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Abstract: We find a quaternionic module structure on the odd cohomology spaces
of compact 3-cosymplectic manifolds. This gives rise to some topological obstruc-
tions to the existence of such structures, expressed by stronger bounds on the Betti
numbers compared to those known for the hyper-Kähler case. Nevertheless, we
present a nontrivial example of compact 3-cosymplectic manifold which is not the
global product of a hyper-Kähler manifold and a flat 3-torus. We also show that
there is an action of the Lie algebra so(4, 1) on the cohomology spaces of a compact
3-cosymplectic manifold which is the odd-dimensional counterpart of the result of
Verbitsky for hyper-Kähler manifolds.
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1. Introduction
Cosymplectic geometry is considered to be the closest odd-dimensional ana-

logue of Kähler geometry (see e.g. [2, Section 6.5], [9, Section 14.5]). This
becomes even more evident when one passes to the setting of 3-structures.
Indeed, while both cosymplectic and Sasakian manifolds admit a transver-
sal Kähler structure, only 3-cosymplectic manifolds do admit a transversal
hyper-Kähler structure (cf. [6, Theorem 3.8]).

In the fundamental paper [8], Chinea, De León and Marrero studied the
topology of cosymplectic manifolds, refining the previous results of Blair and
Goldberg ([3]). They proved a monotonicity result for the Betti numbers of
a compact cosymplectic manifold M2n+1 up to the middle dimension. Next,
the differences b2p+1 − b2p (with 0 ≤ p ≤ n) were shown to be even integers
(in particular, b1 is odd). Moreover, they found an example of a compact
cosymplectic manifold which is not the global product of a Kähler manifold
and the circle. Later on, other nontrivial examples were provided (cf. [18,
11]). More recently, Li ([17]) gave an alternative proof of the monotonicity
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property of the Betti numbers of cosymplectic manifolds (which he prefers
to call co-Kähler) by using topological techniques.

A 3-cosymplectic manifold (see e.g. [5, Section 13.1]) is a smooth manifold
endowed with an almost contact metric 3-structure such that each structure
is cosymplectic. This class of manifolds is contained in the wider class of
3-quasi Sasakian manifolds. Every 3-cosymplectic manifold is in particular
cosymplectic hence all the previously mentioned results still hold. A natural
problem is whether the quaternionic-like conditions which relate the struc-
ture tensors of 3-cosymplectic manifolds can induce additional rigidity to the
underlying topological structure. The aim of this paper is to give an an-
swer to this question. First of all, we find a suitable decomposition of the
cohomology spaces of any compact 3-cosymplectic manifold M , as well as a
family of isomorphisms relating some of the components. This leads to the
following key relation between the Betti numbers of the de Rham cohomology
of the manifold and the dimensions bh

p of the spaces Ωp
H,000 (M) of horizontal

harmonic p-forms

bp = bh
p + 3bh

p−1 + 3bh
p−2 + bh

p−3. (1.1)

Moreover, we prove that the graded vector space Ω∗
H,000 (M) of horizontal

harmonic forms admits an action of the Lie algebra so (4, 1). This is the
odd dimensional counterpart of the remarkable result obtained by Verbitsky
in [26] for the cohomology ring of a compact hyper-Kähler manifold.

In Theorem 5.2 we show that the spaces Ωp
H,000 (M) also admit an H-module

structure for odd p. As a consequence the odd horizontal Betti numbers bh
2p+1

are divisible by four. Combining this with (1.1) we get that

b2p + b2p+1 = 4k

for some integer k. We also recover the lower bound of Wakakuwa [27] on
the even Betti numbers of compact hyper-Kähler manifolds for the horizontal
Betti numbers of compact 3-cosymplectic manifolds

bh
2p ≥

(
p + 2

2

)
for 0 ≤ p ≤ n.

Furthermore, for the Betti numbers of a compact 3-cosymplectic manifold
we obtain the following stronger lower bound

bp ≥

(
p + 2

2

)
for 0 ≤ p ≤ 2n + 1.
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All results on the Betti numbers could also be derived from the existence of
a so(4, 1)-action on the space Ω∗

H,000 (M) by the use of representation theory.
However, we chose a more elementary approach in this article.

From the above considerations one can see that there are strong obstruc-
tions to the existence of compact 3-cosymplectic manifolds. On the other
hand, every compact 3-cosymplectic manifold is a local Riemannian product
of a hyper-Kähler factor and an abelian three dimensional Lie group. This
probably explains why so far the only known examples of such manifolds in
the compact case were global Riemannian products of compact hyper-Kähler
manifolds with the flat 3-torus. However, we provide a method for construct-
ing compact 3-cosymplectic manifolds exhibiting at least one example which
is not the global product of a compact hyper-Kähler manifold with the flat
3-torus.

2. Preliminaries
An almost contact manifold is an odd-dimensional manifold M which car-

ries a field φ of endomorphisms of the tangent spaces, a vector field ξ, called
characteristic or Reeb vector field, and a 1-form η satisfying

φ2 = −I + η ⊗ ξ, η (ξ) = 1,

where I : TM → TM is the identity mapping. From the definition it follows
that φξ = 0, η ◦ φ = 0 and that the (1, 1)-tensor field φ has constant rank
2n (cf. [2]). An almost contact manifold (M, φ, ξ, η) is said to be normal
when the tensor field Nφ = [φ, φ] + 2dη ⊗ ξ vanishes identically, where [φ, φ]
is the Nijenhuis torsion of φ. It is known that any almost contact manifold
(M, φ, ξ, η) admits a Riemannian metric g such that

g (φE, φF ) = g (E, F ) − η (E) η (F ) (2.1)

holds for all E, F ∈ Γ (TM). This metric g is called a compatible metric and
the manifold M together with the structure (φ, ξ, η, g) is called an almost
contact metric manifold. As an immediate consequence of (2.1), one has
η = g (·, ξ) and g (φE, F ) = −g (E, φF ). Hence Φ (E, F ) = g (E, φF ) defines
a 2-form, which is called the fundamental 2-form of M . Almost contact met-
ric manifolds such that both η and Φ are closed are called almost cosymplectic
manifolds and those for which dη = Φ are called contact metric manifolds.
Finally, a normal almost cosymplectic manifold is called a cosymplectic man-
ifold, and a normal contact metric manifold is said to be a Sasakian manifold.
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In terms of the covariant derivative of φ, the cosymplectic and the Sasakian
conditions can be expressed respectively by

∇φ = 0

and
(∇Eφ) F = g (E, F ) ξ − η (F ) E,

for all E, F ∈ Γ (TM).
It should be noted that both in Sasakian and in cosymplectic manifolds ξ

is a Killing vector field. The Sasakian and the cosymplectic manifolds repre-
sents the two extremal cases of the larger class of quasi-Sasakian manifolds
(cf. [1]). Recently, a study of geometrical structures of odd dimensional
manifolds generalizing cosymplectic and quasi-Sasakian structures from the
non-metric point of view has been presented in [14].

An almost contact 3-structure on a (4n + 3)-dimensional smooth mani-
fold M is given by three almost contact structures (φ1, ξ1, η1), (φ2, ξ2, η2),
(φ3, ξ3, η3) satisfying the following relations, for every α, β ∈ {1, 2, 3},

φαφβ − ηβ ⊗ ξα =

3∑

γ=1

ǫαβγφγ − δαβI, (2.2)

φαξβ =
3∑

γ=1

ǫαβγξγ, ηα ◦ φβ =
3∑

γ=1

ǫαβγηγ, (2.3)

where ǫαβγ is the totally antisymmetric symbol. This notion was introduced
by Kuo ([16]) and, independently, by Udriste ([25]). In [16] Kuo proved that
given an almost contact 3-structure (φα, ξα, ηα), α ∈ {1, 2, 3}, there exists a
Riemannian metric g compatible with each of the structures and hence we
can speak of almost contact metric 3-structure. It is well known that in any
almost 3-contact manifold the Reeb vector fields ξ1, ξ2, ξ3 are orthonormal
with respect to any compatible metric g and that the structural group of the
tangent bundle is reducible to Sp (n) × {I3}. Moreover, the tangent bundle
of any almost 3-contact metric manifold splits up as the orthogonal sum
TM = H ⊕ V, where the 4n-dimensional subbundle H =

⋂3
α=1 ker (ηα) is

called the horizontal distribution and V = 〈ξ1, ξ2, ξ3〉 is called the vertical (or
Reeb) distribution. An almost 3-contact manifold M is said to be normal
if each almost contact structure (φα, ξα, ηα) is normal. Let (φα, ξα, ηα, g) be
an almost contact metric 3-structure. When each structure is Sasakian M is
called a 3-Sasakian manifold.
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By an almost 3-cosymplectic manifold we mean an almost 3-contact metric
manifold M such that each almost contact metric structure (φα, ξα, ηα, g)
is almost cosymplectic. The almost cosymplectic 3-structure (φα, ξα, ηα, g) is
called cosymplectic if it is normal. In this case M is said to be a 3-cosymplectic
manifold. However it has been proved recently that these two notions are
the same:

Theorem 2.1. ([10, Theorem 4.13]) Every almost 3-cosymplectic manifold
is 3-cosymplectic.

Just as in the case of a single structure, the 3-Sasakian and the 3-cosymplectic
manifolds represents the two extremal cases of the larger class of 3-quasi-
Sasakian manifolds (cf. [7]).

In any 3-cosymplectic manifold the forms ηα and Φα are harmonic ([12,
Lemma 3]). Moreover, we have that ξα, ηα, φα and Φα are ∇-parallel. In
particular

[ξα, ξβ] = ∇ξα
ξβ −∇ξβ

ξα = 0 (2.4)

for all α, β ∈ {1, 2, 3}, so that V defines a 3-dimensional foliationF3 of M4n+3.
Since each Reeb vector field is Killing and is parallel, such a foliation turns
out to be Riemannian with totally geodesic leaves. Concerning this foliated
structure we recall the following result.

Theorem 2.2. ([6, Corollary 3.10]) Let
(
M4n+3, φα, ξα, ηα, g

)
be a 3-cosymplectic

manifold. If the foliation F3 is regular (cf. [22]), then the space of leaves
M4n+3/F3 is a hyper-Kähler manifold of dimension 4n. Consequently, every
3-cosymplectic manifold is Ricci-flat.

Remark 2.3. If we drop the assumption of regularity in Theorem 2.2 and we
assume instead that the vertical foliation has compact leaves, then the space
of leaves is a hyper-Kähler orbifold, i.e. a second countable Hausdorff space
locally modeled on finite quotients of R

m. We refer to [21] for the formal
definition and properties of orbifolds and to [23] for the generalization of
geometric objects to the orbifold category.

Concerning the horizontal subbundle, note that — unlike the case of 3-
Sasakian geometry — in any 3-cosymplectic manifoldH is integrable. Indeed,
for all X, Y ∈ Γ (H), ηα ([X, Y ]) = −2dηα (X, Y ) = 0 since dηα = 0.
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3. Decomposition of the cohomology of 3-cosymplectic
manifolds

In this section we investigate some algebraic properties of the de Rham
cohomology H∗

dR (M) of a 3-cosymplectic manifold M4n+3. By the Hodge-de
Rham theory the vector space Hk

dR (M) can be identified with the vector
space Ωk

H (M) of harmonic k-forms on M .
For α ∈ {1, 2, 3} we define linear operators λα and lα by

lα : Ωk (M) → Ωk+1 (M) λα : Ωk+1 (M) → Ωk (M)

ω 7→ ηα ∧ ω ω 7→ iξα
ω.

We denote by {A, B} the anticommutator AB + BA of two linear operators
A and B. From ηα (ξβ) = δαβ it follows that

{λα, lβ} = δαβ. (3.1)

Moreover

{λα, λβ} = {lα, lβ} = 0. (3.2)

Define eα = lαλα. Then it follows from (3.1) that eα are idempotents. In fact

eαeα = lαλαlαλα = −lαlαλαλα + lαλα = eα.

Moreover from (3.1) and (3.2) it follows that [eα, eβ] = 0, for α 6= β. Thus
{e1, e2, e3} are pairwise commuting idempotents.

By [8, Proposition 1] all operators lα, λα, and thus eα, preserve harmonic
forms. Now we fix k ∈ {0, . . . , 4n + 3} and consider the restrictions of the
operators eα on Ωk

H (M), α ∈ {1, 2, 3}. Note that Ωk
H (M) is a finite dimen-

sional vector space over R. As eα is idempotent, its minimal polynomial
mα (x) is a divisor of x (x − 1). Therefore the only possible eigenvalues of
eα are 0 and 1. Moreover, since mα (x) does not have multiple roots, the
operator eα is diagonalizable with 0 and 1 on the diagonal. As the operators
{e1, e2, e3} commute with each other, by [4, Proposition VII.13] they can be
simultaneously diagonalized. Define for all triples ε1, ε2, ε3 ∈ {0, 1}

Ωk
H,ε1ε2ε3

(M) =
{

ω ∈ Ωk
H (M)

∣∣ eαω = εαω, α = 1, 2, 3
}

.

Since e1, e2, e3 can be simultaneously diagonalized on Ωk
H (M) we get that

Ωk
H (M) =

⊕

ε1,ε2,ε3∈{0,1}

Ωk
H,ε1ε2ε3

(M) . (3.3)
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Now let ω ∈ Ωk
H,0ε2ε3

(M). Then l1ω ∈ Ωk+1
H,1ε2ε3

. In fact

e1l1ω = l1λ1l1ω = −λ1l1l1ω + l1ω = l1

eαl1ω = l1eαω = εαl1ω, α = 2, 3.

Similarly if ω ∈ Ωk+1
H,1ε2ε3

(M), then λ1ω ∈ Ωk
H,0ε2ε3

(M). Therefore, we get
maps of vector spaces

lε2ε3

1 : Ωk
H,0ε2ε3

(M) → Ωk+1
H,1ε2ε3

(M) ,

λε2ε3

1 : Ωk+1
H,1ε2ε3

(M) → Ωk
H,0ε2ε3

(M) .

Now lε2ε3

1 λε2ε3

1 is the restriction of e1 on Ωk+1
H,1ε2ε3

(M) and thus lε2ε3

1 λε2ε3

1 = id.
Analogously the composition λε2ε3

1 lε2ε3

1 is the restriction of

l1λ1 = id − λ1l1 = id − e1

on Ωk
H,0ε2ε3

(M) and thus λε2ε3

1 lε2ε3

1 = 1. Thus λε2ε3

1 and lε2ε3

1 are inverse isomor-

phisms between the vector spaces Ωk
H,0ε2ε3

(M) and Ωk+1
H,1ε2ε3

(M). Replacing
1 with 2, 3, and putting all together we get for every 0 ≤ k ≤ 4n the cube

Ωk+1
H,100 (M)

l2
//

l3

��

Ωk+2
H,110 (M)

l3

��

Ωk
H,000 (M)

l2
//

l3

��

l1
77

p
p

p
p

p
p

p
p

p
p

p

Ωk+1
H,010 (M)

l3

��

l1
77

p
p

p
p

p
p

p
p

p
p

p

Ωk+2
H,101 (M)

l2
// Ωk+3

H,111 (M)

Ωk+1
H,001 (M)

l2
//

l1
77

p
p

p
p

p
p

p
p

p
p

p

Ωk+2
H,011 (M)

l1

77
p

p
p

p
p

p
p

p
p

p
p

whose faces are anti-commutative and edge arrows are isomorphisms of vector
spaces. Therefore the whole information about cohomology groups of M is
contained in the vector spaces Ωk

H,000(M), 0 ≤ k ≤ 4n.

Remark 3.1. It is easy to see that Ωk
H,000 (M) is precisely the space of all basic

harmonic forms with respect to the Reeb foliation on M .
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Denote by bh
k the dimension of Ωk

H,000(M). Then

dimΩk
H,100 = dimΩk

H,010 = dimΩk
H,001 = dimΩk−1

H,000 = bh
k−1 k ≥ 1

dimΩk
H,110 = dimΩk

H,101 = dimΩk
H,011 = dimΩk−2

H,000 = bh
k−2 k ≥ 2

dimΩk
H,111 = dimΩk−3

H,000 = bh
k−3 k ≥ 3.

Therefore, from the decomposition (3.3) we get

b0 = bh
0

b1 = bh
1 + 3bh

0 (3.4)

b2 = bh
2 + 3bh

1 + 3bh
0

bk = bh
k + 3bh

k−1 + 3bh
k−2 + bh

k−3 3 ≤ k ≤ 4n + 3.

4. Action of so (4, 1) on the cohomology of 3-cosymplectic
manifolds

In this section we will show that Ωk
H,000 (M) admits an action of the Lie

algebra so (4, 1). This result is the odd-dimensional analogous of the one
obtained by Verbitsky in [26] about the action of so (4, 1) on the cohomol-
ogy groups of a hyper-Kähler manifold M4n. In fact, intuitively the space⊕4n

k=0 Ωk
H,000 (M) can be thought of as a cohomology ring of the hyper-Kähler

orbifold obtained from M4n+3 by taking the quotient under the action of the
three Reeb vector fields.

For every cyclic permutation (α, β, γ) of (1, 2, 3) we denote by Ξα the 2-form

Ξα :=
1

2
(Φα + 2ηβ ∧ ηγ) . (4.1)

Define the operators Lα : Ωk (M) → Ωk+2 (M) and Λα : Ωk+2 (M) → Ωk (M)
by Lαω = Ξα ∧ ω and Λα := ∗Lα∗.

We will give now a local description of these operators. Let

{X1, φ1X1, φ2X1, φ3X1, . . . , Xn, φ1Xn, φ2Xn, φ3Xn, ξ1, ξ2, ξ3}

be an orthonormal basis of vector fields in some open subset U of M . Denote
by ζs the 1-form dual to Xs, that is ζs = g (Xs,−). Then

iφαXs
(φ∗

αζt) = g (Xs, φα (φαXt)) = g
(
Xs, φ

2
αXt

)
= −δst, (4.2)

for 1 ≤ s, t ≤ n. Therefore the set

{ζ1, φ
∗
1ζ1, φ

∗
2ζ1, φ

∗
3ζ1, . . . , ζn, φ

∗
1ζn, φ

∗
2ζn, φ

∗
3ζn, η1, η2, η3} (4.3)
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is a basis of 1-forms on U .

Proposition 4.1. Let (α, β, γ) be a cyclic permutation of (1, 2, 3). Then

Φα = 2

n∑

s=1

(
ζs ∧ φ∗

αζs − φ∗
βζs ∧ φ∗

γζs

)
− 2ηβ ∧ ηγ (4.4)

and therefore

Ξα =

n∑

s=1

(
ζs ∧ φ∗

αζs − φ∗
βζs ∧ φ∗

γζs

)
. (4.5)

Proof : Let us denote by 〈 , 〉 the natural pairing between k-forms and k-
vector fields. By definition of Φα we have

〈Φα, Xs ∧ φαXs〉 = g
(
Xs, φ

2
αXs

)
= −1

〈Φα, φβXs ∧ φγXs〉 = g (φβXs, φαφγXs) = g (φβXs,−φβXs) = −1

〈Φα, ηβ ∧ ηγ〉 = g (ηβ, φαηγ) = g (ηβ,−ηβ) = −1,

and 〈Φα, V 〉 = 0 for any other element V of the basis of the space of bivector
fields on U . On the other hand,

〈ζs ∧ φ∗
αζs, Xs ∧ φαXs〉 =

1

2
ζs (Xs)φ∗

αζs (φαXs) = −
1

2
〈
φ∗

βζs ∧ φ∗
γζs, φβXs ∧ φγXs

〉
=

1

2
φ∗

βζs (φβXs) φ∗
γζs (φγXs) =

1

2

〈ηβ ∧ ηγ, ξβ ∧ ξγ〉 =
1

2
ηβ (ξβ) ηγ (ξγ) =

1

2
.

Note that for any k-form ω on M , any vector field Y of unit norm, and ρ
the dual 1-form such that ρ (Y ) = 1, we have

∗ (ρ ∧ ∗ω) = (−1)(4n+3−k)(k−1) iY ω. (4.6)

From (4.2), (4.5), (4.6), and the fact that ∗2 = ∗ for odd dimensional mani-
folds, it is easy to obtain the formula

Λα =

n∑

s=1

(
iXs

iφαXs
+ iφβXs

iφγXs

)
.

From the explicit formulas for Ξα and Λα it follows that the operators Lα

and Λα commute with the operators eβ for any pair 1 ≤ α, β ≤ 3.
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Remark 4.2. From [3, Lemma 2.3] it follows that the operators ω 7→ Φα ∧ ω
preserve harmonic forms. Since the operator ω 7→ ηβ ∧ ηγ ∧ ω is equal to
lβlγ, it also preserves harmonicity. Then, by definition of the operators Lα,
they preserve harmonicity as well. Since the Hodge star ∗ preserves harmonic
forms we get that also Λα preserves them. As consequence, we can restrict
the operators Lα and Λα to Ω∗

H,000 (M). From now on, we will consider Lα

and Λα as endomorphisms of Ω∗
H,000 (M).

Define the operator H : Ωk
H,000 (M) → Ωk

H,000 (M) by Hω = (2n − k)ω.

Proposition 4.3. We have [Lα, Λα] = −H on Ω∗
H,000 (M).

Proof : Every element of Ωk
H,000 can be locally written as a linear combination

of wedges of elements in

{ζ1, φ
∗
1ζ1, φ

∗
2ζ1, φ

∗
3ζ1, . . . , ζn, φ

∗
1ζn, φ

∗
2ζn, φ

∗
3ζn} . (4.7)

We have

[Lα, Λα] =
n∑

s=1

([ζs ∧ φ∗
αζs ∧ −, iXs

iφαXs
]

−
[
φ∗

βζs ∧ φ∗
γζs ∧ −, iφβXs

iφγXs

])
, (4.8)

where (α, β, γ) is a cyclic permutation of (1, 2, 3). For any linear operators
a, b, c, d, we have

[ab, cd] = [ab, c] d + c [ab, d]

= (a {b, c} − {a, c} b) d + c (a {b, d} − {a, d} b)

=a {b, c} d − {a, c} bd + ca {b, d} − c {a, d} b

=a {b, c} d − {a, c} bd − ac {b, d} − c {a, d} b

+ {a, c} {b, d} . (4.9)

It is also obvious that for arbitrary α, β 6= γ:

{ζs ∧ −, iφαXs
} = 0 {ζs ∧ −, iXs

} = 1
{
φ∗

βζs ∧ −, iφγXs

}
= 0

{
φ∗

βζs ∧ −, iφβXs

}
= −1 (4.10)

{φ∗
αζs ∧ −, iXs

} = 0.
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Therefore, using (4.9) we get

[Lα, Λα] =
n∑

s=1

(−φ∗
αζs ∧ iφαXs

+ ζs ∧ iXs
− 1

−
(
φ∗

γζs ∧ iφγXs
+ φ∗

βζs ∧ iφβXs

)
+ 1

)

= − 2n +
n∑

s=1

(ζs ∧ iXs
− φ∗

αζs ∧ iφαXs

−φ∗
βζs ∧ iφβXs

− φ∗
γζs ∧ iφγXs

)
.

Now the sum in the last row operates on any fixed-degree form involving only
elements in (4.7) by multiplying the form by its degree. Hence

[Lα, Λα] ω = −Hω

for all ω ∈ Ω∗
H,000.

For every cyclic permutation (α, β, γ) of (1, 2, 3) we define the operator

Kα =

n∑

s=1

(
φ∗

αζs ∧ iXs
+ ζs ∧ iφαXs

+ φ∗
γζs ∧ iφβXs

− φ∗
βζs ∧ iφγXs

)
.

Let ρ1,. . . , ρk be a sequence of elements in (4.7). Then from (4.2) and

φ∗
αφ∗

β = −φ∗
γ, φ∗

βφ
∗
α = φ∗

γ,

it follows that

Kα (ρ1 ∧ · · · ∧ ρk) =
k∑

j=1

(−1)j+1 ρ1 ∧ · · · ∧ φ∗
αρj ∧ · · · ∧ ρk.

Proposition 4.4. For any cyclic permutation (α, β, γ) of (1, 2, 3) we have
on Ω∗

H,000 (M)

[Lα, Λβ] = Kγ (4.11)

[Lα, Λγ] = −Kβ. (4.12)

In particular Kα is globally defined, for each α ∈ {1, 2, 3}.
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Proof : We have

[Lα, Λβ] =
n∑

s=1

([
ζs ∧ φ∗

αζs ∧ −, iXs
iφβXs

]

+
[
ζs ∧ φ∗

αζs ∧ −, iφγXs
iφαXs

]

−
[
φ∗

βζs ∧ φ∗
γζs ∧ −, iXs

iφβXs

]

−
[
φ∗

βζs ∧ φ∗
γζs ∧ −, iφγXs

iφαXs

])
.

Now, by (4.9) and (4.10) we get

[Lα, Λβ] =

n∑

s=1

(
−φ∗

αζs ∧ iφβXs
+ ζs ∧ iφγXs

−iXs

(
φ∗

γζs ∧ −
)

+ φ∗
βζs ∧ iφαXs

)

=
n∑

s=1

(
ζs ∧ iφγXs

+ φ∗
γζs ∧ iXs

+φ∗
βζs ∧ iφαXs

− φ∗
αζs ∧ iφβXs

)

= Kγ.

Equation (4.12) is proved as follows. We have

[Lα, Λγ] =
n∑

s=1

([
ζs ∧ φ∗

αζs ∧ −, iXs
iφγXs

]

+
[
ζs ∧ φ∗

αζs ∧ −, iφαXs
iφβXs

]

−
[
φ∗

βζs ∧ φ∗
γζs ∧ −, iXs

iφγXs

]

−
[
φ∗

βζs ∧ φ∗
γζs ∧ −, iφαXs

iφβXs

])
.
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Again by (4.9) we get

[Lα, Λγ] =
n∑

s=1

(
−φ∗

αζs ∧ iφγXs
− ζs ∧ iφβXs

−φ∗
βζs ∧ iXs

− iφαXs

(
φ∗

γζs ∧ −
))

= −
n∑

s=1

(
ζs ∧ iφβXs

+ φ∗
βζs ∧ iXs

+φ∗
αζs ∧ iφγXs

− φ∗
γζs ∧ iφαXs

.
)

= −Kβ.

Theorem 4.5. The linear span g of the operators

{Lα, Λα, Kα, H |α = 1, 2, 3}

on Ω∗
H,000 (M) is a Lie algebra.

Proof : We have to check that g is closed under taking commutators. Clearly
it is enough to check that the commutator of any two operators from the
set {Lα, Λα, Kα, H |α = 1, 2, 3} lies in g. It is obvious that [Lα, Lβ] = 0 and
[Λα, Λβ] = 0 for any pair 1 ≤ α, β ≤ 3. Since Kα does not change the degree
of forms, Lα raises the degree by 2 and Λα decreases the degree by 2, we get

[Kα, H] = 0 [Lα, H] = 2Lα [Λα, H] = −2Λα. (4.13)

Furthermore, by Proposition 4.3 we know that [Lα, Λα] = −H, and by Propo-
sition 4.4 that [Lα, Λβ] = Kγ for any cyclic permutation (α, β, γ) of (1, 2, 3).
Therefore it is left to check that the commutators [Kα, Lα], [Kα, Lβ], [Kα, Λα],
[Kα, Lβ] and [Kα, Kβ] for all pairs 1 ≤ α, β ≤ 3 lie in g.

For any cyclic permutation (α, β, γ) of (1, 2, 3) we have

[Kα, Lα]
(4.12)
== [[Lβ, Λγ] , Lα] = [[Lβ, Lα] , Λγ] + [Lβ, [Λγ, Lα]]

= [Lβ, Kβ]

= −[Kβ, Lβ].

As (α, β, γ) is an arbitrary cyclic permutation of (1, 2, 3) we get also

[Kβ, Lβ] = − [Kγ, Lγ] [Kγ, Lγ] = − [Kα, Lα]
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and combining we obtain [Kα, Lα] = − [Kα, Lα], which implies [Kα, Lα] = 0
for all 1 ≤ α ≤ 3. Similarly, we have [Kα, Λα] = 0.

Now for any cyclical permutation (α, β, γ) of (1, 2, 3) we have

[Kα, Lβ] = − [[Lγ, Λβ] , Lβ] = − [Lγ, [Λβ, Lβ]] = − [Lγ, H] = −2Lγ,

[Kα, Lγ] = [[Lβ, Λγ] , Lγ] = [Lβ, [Λγ, Lγ]] = [Lβ, H] = 2Lβ,

[Kα, Λβ] = [[Lβ, Λγ] , Λβ] = [[Lβ, Λβ] , Λγ] = [−H, Λγ] = −2Λγ,

[Kα, Λγ] = − [[Lγ, Λβ] , Λγ] = − [[Lγ, Λγ] , Λβ] = [H, Λβ] = 2Λβ,

[Kα, Kβ] = [[Lβ, Λγ] , Kβ] = [Lβ, [Λγ, Kβ]] = [Lβ, 2Λα] = −2Kγ.

Now we prove that the Lie algebra g can be identified with the Lie algebra
so (4, 1). Let us recall the definition of so (4, 1). We denote by E1 the matrix

diag (1, 1, 1, 1,−1) .

Then

so (4, 1) :=
{

A ∈ M5 (R)
∣∣ AE1 = −E1A

t
}

as a set. The Lie bracket on so (4, 1) is given by the usual commutator of
matrices. We denote by eij the matrix with 1 at the place (i, j) and zeros
elsewhere. Define for 1 ≤ i < j ≤ 5

tij =

{
ei5 + e5i j = 5

eij − eji otherwise.

Then the set { tij | 1 ≤ i < j ≤ 5} is a basis of so (4, 1). A direct computation
shows that

[tij, tik] = −tjk [tij, tjk] = tik [tik, tjk] = −tij i < j < k < 5

[tij, ti5] = −tj5 [tij, tj5] = ti5 [ti5, tj5] = tij i < j < 5
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We will also use tji to denote −tij for 1 ≤ i < j ≤ 4. Now for any cyclic
permutation (α, β, γ) of (1, 2, 3) we have

[tα5 + tα4, tα5 − tα4] = [tα5,−tα4] + [tα4, tα5] = −2t45

[tα5 + tα4, 2t45] = 2 (tα4 + tα5)

[tα5 − tα4, 2t45] = 2 (tα4 − tα5) = −2 (tα5 − tα4)

[tα5 + tα4, tβ5 + tβ4] = tα,β − tα,β = 0

[tα5 + tα4, tβ5 − tβ4] = tα,β + tα,β = 2tα,β

[tα5 + tα4, tγ5 − tγ4] = −2tγ,α

[2tβ,γ, tβ5 + tβ4] = −2
(
tγ5+tγ4

)

[2tβ,γ, tγ5 + tγ4] = 2 (tβ,5 + tβ4)

[2tβ,γ, tβ5 − tβ4] = −2 (tγ5 − tγ4)

[2tβ,γ, tγ5 − tγ4] = 2 (tβ5 − tβ4) .

Therefore the assignment

H 7→ 2t45 Lα 7→ tα5 + tα4 Λα 7→ tα5 − tα4 Kα 7→ 2tβ,γ

induces an isomorphism of Lie algebras so (4, 1) → g. Thus we have proved
the following result.

Theorem 4.6. The operators Lα, Λα, α ∈ {1, 2, 3}, give a structure of
so (4, 1)-module on Ω∗

H,000 (M).

5. Action of H on Ω2k+1
H,000 (M) and Betti numbers of com-

pact 3-cosymplectic manifolds
Let U ⊂ M be an open subset and

{ζ1, φ
∗
1ζ1, φ

∗
2ζ1, φ

∗
3ζ1, . . . , ζn, φ

∗
1ζn, φ

∗
2ζnφ

∗
3ζn, η1, η2, η3}

an orthonormal basis of 1-forms on U . Define Ω∗
000 (U) as a linear span with

coefficients in C∞ (U) of the set

Y := {ζ1, φ
∗
1ζ1, φ

∗
2ζ1, φ

∗
3ζ1, . . . , ζn, φ

∗
1ζn, φ

∗
2ζn, φ

∗
3ζn} .

Then Ω∗
H,000 (U) is a subspace of Ω∗

000 (U). Define the operator Iα on Ω∗
000 (U)

extending by linearity the map

ρ1 ∧ · · · ∧ ρk 7→ φ∗
αρ1 ∧ · · · ∧ φ∗

αρk ρ1, . . . , ρk ∈ Y.
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Proposition 5.1. The operators Iα, α ∈ {1, 2, 3}, are well-defined on Ω∗
000 (M).

Moreover, they preserve harmonic forms. In particular, we can consider Iα

as an endomorphism of Ω∗
H,000 (M).

Proof : For 1 ≤ s ≤ k, we define the operators Kα,s on Ωk
000 (U) extending by

linearity the map

ρ1 ∧ · · · ∧ ρk 7→
∑

1≤j1<···<js≤k

(−1)j1+···+js+sρ1 ∧ · · · ∧ φ∗
αρj1∧

· · · ∧ φ∗
αρjs

∧ · · · ∧ ρk,

where ρ1, . . . , ρk ∈ Y . We also denote the identity operator by Kα,0. Then

Kα,1 = Kα and Kα,k = (−1)(
k+1

2 ) Iα. It is easy to check in local coordinates
that

KαKα,s = (s + 1)Kα,s+1 − (k − s + 1)Kα,s−1.

These formulae can be used to show that Kα,s is a polynomial in Kα with
constant coefficients which do not depend on the used local chart. Since Kα

are globally defined and preserve harmonic forms we get that the operators
Kα,s are globally defined and preserve harmonic forms for all s. In particular,
Iα is a well-defined operator on Ω∗

000 (M) and preserves harmonic forms.

It is straightforward to see that the operators Iα, α ∈ {1, 2, 3}, restricted to
Ωodd

H,000 (M) satisfy the same relations as the units of the quaternion algebra
H. Therefore we get

Theorem 5.2. Let k be odd. Then Ωk
H,000 (M) is an H-module.

Corollary 5.3. Let k be odd. Then bh
k is divisible by 4.

Proof : Every finite dimensional module over H is a direct sum of regular
modules. As the dimension of the regular module is 4, the result follows.

We denote by (d) the principal ideal in Z generated by d. In other words,
(d) will be the set of the integers divisible by d.

Corollary 5.4. Let M be a compact 3-cosymplectic manifold. For any odd
k we have bk−1 + bk ∈ (4).

Proof : Using (3.4) we get for k = 1

b0 + b1 = bh
0 + bh

1 + 3bh
0 = bh

1 + 4bh
0 ∈ (4) .
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Similarly, for k = 3 we get

b2 + b3 = bh
2 + 3bh

1 + 3bh
0 + bh

3 + 3bh
2 + 3bh

1 + bh
0

= bh
3 + 4bh

2 + 6bh
1 + 4bh

0 ∈ (4) .

Finally, for odd k ≥ 5 we have

bk−1 + bk = bh
k−1 + 3bh

k−2 + 3bh
k−3 + bh

k−4 + bh
k + 3bh

k−1 + 3bh
k−2 + bh

k−3

= bh
k + 4bh

k−1 + 6bh
k−2 + 4bh

k−3 + bh
k−4 ∈ (4) .

6. Inequalities on Betti numbers
In this section we give a bound from below on the Betti numbers of a

compact 3-cosymplectic manifold. We start with the following statement
about horizontal Betti numbers, which is a generalization of Wakakuwa’s
Theorem 9.1 in [27].

Proposition 6.1. Let M be a compact 3-cosymplectic manifold of dimension
4n + 3. Then for 0 ≤ k ≤ n

bh
2k ≥

(
k + 2

2

)
.

Proof : Recall the definition (4.1) of the 2-forms Ξα. Let us fix 0 ≤ k ≤ n.
We consider the set

Sk :=
{

Ξk1

1 ∧ Ξk2

2 ∧ Ξk3

3

∣∣∣ k1 + k2 + k3 = k
}

.

All the elements of Sk can be obtained from the constant 0-form 1 on M
by successive applications of operators Lα, α ∈ {1, 2, 3}. Therefore by Re-
mark 4.2 we get Sk ⊂ Ω2k

H,000(M). Thus to prove the proposition, it is enough

to show that Sk contains
(
k+2
2

)
linearly independent elements. This can be

checked locally. Let U be a trivializing neighbourhood like in Section 4. We
order the elements of the basis (4.3) of 1-forms on U by

ζ1 < ζ2 < · · · < ζn < φ∗
1ζ1 < φ∗

1ζ2 < · · · < φ∗
1ζn

< φ∗
2ζ1 < · · · < φ∗

2ζn < φ∗
3ζ1 < · · · < φ∗

3ζn < η1 < η2 < η3.

Then we get an induced lexicographical ordering on the basis of Ωk (U). By
using the local expression (4.5) of Ξα, α ∈ {1, 2, 3}, we see that the first basis
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element with respect to this ordering that enters Ξk1

1 ∧Ξk2

2 ∧Ξk3

3 with non-zero
coefficient is

ζ1 ∧ φ∗
1ζ1 ∧ ζ2 ∧ φ∗

1ζ2 ∧ · · · ∧ ζk1
∧ φ∗

1ζk1
∧ ζk1+1 ∧ φ∗

2ζk1+1 ∧ · · · ∧ ζk1+k2

∧ φ∗
2ζk1+k2

∧ ζk1+k2+1 ∧ φ∗
3ζk1+k2+1 ∧ · · · ∧ ζk1+k2+k3

∧ φ∗
3ζk1+k2+k3

.

Since for different triples (k1, k2, k3) such that k1 + k2 + k3 = k the above
basis elements are different, we get that Sk contains

(
k+2

2

)
elements and they

are linearly independent.

As a consequence we get the following lower bound on the Betti numbers
of a compact 3-cosymplectic manifold.

Theorem 6.2. Let M be a compact 3-cosymplectic manifold of dimension
4n + 3. Then for 0 ≤ k ≤ 2n + 1

bk ≥

(
k + 2

2

)
.

Proof : For k = 0 we have obviously b0 = 1 =
(
2
2

)
. First we consider the case

k = 2l, 1 ≤ l ≤ n. Then by (3.4) and Proposition 6.1

bk = bh
2l + 3bh

2l−1 + 3bh
2l−2 + bh

2l−3

≥

(
l + 2

2

)
+ 3 · 0 + 3

(
l − 1 + 2

2

)
+ 0

=
(l + 2) (l + 1)

2
+ 3

(l + 1) l

2
=

(l + 1) (l + 2 + 3l)

2

=
(2l + 2) (2l + 1)

2
=

(
k + 2

2

)
.

Now, suppose that k = 2l + 1, 0 ≤ l ≤ n. Then, again by (3.4) and
Proposition 6.1

bk = bh
2l+1 + 3bh

2l + 3bh
2l−1 + bh

2l−2

≥ 0 + 3

(
l + 2

2

)
+ 3 · 0 +

(
l − 1 + 2

2

)

= 3
(l + 2) (l + 1)

2
+

(l + 1) l

2
=

(l + 1) (3l + 6 + l)

2

=
(2l + 2) (2l + 3)

2
=

(
2l + 3

2

)
=

(
k + 2

2

)
.
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7. Nontrivial examples of compact 3-cosymplectic man-
ifolds

The standard example of a compact 3-cosymplectic manifold is given by the
torus T

4n+3 with the following structure (cf. [19, p.561]). Let {θ1, . . . , θ4n+3}
be a basis of 1-forms such that each θi is integral and closed. Let us define a
Riemannian metric g on T

4n+3 by

g :=

4n+3∑

i=1

θi ⊗ θi.

For each α ∈ {1, 2, 3} we define a tensor field φα of type (1, 1) by

φα =
n∑

i=1

(Eαn+i ⊗ θi − Ei ⊗ θα+i + Eγn+i ⊗ θβn+i

−Eβn+i ⊗ θγn+i) + E4n+γ ⊗ θ4n+β − E4n+β ⊗ θ4n+γ,

where {E1, . . . , E4n+3} is the dual (orthonormal) basis of {θ1, . . . , θ4n+3} and
(α, β, γ) is a cyclic permutation of {1, 2, 3}. Setting, for each α ∈ {1, 2, 3},
ξα := E4n+α and ηα := θ4n+α, one can easily check that the torus T

4n+3

endowed with the structure (φα, ξα, ηα, g) is 3-cosymplectic.
On the other hand, the standard example of a noncompact 3-cosymplectic

manifold is given by R
4n+3 with the structure described in [6, Theorem 4.4].

Both the above examples are the global product of a hyper-Kähler manifold
with a 3-dimensional flat abelian Lie group. In fact, locally this is always
true.

Proposition 7.1. Any 3-cosymplectic manifold M4n+3 is locally the Rie-
mannian product of a hyper-Kähler manifold N4n and a 3-dimensional flat
abelian Lie group G3.

Proof : The tangent bundle of M4n+3 splits up as the orthogonal sum of the
vertical distribution V and the horizontal distribution H, which define Rie-
mannian foliations with totally geodesic leaves. Therefore, by the de Rham
decomposition theorem the manifold M is locally the Riemannian product of
a leaf N4n of H and a leaf G3 of V. The structure tensors φ1, φ2, φ3 induce an
almost hyper-complex structure (J1, J2, J3) on N4n. Furthermore, for each
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α ∈ {1, 2, 3} and for all X, X ′ ∈ Γ(TN4n) = Γ(H),

[Jα, Jα](X, X ′) = N
(1)
φα

(X, X ′) − 2dηα(X, X ′)ξα = 0,

as M4n+3 is normal and ηα is closed. Consequently, the structure is hyper-
complex. Finally, the induced metric is clearly compatible with such a hyper-
complex structure, so that N4n is hyper-Kähler. On the other hand, from
Lie group theory (see e.g. [24, p. 10]) it follows that G3 is an abelian Lie
group. Since the Reeb vector fields are parallel, we get

R(ξα, ξβ)ξγ = ∇ξα
∇ξβ

ξγ −∇ξβ
∇ξα

ξγ −∇[ξα,ξβ ]ξγ = 0, (7.1)

Therefore G3 is flat.

When n = 0 of course we have no splitting, and M is necessarily a 3-torus
in the compact case, as it is shown in the following proposition.

Proposition 7.2. Suppose M3 is a compact three dimensional 3-cosymplectic
manifold. Then M3 is a three dimensional torus.

Proof : First of all M3 is clearly flat. Indeed, in this case the three Reeb
vector fields span all the vector fields over the ring of smooth functions.
Furthermore, they commute with each other and are parallel. Thus, similarly
to (7.1) we get R(ξα, ξβ)ξγ = 0 for any triple of indices 1 ≤ α, β, γ ≤ 3.

The manifold M3 is orientable, since η1 ∧ η2 ∧ η3 6= 0 is a volume form
on M3. Moreover η1, η2, η3 are three linear independent harmonic forms
of degree 1, so that b1

(
M3

)
≥ 3. The complete list of compact orientable

Euclidean three-dimensional manifolds was obtained in §2-3 of [13]. The
unique manifold with b1 ≥ 3 in this list is the three dimensional torus.

Due to Proposition 7.1, it is natural to ask whether there are examples
of 3-cosymplectic manifolds which are not the global product of a hyper-
Kähler manifold with an abelian Lie group. We will give an example of a
compact 3-cosymplectic manifold in dimension seven that is not a product
of a hyper-Kähler manifold and a three-dimensional torus. Before describing
the construction, we remind the following well-known result.

Proposition 7.3. If M4 is a compact four-dimensional hyper-Kähler mani-
fold, then M4 is either a K3 surface or a four dimensional torus.

Proof : From [27, Theorem 8.1] it follows that b1(M
4) is even. Moreover,

since every hyper-Kähler manifold is Calabi-Yau, M4 has a trivial canonical
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bundle. Therefore, by the Kodaira classification (cf. [15, Section 6A]) M4 is
either a K3 surface or a 4-torus.

Let (M4n, Jα, G) be a compact hyper-Kähler manifold, where (J1, J2, J3)
is the hyper-complex structure of M4n and G is the compatible Riemannian
metric. Let f : M4n −→ M4n be a hyper-Kählerian isometry, that is f is an
isometry such that

f∗ ◦ Jα = Jα ◦ f∗ (7.2)

for each α ∈ {1, 2, 3}. Let us define the action ϕ of Z
3 on the product

manifold M4n × R
3 by

ϕ ((k1, k2, k3) , (x, t1, t2, t3)) =
(
f k1+k2+k3(x), t1 + k1, t2 + k2, t3 + k3

)
.

Note that the action ϕ is free and properly discontinuous, hence the or-
bit space M4n+3

f := (M4n × R
3)/Z

3 is a smooth manifold. We define a

3-cosymplectic structure on M4n+3
f in the following way. Let ξ̂1, ξ̂2, ξ̂3 be the

vector fields on M4n ×R
3 given by ξ̂α := ∂

∂tα
, and let η̂1, η̂2, η̂3 be the 1-forms

defined by η̂α := ĝ(·, ξ̂α), where

ĝ = G + dt1 ⊗ dt1 + dt2 ⊗ dt2 + dt3 ⊗ dt3.

Let φ̂α be the tensor field of type (1, 1) on M4n × R
3 defined as follows. Let

E be a vector field on M . We can uniquely decompose E into the sum of a
vector field X tangent to M4n and its vertical part

∑3
β=1 η̂β(E)ξ̂β. Then we

set

φ̂αE := JαX +
3∑

β,γ=1

ǫαβγ η̂β(E)ξ̂γ.

By a straightforward computation one can check that (φ̂α, ξ̂α, η̂α, ĝ) defines
an almost cosymplectic 3-structure on M4n×R

3. Then, normality is granted
by Theorem 2.1.

Since f is an isometry, ĝ descends to a Riemannian metric on the quo-
tient manifold M4n+3

f . Furthermore, the vector fields ξ̂1, ξ̂2, ξ̂3, together
with their dual 1-forms η̂1, η̂2, η̂3, are clearly invariant under the action ϕ.
Finally, because of (7.2), also the endomorphisms φ̂α induce three endomor-
phisms on the tangent spaces of M4n+3

f . We denote the induced structure by

(φα, ξα, ηα, g), α ∈ {1, 2, 3}. Thus, (M4n+3
f , φα, ξα, ηα, g) is a 3-cosymplectic



22 B. CAPPELLETTI MONTANO, A. DE NICOLA AND I. YUDIN

manifold. Moreover, M4n+3
f is not in general a global product of a hyper-

Kähler manifold by the torus T
3. To see this we will consider the following

more specific seven-dimensional example.
Let H be the algebra of quaternions. We consider H as a hyper-Kähler

four-dimensional manifold with a hyper-complex structure given by left mul-
tiplication by i, j, k. Define the action of Z

4 on H by

Z
4 × H → H

((a, b, c, d) , q) 7→ q + a + bi + cj + dk.

By distributivity of multiplication in H this action commutes with the left
multiplication by i, j, and k. Furthermore, the Euclidean metric on H is
translation invariant. Thus the quotient space H

/
Z

4 is diffeomorphic to T
4

and inherits a hyper-Kähler structure from H.
Let f̄ : H → H be the map given by the right multiplication by i. Then

from associativity of multiplication on H it follows that f̄ commutes with
the hyper-complex structure maps on H. Moreover, from the distributivity
of multiplication in H it follows that f̄ induces a hyper-Kählerian isometry
f on H

/
Z

4 .

Proposition 7.4. Let M4 = T
4 and f be as above. Then M7

f is not a global

product of a compact hyper-Kähler four-manifold and the torus T
3.

Proof : The idea of the proof is to compare the cohomology groups of M7
f with

the cohomology groups of spaces K4 × T
3, where K4 is a four dimensional

hyper-Kähler manifold. Note, that by Proposition 7.3 there are only two
possibilities for K4: either K4 ∼= H

/
Z

4 or K4 is a complex K3 surface. In
the first case the Hilbert-Poincaré series of K4 × T

3 is (1 + t)7 = 1 + 7t +
21t2 + . . . , in the second case it equals

(1 + 22t2 + t4)(1 + t)3 = 1 + 3t + 25t2 + . . .

We will show in Proposition 7.7 that b2(M
7
f ) < 21. This will imply that

M4
f does not fail in either of two classes described above.

To get an estimate on b2(M
7
f ) we will define a structure of CW -complex

on M7
f .

Recall the definition of CW -complex (cf. [20, Definition 7.3.1]). We will
modify it by replacing the balls in R

n by cubes

Qk =
{

x ∈ R
k
∣∣ 0 ≤ xi ≤ 1, i = 1, . . . , k

}
.
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Definition 7.5. A CW-complex is a Hausdorff space X, together with an
indexing set Ik for each integer k ≥ 0 and maps φk

α : Qk → X, k ≥ 0, α ∈ Ik

such that

(1) X =
⋃

k≥0

⋃
α∈Ik

φk
α(Q̊k);

(2) φk
α(Q̊k) ∩ φl

β(Q̊l) = ∅ unless k = l and α = β;

(3) φk
α|Q̊k is one-to-one;

(4) Let Xk =
⋃

j≤k

⋃
α∈Ij

φj
α(Q̊j). Then φk

α(∂Qk) ⊂ Xk−1 for each k ≥ 1
and α ∈ An.

(5) A subset Z of X is closed if and only if
(
φk

α

)−1
(Z) is closed in Qk for

each k ≥ 0 and α ∈ Ik.
(6) For each k ≥ 0 and α ∈ Ik the set φk

α(Qk) is contained in the union of

a finite number of sets of the form φl
β(Q̊l).

Let X be a CW-complex. Then we have the induced maps

φk
α : Sk ∼= Qk

/
∂Qk → Xk

/
Xk−1 .

We will denote the image of this map by Sk
α. By [20, Example 7.3.15] we get

a homeomorphism of topological spaces

φk =
∨

α∈Ik

φk
α :

∨

α∈Ik

Qk
/
∂Qk →

∨

α∈Ik

Sk
α = Xk

/
Xk−1 ,

where
∨

α∈Ik
Sk

α denote the one point union (see e.g. [20], page 205). We

denote by qβ the map from
∨

α∈Ik
Sk

α to Sk
β that acts as the identity on Sk

β

and collapses all the other spheres to the basic point.
Now we explain how the homology groups of a CW-complex can be com-

puted. We define Ck (X) to be the free abelian group generated by Ik. Now
for every pair α ∈ Ik and β ∈ Ik−1 we define the map dα,β to be the compo-
sition

Sk−1 ∼= ∂Qk φk
α−→ Xk−1 π

−→ Xk−1
/

Xk−2 =
∨

γ∈Ik

Sk−1
γ

qβ

−→ Sk−1
β .

We denote by [dα,β] the degree of the map dα,β. Now define the differential
∂ : Ck (X) → Ck−1 (X) by ∂ (α) =

∑
β∈Ik−1

[dα,β]β. It is proved in Chapter 8

of [20] that the homology groups of the complex (C∗ (X) , ∂) are isomorphic
to the integral homology groups of the space X.
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Since R is torsion free and Ck (X) are free Z-modules, it follows from the
universal coefficient theorem that

Hk (C∗ (X) ⊗Z R) ∼= Hk (C∗ (X)) ⊗Z R = HR

k (X) , k ≥ 0.

If X is an m-dimensional compact Riemannian manifold then we have by the
Poincaré duality

HR

k (X) ∼= Hm−k
dR (X) ∼= Ωm−k

H (X) , 0 ≤ k ≤ m.

Define π : H × R
3 → M7

f to be the composition

H × R
3 π1−→

(
H

/
Z

4
)
× R

3 π2−→ M7
f ,

where π1 and π2 are the natural projections.
Now we describe the cellular structure on M7

f . For every k = 0, . . . , 7 we

denote by Ik the set of k-subsets in {1, . . . , 7}. For every S ∈ Ik and x ∈ Qk

define θS (x) to be the element of R
7 ≡ H × R

3, obtained from x by order
preserving placing of coordinates of x into the places s ∈ S and putting at
all other places 0. Now we define φk

S : Qk → M7
f to be the composition π ◦θS.

Proposition 7.6. The maps
{

φk
S

∣∣ S ∈ Ik, k = 0, . . . , 7
}

give a CW-complex
structure on M7

f .

Proof : The topological space M7
f is Hausdorff since it is a manifold. Now

we show that the restriction of π to [0, 1)7 is a bijection. For any x ∈ R we
denote by ⌊x⌋ the integral part of x and by {x} the fractional part x − ⌊x⌋
of x.

Let [[q] , ~x] ∈ M7
f . Then

[[q] , ~x] =
[[

qi−(⌊x1⌋+⌊x2⌋⌊x3⌋)
]
, {x1}, {x2}, {x3}

]

in M7
f by definition of the action of Z

3 on H
/

Z
4 ×R

3. Thus the restriction

of π2 to H
/

Z
4 × [0, 1)3 is a surjection. To see that π2 is a bijection we note

that the map

f : H
/

Z
4 × R

3 → H
/

Z
4 × R

3

([q], ~x) 7→
([

qi−(⌊x1⌋+⌊x2⌋⌊x3⌋)
]
, {x1} , {x2} , {x3}

)

is Z
3-invariant. Since for different points of H

/
Z

4 × R
3 the values of f

are obviously different we see that the restriction of π2 to H
/

Z
4 × [0, 1)3 is
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injective. Similarly we can show that the restriction of π1 to [0, 1)7 gives a
bijection between [0, 1)7 and H

/
Z

4×[0, 1)3. Thus we get that the restriction

of π on [0, 1)7 gives a bijection between [0, 1)7 and M7
f .

Now we check that the maps φk
S satisfy the properties of CW-structure.

(1) We have

7⋃

k=0

⋃

S∈Ik

θk
S

(
Q̊k

)
= [0, 1)7 ,

which implies that the similar union with φk
S in place of θk

S gives M7
f .

(2) Let S ∈ Ik and T ∈ Il. Then the points of θk
S

(
Q̊k

)
have non-integer

coordinates at places s ∈ S and integer coordinates in all other places.

Similarly for the points of θl
T

(
Q̊l

)
. This implies that if S 6= T then

there are no common points in the sets θk
S

(
Q̊k

)
and θl

T

(
Q̊l

)
. As the

restriction of π on [0, 1)7 is a bijection the same property holds for

φk
S

(
Q̊k

)
and φl

T

(
Q̊l

)
.

(3) As θk
S

(
Q̊k

)
⊂ [0, 1)7 we see that the restriction of φk

S to Q̊k is one-to-

one, for any 0 ≤ k ≤ 7, S ∈ Ik.
(4) From the considerations at the beginning of the proof we can see that if

two points (q, x), (q′, x′) ∈ H×R
3 are representatives of the same point

in M7
f then the number of integer coordinates in (q, x) and (q′, x′) is the

same. Now Xk ⊂ M7
f can be identified with those points [[q] , x] ∈ M7

f

such that (q, x) has at most k fractional coordinates. Now every point
∂Qk contains at least one integral coordinate. Therefore for S ∈ Ik,
θk
S

(
∂Qk

)
contains at least 7 − k + 1 = 8 − k integral coordinates,

or, in other words, at most k − 1 non-integral coordinates. Thus
φk

S

(
∂Qk

)
= π ◦ θk

S

(
∂Qk

)
is a subset of Xk−1.

(5) If Z ∈ M7
f is closed then for any 0 ≤ k ≤ 7 and S ∈ Ik the sets(

φk
S

)−1
(Z) are obviously closed, as the maps φk

α are continuous. Sup-

pose now that for every 0 ≤ k ≤ 7 and S ∈ Ik the sets
(
φk

S

)−1
(Z) are

closed. As M7
f has the quotient topology under the projection π, we

have to show that π−1 (Z) is a closed subset in H × R
3. Let (qn, ~xn)

be a sequence in π−1 (Z) that converges to (q, ~x) ∈ H × R
3. We have
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to show that (q, ~x) ∈ π−1 (Z). Let i ∈ {1, 2, 3}. If xi is fractional,
then starting from some n we have

⌊
xi

n

⌋
=

⌊
xi

⌋
. If xi is integer then

for infinitely many n we have xi
n <

⌊
xi

⌋
or

⌊
xi

⌋
≤ xi

n. By passing
to an appropriate subsequence we can assume that for all n either⌊
xi

n

⌋
=

⌊
xi

⌋
− 1 or

⌊
xi

n

⌋
=

⌊
xi

⌋
. We denote the common integer part

of xi
n by x̃i. Define

q′n = qni
−x̃1−x̃2−x̃3

(x′
n)

i
= xi

n − x̃i

q′ = qi−x̃1−x̃2−x̃3

(x′)
i
= xi − x̃i.

Then (q′n, x
′
n) is a sequence of points in π−1 (Z) that converges to

(q′, x′). Moreover (q′, x′) ∈ π−1 (Z) if and only if (q, x) ∈ π−1 (Z). We

also have 0 ≤ (x′
n)

i < 1 and xi ∈ [0, 1].
Now, similarly to the considerations above, by passing to an ap-

propriate subsequence we can assume that the integer parts of the
coefficients of q′n does not depend on n. Denote by q̃ the quaternion
with coefficients equal to the integer parts of q′n. Define q′′n = q′n − q̃
and q′′ = q′ − q̃. Then (q′′n, x

′
n) ∈ π−1 (Z) converges to (q′′, x′). More-

over, (q′′, x′) ∈ π−1 (Z) if and only if (q′, x′) ∈ π−1 (Z) if and only if
(q, x) ∈ π−1 (Z).

Let S = {1, . . . , 7}. Note that θ7
S : Q7 → R

7 is the identity map

on Q7. Therefore
(
φ7

S

)−1
(Z) = Q7 ∩ π−1 (Z). Thus the intersection

Q7∩π−1 (Z) is closed in Q7 and thus in R
7. Since the sequence (q′′n, x

′′
n)

lies in Q7 ∩ π−1 (Z) we get that also its limit (q′′, x′′) is an element of
Q7 ∩ π−1 (Z) ⊂ π−1 (Z).

(6) Obvious, as we have only finitely many cells at every dimension.

With the cellular structure on M7
f given in Proposition 7.6 we get

Proposition 7.7. The degree of the map d{3,5},{3} is 1. Therefore ∂2 ({3, 5}) 6=
0. In particular,

b2

(
M7

f

)
= dim

(
HR

2

(
M7

f

))
≤ dim (ker (∂2)) < 21.

Proof : Below we identify R
7 with H×R

3. Note that X0 consists of one point

[[0] , 0, 0, 0]. Therefore X1
/

X0 = X1. Now we describe the image of ∂Q2
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in X1 under φ{3,5}. We have

∂Q2 = { (0, x) | 0 ≤ x ≤ 1} ∪ { (x, 1) | 0 ≤ x ≤ 1}

∪ { (1, x) | 0 ≤ x ≤ 1} ∪ { (x, 0) | 0 ≤ x ≤ 1}

in R
2. Now for all 0 ≤ x ≤ 1

φ2
{3,5} (0, x) = [[0] , x, 0, 0] = φ1

{5} (x) ∈ S1
{5}

φ2
{3,5} (x, 1) = [[xj] , 1, 0, 0] = [[xj (i)] , 0, 0, 0] = [[xk] , 0, 0, 0]

= φ1
{4} (x) ∈ S1

{4}

φ2
{3,5} (1, x) = [[j] , x, 0, 0] = [[0] , x, 0, 0] = φ1

{5} (x) ∈ S1
{5}

φ2
{3,5} (x, 0) = [[xj] , 0, 0, 0] = φ1

{3}(x) ∈ S1
{3}.

Therefore after composing φ{3,5} with q{3} we get that for 0 ≤ x ≤ 1

d{3,5}{3} (0, x) = d{3,5}{3} (x, 1) = d{3,5}{3} (1, x) = [[0], 0, 0, 0] ∈ S1
{3}

d{3,5}{3} (x, 0) = [[xj] , 0, 0, 0] ∈ S1
{3}.

Now it is obvious that the degree of d{3,5},{3} is one.

8. Acknowledgments
The first author was partially supported by a research grant from Re-

gione Puglia. The second author is partially supported by the FCT grant
PTDC/MAT/099880/2008 and by MICIN (Spain) grant MTM2009-13383.
The last author is supported by the FCT Grant SFRH/BPD/31788/2006.
All the authors want to thank CMUC for hospitality and support.

References
[1] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967), 331–

345.
[2] , Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics,
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