns, With appendices by Cairns,
Y. Carritre, E. Ghys, E. Salem and V. Sergiescu.

R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer.
Math. Soc. No. 22 (1957), iii+123.

I. Satake, The Gauss-Bonnet theorem for V -manifolds, J. Math. Soc. Japan 9 (1957), 464-492.
F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Math-
ematical Society Lecture Note Series, vol. 83, Cambridge University Press, Cambridge, 1983.
C. Udriste, Structures presque coquaternioniennes, Bull. Math. Soc. Sci. Math. R. S. Roumanie
(N.S.) 13(61) (1969), no. 4, 487-507 (1970).

M. S. Verbitskii, Action of the Lie algebra of SO(5) on the cohomology of a hyper-Kdhler
manifold, Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 70-71.

H. Wakakuwa, On Riemannian manifolds with homogeneous holonomy group Sp(n), Téhoku
Math. J. (2) 10 (1958), 274-303.

BENIAMINO CAPPELLETTI MONTANO
DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSTA DEGLI STUDI DI CAGLIARI, VIA Os-
PEDALE 72, 09124 CAGLIARI

E-mail address: b.cappellettimontano@gmail.com

ANTONIO DE NIicoLa
CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, COIMBRA, PORTUGAL



TOPOLOGY OF 3-COSYMPLECTIC MANIFOLDS 29

E-mail address: antondenicola@gmail.com

IVvAN YUDIN
CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, 3001-454 COIMBRA, PORTUGAL

E-mail address: yudin@mat.uc.pt



