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Abstract: The definition and study of pattern avoidance for set partitions, which
is an analogue of pattern avoidance for permutations, begun with Klazar. Sagan
continued his work by considering set partitions which avoids a single partition of
three elements, and Goyt generalized these results by considering partitions which
avoids any family of partitions of a 3-element set. In this paper we enumerate and
describe set partitions, even set partitions and odd set partitions without singletons
which avoids any family of partitions of a 3-element set. The characterizations
of these families allows us to conclude that the corresponding sequences are P -
recursive. We also construct Gray codes for the sets of singletons free partitions
that avoids a single partition of three elements.
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1. Introduction
Enumeration of pattern-avoiding objects such as permutations, words or

compositions, is a very active area of research, with connections to several
areas of mathematics. In 1996, Klazar [4] extended the notion of pattern
avoidance for permutations, words and compositions to set partitions by an-
alyzing set partitions that avoids the patterns abab and aabb. Sagan [9] con-
tinued this work by considering set partitions which avoids a single partition
of a 3-element set. Since then this notion has been studied by many authors
(see [6] and the references therein for a comprehensive survey). In particular,
Goyt [2] generalized Sagan’s results by considering partitions, even partitions
and odd partitions that avoids any family of partitions of a 3-element set.
In this paper, we will focus on set partitions without singletons, that is set
partitions whose blocks have at least two elements, that avoids any family of
partitions of a 3-element set. To this end, we need some definitions.
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For integers m ≤ n define the interval [m,n] = {m,m + 1, . . . , n} with
special case [1, n] = [n]. A partition π of a set S ⊆ [n], n ≥ 1, is a collection
of nonempty disjoint subsets B1, . . . , Bt of S, called blocks, whose union is S.
We will write π ` S and b(π) = t to denote the number of blocks of π. A
block with only one element is said to be a singleton. A partition is said to
be in standard form if it is written as π = B1/B2/ · · · /Bt, where the blocks
are listed in ascending order according to their smallest element. Generally,
we will not use braces and commas in the blocks unless they are needed for
clarity. For example, if π = 13/245/6/7 then π ` [7] with b(π) = 4.

The set of all set partitions of [n], n ≥ 1, will be denoted by

Πn = {π : π ` [n]}.
If S is a subset of the integers with cardinality #S = n, then the stan-

dardization map corresponding to S is the unique order-preserving bijection
stS : S → [n]. When S is clear from the context we drop the subscript. For
example, if S = {2, 5, 7} then st(2) = 1, st(5) = 2 and st(7) = 3. Thus, if
π = 27/5 its standardization is st(π) = 13/2.

A set subpartition of a set partition π = B1/B2/ · · · /Bt of S is a set parti-
tion π′ of S ′ ⊆ S such that each block of π′ is contained in a different block
of π. For example, 27/5 is a subpartition of 1356/27/4 but not of 1357/26/4.
Let π ∈ Πk be a given set partition called the pattern. We say that a parti-
tion σ ∈ Πn contains the pattern π if there exists a set subpartition σ′ of σ
such that st(σ′) = π. In this case, σ′ is called an occurrence of the pattern
π in σ. If σ as no occurrences of π, then we say that σ avoids the pattern π.
For example, σ = 16/23/45 avoids the pattern 123 but contains the pattern
13/2 since the standardization of the subpartition σ′ = 16/2 is 13/2. In this
context, for R ⊆ Πk we use the notation

Πn(R) = {σ ∈ Πn : σ avoids every pattern π ∈ R}.
The set Π(R), with R ⊆ Π3, was studied by Sagan [9] when #R = 1 and by
Goyt [2] for #R ≥ 2. Denote by Π′n the set of all singleton free partitions of
[n], and given R ⊆ Πk a subset of patterns, let

Π′n(R) = {σ ∈ Π′n : σ avoids every pattern π ∈ R}
be the set of all singleton free partitions of [n] that avoids all partitions of
R. When R = {π}, we simplify the notation and write Π′n(π).

In the next section we characterize the set Π′n(π), and give exact formulas
and generating functions for its cardinal, for various patterns π, including
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all π ` [3]. We then use these results to characterize and enumerate Π′n(R),
for any R ⊂ Π3. In section 3 we present the notion of sign of a partition,
defined in [2], and enumerate the set of singleton free signed partitions of
[n] which avoids any family of patterns of Π3. The study of P -recursiveness
associated with permutation patterns begun with Gessel [1] and Noonan-
Zeilberger [8], and was applied to set partitions by Sagan [9]. In section
4 we show that although Π′n is not P -recursive, the sets of singleton free
partitions and singleton free sign partitions that avoids any pattern π ` [3]
are P -recursive. Finally, in the last section we construct Gray codes for the
sets Π′n(π), for all π ` [3] for which the set is not trivial, where each partition
in the list is obtained from its immediate predecessor by changing the block
of at most two elements.

2. Singleton free set partitions
We start by considering the case Π′n(π), with π a pattern in Π3, namely

123, 1/23, 12/3, 1/2/3 and 13/2. Following the notation of [9] for exponential
generating functions, we let

FI(x) =
∑
i∈I

xi

i!
, (2.1)

for I a set of nonnegative integers. In particular, when I = [0,m], we write

expm(x) =
m∑
i=0

xi

i!
.

Let aIn,` denote the number of partitions of [n] with ` blocks with cardinali-
ties in the set I ⊆ N. As FI(x) is the exponential generating function for the
number of ways an n-set can form a block with size in the set I, it follows
that (see, for example, [7] or [13])∑

n≥0

aIn,`
xn

n!
=
FI(x)`

`!
(2.2)

is the exponential generating function for the number of partitions of [n] with
` blocks, each of them having sizes in the set I. Finally, given a pattern π,
we write

Fπ(x) =
∑
n≥0

#Π′n(π)
xn

n!
. (2.3)
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The distinction between (2.1) and (2.3) will be clear, since we denote patterns
by Greek letters and sets of integers by capital Latin letters.

For example, with I = N \ {1}, it follows that #Π′n is the sum over all
` ≥ 0 of the numbers aIn,`, and thus the exponential generating function for
the number of singleton free set partitions of [n] is

F (x) =
∑
n≥0

#Π′n
xn

n!
=
∑
n≥0

∑
`≥0

aIn,`
xn

n!
=
∑
`≥0

∑
n≥0

aIn,`
xn

n!

=
∑
`≥0

(ex − 1− x)`

`!
= exp(ex − 1− x). (2.4)

A partition σ ` [n] is layered if it is of the form [1, i]/[i + 1, j]/[j +
1, k]/ · · · /[` + i, n]. A partition σ is said to be a matching if #B ≤ 2, for
all block B of σ. When the cardinality of each block is exactly 2 the parti-
tion is called a perfect matching. The characterization of the set partitions
in Πn(π), for π ∈ Π3, obtained by Sagan [9], will be used repeatedly, so we
state it below.

Theorem 2.1 (Sagan). For n ≥ 1,

Πn(1/2/3) = {σ ∈ Πn : b(σ) ≤ 2},
Πn(123) = {σ ∈ Πn : σ is a matching},

Πn(13/2) = {σ ∈ Πn : σ is layered}.

Given positive integers i < m, let πim be the layered pattern

1/2/ · · · /i− 1/i(i+ 1)/i+ 2/ · · · /m
in Πm, where all blocks are singletons with the exception of Bi = {i, i+ 1}.

Theorem 2.2. For n ≥ 2,

Π′n(π
i
m) = {σ ∈ Π′n : b(σ) ≤ m− 2},

Fπi
m

(x) = expm−2(exp(x)− 1− x).

Proof : Since πim has m − 1 blocks, it is clear that if b(σ) ≤ m − 2 then
σ avoids the pattern πim. Reciprocally, let σ ∈ Π′n(π

i
m) and assume that

b(σ) ≥ m− 1. Let B1, . . . , Bm−1 be m− 1 blocks of σ, each of them with at
least two elements, ordered by their least element: Bj = {aj, . . .}, with

a1 < a2 < · · · < am−1.
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Next, let B′i, . . . , B
′
m−1 be the blocks Bi, . . . , Bm−1 ordered by their largest

element: B′j = {. . . , bj}, with

bi < bi+1 < · · · < bm−1.

Then,
a1 < a2 < · · · < ai < bi < bi+1 < · · · < bm−1

and a1/a2/ · · · /ai bi/bi+1/ · · · /bm−1 is a copy of πim in σ, a contradiction.
It follows that the number of partitions in Π′n(π

i
m) is the sum over all

0 ≤ ` ≤ m − 2 of the number aIn,` of partitions of [n] with ` blocks, each of
them with at most two elements:

#Π′n(π
i
m) =

m−2∑
`=0

aIn,`,

with I = {2, 3, . . .}. Thus, we can use (2.2) to write

Fπi
m

(x) =
∑
n≥0

#Π′n(π
i
m)
xn

n!
=
∑
n≥0

m−2∑
`=0

aIn,`
xn

n!
=

m−2∑
`=0

(∑
n≥0

aIn,`
xn

n!

)

=
m−2∑
`=0

FI(x)`

`!
= expm−2(exp(x)− 1− x).

Two patterns σ and π are said to be Wilf-equivalent [6], denoted by σ ∼ π,
if the number of elements of the sets Π′n(R) and Π′n(T ) are the same for all
n ≥ 1. The last result shows that πim ∼ πjm, for i, j < m.

Corollary 2.3. The patterns πim, for 1 ≤ i ≤ m− 1, are Wilf-equivalent.

Corollary 2.4. For n ≥ 2,

Π′n(12/3) = Π′n(1/23) = {12 · · ·n},
F1/23(x) = F12/3(x) = ex − x.

Proof : It follows from the last results since 12 · · ·n is the only partition in
Π′n with a single block.

Theorem 2.5. For n ≥ 2,

Π′n(12 · · ·m) = {σ ∈ Πn : 2 ≤ #B ≤ m− 1, for all block B ∈ σ},
F12···m(x) = exp(expm−1(x)− 1− x).
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Proof : The characterization of the elements of Π′n(12 · · ·m) is clear, since a
partition contains a copy of 12 · · ·m if and only if it has a block with at least
m elements. It follows that #Π′n(12 · · ·m) is the sum of the numbers aIn,` of
partitions of [n] with ` ≥ 0 blocks with cardinalities in the set I = [2,m− 1].
Again, we use (2.2) to write:

F12···m(x) =
∑
n≥0

#Π′n(12 · · ·m)
xn

n!
=
∑
n≥0

∑
`≥0

aIn,`
xn

n!
=
∑
`≥0

(∑
n≥0

aIn,`
xn

n!

)

=
∑
`≥0

FI(x)`

`!
= exp(expm−1(x)− 1− x).

The double factorial of an odd positive integer 2i − 1 is defined as the
product of all positive odd integers up to 2i− 1:

(2i− 1)!! = (2i− 1)(2i− 3) · · · 5 · 3 · 1.

Corollary 2.6. For n ≥ 2,

Π′n(123) = {σ ∈ Πn : σ is a perfect matching},

#Π′n(123) =

{
(2k − 1)!! if n = 2k

0 otherwise
.

Proof : The characterization of Π′n(123) is a consequence of the previous the-
orem, and it can also be deduced from Theorem 2.1. Moreover, we can write

F123(x) =
∑
n≥0

(
x2

2!

)n
n!

=
∑
n≥0

(2n)!

2nn!

x2n

(2n)!
,

and since
(2n)!

2nn!
= (2n− 1)!! the result follows.

Theorem 2.7. For n ≥ 2,

Π′n(1/2/ · · · /m) = {σ ∈ Π′n : b(σ) ≤ m− 1},
F1/2/···/m(x) = expm−1(exp(x)− 1− x).

Proof : The characterization of the partitions of [n] that avoids the pattern
1/2/ · · · /m is clear from the definitions, and the generating function follows
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from (2.1), since:

F1/2/···/m(x) =
∑
n≥0

#Π′n(1/2/ · · · /m)
xn

n!
=
∑
n≥0

m−1∑
`=0

aIn,`
xn

n!
=

m−1∑
`=0

(∑
n≥0

aIn,`
xn

n!

)

=
m−1∑
`=0

FI(x)`

`!
= expm−1(exp(x)− 1− x),

where aIn,` is the number of partitions of [n] with ` ≤ m− 1 blocks, and I is
the set of all integers greater than, or equal to 2.

Corollary 2.8. We have

Π′n(1/2/3) = {σ ∈ Π′n : b(σ) ≤ 2},
#Π′n(1/2/3) = 2n−1 − n, for n ≥ 3,

with #Π′0(1/2/3) = #Π′2(1/2/3) = 1 and #Π′1(1/2/3) = 0.

Proof : From the generating function given in the last result, we have

F1/2/3(x) = 1 + (ex − 1− x) +
(ex − 1− x)2

2
=

1

2
+
x2

2
+
e2x

2
− xex

= 1 +
x2

2
+
∑
n≥1

(2n−1 − n)
xn

n!
,

and the result follows.

The Eulerian number e(n,m) is the number of permutations p1p2 · · · pn
of [n] with exactly m descents, that is, m places in which pj > pj+1, for
1 ≤ j ≤ n− 1. Let E(n,m) be the set of all permutations of [n] with exactly
m descents.

Theorem 2.9. There is a bijection between Π′n(1/2/3) and E(n− 1, 1), for
n ≥ 1.

Proof : Using the description of Π′n(1/2/3) as the partitions of Π′n having
one or two blocks, its cardinality 2n−1 − n for n ≥ 3 can be obtain directly
as follows. If σ ∈ Π′n has only one block then σ = 12 · · ·n. Otherwise,
σ = B1/B2, with

B1 = {1} ∪ S,
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where S ⊂ [2, n] has i elements, for some 1 ≤ i ≤ n− 3. Thus,

#Π′n(1/2/3) = 1 +
n−3∑
i=1

(
n− 1

i

)
=

n−1∑
i=0

(
n− 1

i

)
− n = 2n−1 − n.

On the other hand, a permutation p = p1p2 · · · pn−1 of [n− 1] with exactly
one descent must satisfy

p1 < · · · < pk, pk > pk+1, pk+1 < · · · < pn−1,

for some 1 ≤ k ≤ n − 2. Thus, to give such a permutation is to give a
set S = {p1, . . . , pk} with k elements of [n − 1] such that p1 < · · · < pk
and pk+1 < · · · < pn. There will be a descent at position k if and only if
S 6= {1, . . . , k}. We identify permutations in E(n−1, 1) with sets S ⊂ [n−1]
such that S 6= [k]. Therefore,

e(n− 1, 1) =
n−1∑
k=1

((
n− 1

k

)
− 1

)
=

(
n−1∑
k=0

(
n− 1

k

))
− n = 2n−1 − n.

We can now give an explicit bijection ψ : E(n − 1, 1) → Π′n(1/2/3), for
n ≥ 3. Note that for n = 1 or 2 the result is trivial.

Let S = {p1, . . . , pk} ⊂ [n− 1], S 6= [k], with p1 < · · · < pk. If #S 6= n− 2,
we set

ψ(S) = {1, p1 + 1, . . . , pk + 1}/B,
where B is the complement of {1, p1 +1, . . . , pk+1} in [n], having #B ≥ 2. If
#S = n−2, then we must have S = {1, . . . , î, . . . , n−1}, for some i ∈ [n−2],
where î means that the integer i is not in S. In this case, we put

ψ(S) =

{
{1, 2, . . . , i}/{i+ 1, . . . , n}, if i 6= 1

{1, 2, . . . , n}, if i = 1
.

From its construction, the partition ψ(S) has one or two blocks, each with at
least 2 elements. Moreover, note that the partition {1, 2, . . . , i}/{i+1, . . . , n}
must be obtained via the map ψ from a uniquely determined set S ⊂ [n −
1] with #S = n − 2, for otherwise we would have S = {1, . . . , i − 1}, a
contradiction. Henceforth, we can easily conclude that ψ is a bijection.

Denote by Fn the n-th Fibonacci number which is defined by the recurrence
relation

Fn = Fn−1 + Fn−2, n ≥ 2,

with the initial conditions F0 = 0 and F1 = 1.
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Theorem 2.10. For n ≥ 1,

Π′n(13/2) = {σ ∈ Π′n : σ is layered},
#Π′n(13/2) = Fn−1.

Proof : It is clear that if σ is layered then σ avoids the pattern 13/2. Recipro-
cally, let B1 be the block of σ ∈ Π′n(13/2) having the integer 1, and let i > 1
be the largest integer of B1. Note that if there is an integer 1 < j < i such
that j is not in B1, then st(1i/j) = 13/2. Thus, we must have B1 = [1, i].
Iterating this process we find that σ is layered.

For the enumeration part, note that #Π′1(13/2) = F0 = 0 and #Π′2(13/2) =
F1 = 1. We claim that the number of elements of Π′n(13/2) is equal to the
sums of the cardinals of Π′n−2(13/2) and Π′n−1(13/2), for n ≥ 3. Consider the
map

φ : Π′n−2(13/2) ∪ Π′n−1(13/2) −→ Π′n(13/2),

where the image of the singleton free layered partition σ of, respectively,
[n− 2] or [n− 1] is obtained by adding, respectively, the block {n− 1, n} to
σ, or by adding the integer n to the block containing the letter n − 1. The
map φ is a bijection, since if τ is a layered partition of [n], then the block B
containing n must also contain the integer n−1. Therefore, if B = {n−1, n},
then τ is the image of the layered partition of [n− 2] obtained by removing
B from τ , and if #B ≥ 3, then it is the image of the layered partition
of [n − 1] obtained from τ by removing the letter n. Thus, we find that
#Π′n(13/2) = #Π′n−2(13/2) + #Π′n−1(13/2) and the result follows.

π Π′n(π) #Π′n(π)
12/3 12 · · ·n 1
1/23 12 · · ·n 1
1/2/3 partitions with at most 2 blocks 2n−1 − n
13/2 layered partitions Fn−1

123
perfect matchings (2k − 1)!! if n = 2k

0 otherwise

Table 2.1. Singleton free partitions avoiding a 3-letter pattern

Corollary 2.11. The number of layered set partitions of [n] with at least one
singleton is given by 2n−1 − Fn−1.
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Proof : It follows from the previous result and the number 2n−1 of layered
partitions of [n] obtained by Sagan [9].

We consider now the classification and enumeration of the set of singleton
free partitions that avoid a set R of patterns of Π3, with #R ≥ 2. Note
that since 12/3 ∼ 1/23, if both patterns 12/3 and 1/23 are in R, then
Π′n(R) = Π′n(R \ {1/23}). Therefore, without loss of generality we may con-
sider only the patterns 12/3, 1/2/3, 13/2 and 123. The following proposition
is a consequence of Corollaries 2.4, 2.6, 2.8 and Theorem 2.10.

Proposition 2.12. Let R = {12/3, π} ⊂ Π3. Then, for n ≥ 3

Π′n(R) =

{
∅, if π = 123

{12 · · ·n}, otherwise
.

It follows that Π′n(Π3) = ∅. The results for Π′n(R), with #R = 2 or 3, are
easy to prove, so we omit the proofs. Table 2.2 describes these sets and gives
their enumeration for n ≥ 3.

R Π′n(R) #Π′n(R)

{12/3, π} ∅ if π = 123 0 if π = 123
{12 · · ·n} if π 6= 123 1 if π 6= 123

{123,13/2} {12/34/ · · · /(n− 1)n} if n even 1 if n even
∅ if n odd 0 if n odd

{123,1/2/3} ∅ if n 6= 4 0 if n 6= 4
{12/34, 13/24, 14/23} if n = 4 3 if n = 4

{13/2,1/2/3} {1 · · · i/(i+ 1) · · ·n : i ∈ [2, n− 2]} ∪ {12 · · ·n} n− 2
{12/3, 13/2, 1/2/3} {12 · · ·n} 1
{12/3, 123, π} ∅ for π = 1/2/3 or π = 13/2 0

{13/2, 123, 1/2/3} {12/34} if n = 4 1 if n = 4
∅ if n 6= 4 0 if n 6= 4

Table 2.2. Singleton free partitions with more than one restriction

3. Even and Odd Singleton Free Set Partitions
In this section we consider the number of even and odd singleton free set

partitions that avoids a set R of patterns of Π3. A partition σ ` [n] with
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b(σ) = k has sign
sgn(σ) = (−1)n−k.

Definition 1. A set partition σ of [n] is even if sgn(n) = 1, and is odd if
sgn(n) = −1 [2]. We denote by EΠ′n (resp. OΠ′n) the set of all singleton
free even (resp. odd) set partitions of [n]. Given R ⊂ Π3, let EΠ′n(R) (resp.
OΠ′n(R)) be the set of all singleton free even (resp. odd) set partitions of [n]
that avoids the patterns in R.

The complement σc of a set partition σ = B1/B2/ · · · /Bk ` [n], is the set
partition σ = Bc

1/B
c
2/ · · · /Bc

k where

Bc
i = {n− a+ 1 : a ∈ Bi}.

As mentioned in [2], the sign of σ is the same as the sign of σc. Therefore,
since 12/3 ∼ 1/23, we obtain the following lemma.

Lemma 3.1. For n ≥ 1,

#EΠ′n(12/3) = #EΠ′n(1/23),

#OΠ′n(12/3) = #OΠ′n(1/23).

We start by considering single restrictions.

Theorem 3.2. For n ≥ 1,

EΠ′n(12/3) =

{
∅, if n is even

{12 · · ·n}, if n is odd
,

and

OΠ′n(12/3) =

{
∅, if n is odd

{12 · · ·n}, if n is even
.

Proof : By Corollary 2.4, the set Π′n(12/3) has only the one block partition
12 · · ·n, which will be even if n is odd, and will be odd otherwise.

Theorem 3.3. For n ≥ 1,

EΠ′n(1/2/3) =

{
{σ ∈ Π′n : b(σ) = 2}, if n is even

{12 · · ·n}, if n is odd
,

#EΠ′n(1/2/3) =

{
2n−1 − n− 1, if n is even

1, if n is odd
;
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and

OΠ′n(1/2/3) =

{
{σ ∈ Π′n : b(σ) = 2}, if n is odd

{12 · · ·n}, if n is even
,

#OΠ′n(1/2/3) =

{
2n−1 − n− 1, if n is odd

1, if n is even
.

Proof : By Corollary 2.8, the 2n−1−n partitions of [n] that avoids the pattern
1/2/3 are the ones having one or two blocks. As in the previous result, the
only partition 12 · · ·n with one block is even if n is odd, and is odd otherwise.
On the other hand, if σ is one of the 2n−1 − n− 1 partitions of [n] with two
blocks, then it will have the same parity as n. Thus, the result holds.

Theorem 3.4. If n is an odd integer then EΠ′n(123) = OΠ′n(123) = ∅.
If n = 2k ≥ 1, then

EΠ′n(123) = Π′n(123) and OΠ′n(123) = ∅, if k is even

and

OΠ′n(123) = Π′n(123) and EΠ′n(123) = ∅, if k is odd.

Proof : It follows from Corollary 2.6, since when n = 2k, all perfect matchings
of [n] have k blocks, and thus its parity is the same of that of k.

Theorem 3.5. For n ≥ 1,

EΠ′n(13/2) = {σ ∈ Π′n : σ is layered and b(σ) has the parity of n},

#EΠ′n(13/2) =
1

2

(
αn − βn

α− β

)
− 1

2

(
γn − δn

γ − δ

)
,

where

α =
1 +
√

5

2
, β =

1−
√

5

2
, γ = −1

2
+

√
3

2
i, δ = −1

2
−
√

3

2
i

are the roots of the equation x4 + 2x3 + x2 − 1 = 0.

Proof : The description of the set EΠ′n(13/2) follows from theorem 2.10 and
the definitions. For the enumeration part, we start by noticing that

#EΠ′n(13/2) = #OΠ′n−2(13/2) + #OΠ′n−1(13/2)

since, as in the proof of Theorem 2.10, any partition σ ∈ #EΠ′n(13/2) is
uniquely obtained from a partition in Π′n−2(13/2), with parity different from
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n, by adding the block {n− 1, n}, or from a partition from Π′n−1(13/2), with
parity different from n, by adding the integer n to the block having the letter
n− 1. Therefore, using Theorem 2.10 we can write

#EΠ′n(13/2) = #OΠ′n−2(13/2) + #OΠ′n−1(13/2)

= #Π′n−2(13/2)−#EΠ′n−2(13/2) + #Π′n−1(13/2)−#EΠ′n−1(13/2)

= Fn−3 + Fn−2 −#EΠ′n−2(13/2)−#EΠ′n−1(13/2).

Thus, the sequence formed by the cardinalities an := #EΠ′n(13/2), for
n ≥ 0, satisfies the recurrence relation

an = Fn−3 + Fn−2 − an−2 − an−1, for n ≥ 3 (3.1)

with the initial conditions a0 = a1 = a2 = 0.

Recalling that F (x) =
x

1− x− x2
is the generating functions for the Fi-

bonacci numbers (see [5]), and setting G(x) =
∑
n≥0

anx
n, from the recurrence

(3.1) we obtain

G(x) =
∑
n≥3

(Fn−3 + Fn−2 − an−2 − an−1)x
n

= x3
∑
n≥0

Fnx
n + x2

∑
n≥1

Fnx
n − x2G(x)− xG(x)

= x2(x+ 1)F (x)− (x2 + x)G(x),

that is, the generating function for the number of partitions in EΠ′n(13/2) is

G(x) =
x2(x+ 1)

(1− x− x2)(1 + x+ x2)
.

Let α = 1+
√

5
2 , β = 1−

√
5

2 , γ = −1
2 +

√
3

2 i, δ = −1
2 −

√
3

2 i be the roots of the
equation (1− x− x2)(1 + x+ x2) = 0. By the Binet formula [5], we have

x

1− x− x2
=
∑
n≥0

αn − βn

α− β
xn.

In a similar way, we can write 1 + x+ x2 = (1− γx)(1− δx), and thus

x

1 + x+ x2
=

x

(1− γx)(1− δx)
=

1

γ − δ

(
1

1− γx
− 1

1− δx

)
=
∑
n≥0

γn − δn

γ − δ
xn.
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Finally, noticing that

G(x) =
1

2

(
x

1− x− x2

)
− 1

2

(
x

1 + x+ x2

)
,

we get the desired result.

Since the set Π′n(13/2) is the union of the disjoint sets EΠ′n(13/2) and
OΠ′n(13/2), from the last theorem we get the analogous result for singleton
free odd set partitions that avoids the pattern 13/2.

Corollary 3.6. For n ≥ 1,

OΠ′n(13/2) = {σ ∈ Π′n : σ is layered and b(σ) has not the parity of n},

#OΠ′n(13/2) =
1

2

(
αn − βn

α− β

)
+

1

2

(
γn − δn

γ − δ

)
,

where

α =
1 +
√

5

2
, β =

1−
√

5

2
, γ = −1

2
+

√
3

2
i, δ = −1

2
−
√

3

2
i

are the roots of the equation x4 + 2x3 + x2 − 1 = 0.

Proof : If H(x) is the generating function for the numbers #OΠ′n(13/2), then
by the previous theorem,

H(x) = F (x)−G(x) =
1

2

∑
n≥0

(
αn − βn

α− β
+
γn − δn

γ − δ

)
xn,

and the result follows.

We consider next the description and enumeration of the sets EΠ′n(R) and
OΠ′n(R) where #R ≥ 2 and n ≥ 2. As before, by Lemma 3.1, we have
EΠ′n(R) = EΠ′n(R \ {12/3}) and OΠ′n(R) = OΠ′n(R \ {12/3}), so we need
to consider only the patterns 12/3, 1/2/3, 123 and 13/2. Tables 3.1 and 3.2
give the results for EΠ′n(R) and OΠ′n(R), n ≥ 2. The proofs are direct
consequences of the theorems above.
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R EΠ′n(R) #EΠ′n(R)

{12/3, 1/2/3} ∅ if n is even 0
{12 · · ·n} if n is odd 1

{12/3,123} ∅ 0

{12/3,13/2} ∅ if n is even 0
{12 · · ·n} if n is odd 1

{1/2/3,123} ∅ if n 6= 4 0
{12/34, 13/24, 14/23} if n = 4 3

{1/2/3,13/2} {1 · · · i/(i+ 1) · · ·n : 2 ≤ i ≤ n− 2}, n even n− 3
{12 · · ·n} if n is odd 1

{123,13/2} {12/34/ · · · /(n− 1)n} if n = 2k with k even 1
∅ otherwise 0

{12/3, 123, π} ∅ for π = 1/2/3 or π = 13/2 0

{12/3, 1/2/3, 13/2} ∅ if n is even 0
{12 · · ·n} if n is odd 1

{123,1/2/3,13/2} {12/34} if n = 4 1
∅ if n 6= 4 0

#R ≥ 4 ∅ 0

Table 3.1. Singleton free even partitions with more than one restriction

4. P-recursion
A sequence (an)n≥0 is said to be P -recursive (short for polynomial recursive)

if there exist polynomials p0(x), p1(x) . . . , pd(x) with pd(x) 6= 0, such that

p0(n)an + p1(n)an+1 + · · ·+ pd(n)an+d = 0,

for all n ≥ 0. That is, (an)n≥0 satisfies a homogeneous linear recurrence of fi-
nite degree with polynomial coefficients [11]. The above relation defines an+d

in terms of the values of an, an+1, . . . , an+d−1, provided pd(n) 6= 0, and can
be used to compute the sequence of values an+d with relatively low compu-
tational cost, for n large enough. Our objective in this section is to identify
the sequences #Π′n(π), #EΠ′n(π) and #OΠ′n(π), n ≥ 1, for π ` [3], which
are P -recursive.

Closed related with P -recursive sequences is the notion of D-finite (short
for differentiably finite) formal power series [10]. A power series f(x) is D-
finite if there exist finitely many polynomials p0(x), p1(x), . . . , pm(x) with



16 RICARDO MAMEDE

R OΠ′n(R) #OΠ′n(R)

{12/3, 1/2/3} ∅ if n is odd 0
{12 · · ·n} if n is even 1

{12/3,123} ∅ 0

{12/3,13/2} ∅ if n is odd 0
{12 · · ·n} if n is even 1

{1/2/3,123} ∅ 0

{1/2/3,13/2} {1 · · · i/(i+ 1) · · ·n : 2 ≤ i ≤ n− 2}, n odd n− 3
{12 · · ·n} if n is even 1

{123,13/2} {12/34/ · · · /(n− 1)n} if n = 2k with k odd 1
∅ otherwise 0

T={12/3,1/2/3,13/2} ∅ if n is odd 0
{12 · · ·n} if n is even 1

#R ≥ 3, R 6= T ∅ 0

Table 3.2. Singleton free odd partitions with more than one restriction

pm(x) 6= 0 such that

p0(x)f(x) + p1(x)f (1)(x) + · · ·+ pm(x)f (m)(x) = 0, (4.1)

where f (i)(x) = dif/dxi.
An example of a D-finite function is f(x) = ex, since f(x) − f ′(x) = 0.

Similarly, any linear combination of series of the form xmeax (m ∈ N, a ∈ R)
is D-finite, since such series satisfy a linear homogeneous differential equation
with constant coefficients.

The following result, proved by Stanley in [10], was also mentioned in
Jungen [3].

Theorem 4.1. A sequence (an)n≥0 is P -recursive if and only if its ordinary
generating function f(x) =

∑
n≥0 anx

n is D-finite.

Sagan [9] proved the following analogous result for exponential generating
functions.

Theorem 4.2. A sequence (an)n≥0 is P -recursive if and only if its exponential
generating function f(x) =

∑
n≥0 anx

n/n! is D-finite.

A formal power series is said to be algebraic if there exist polynomials
p0(x), . . . , pd(x), not all zero, such that

p0(x) + p1(x)f(x) + · · ·+ pd(x)f(x)d = 0. (4.2)
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The smallest positive integer d for which (4.2) hold is called the degree of
f(x). It is simple to see that an algebraic power series f(x) has degree 1 if
and only if f(x) is rational. The following result asserts that all algebraic
power series are D-finite (see [11]).

Theorem 4.3. If f(x) is an algebraic power series then f(x) is D-finite

The converse of this result is false, since, for instance, the power series
f(x) = ex is D-finite but not algebraic.

We will also need the following result of Stanley [11].

Theorem 4.4. If f(x) and g(x) are D-finite, then any linear combination
af(x) + bg(x) is also D-finite.

If f(x) is D-finite and g(x) is algebraic with g(0) = 0, then the composition
f(g(x)) is D-finite.

We start our analysis by showing that #Π′n, n ≥ 1, do not form a P -
recursive sequence.

Proposition 4.5. The sequence #Π′n, n ≥ 1, is not P -recursive.

Proof : The proof follows essentially the same argument used by Sagan in
[9] to show that #Πn is not P -recursive. By contradiction, assume that the
sequence #Π′n is P -recursive. Then, its generating function

F (x) = ee
x−1−x,

determined in (2.4), must be D-finite by Theorem 4.2, and so it must sat-
isfy equation (4.1) for some polynomials p0(x), p1(x), . . . , pd(x). A simple
induction shows that the i-th derivative of F (x) can be written as

di

dxi
F (x) = F (x)

(
ai0 + ai1e

x + ai2e
2x + · · ·+ aii−1e

(i−1)x + eix
)
,

for some constants aij, j = 0, 1, . . . , i − 1. Thus, taking the derivatives in
equation (4.1) and dividing by F (x), which is never zero, we get

q0(x) + q1(x)ex + · · ·+ qd(x)edx = 0,

where

qi(x) = pi(x) +
d∑

k=i+1

aki pk(x).

Moreover, since the pi(x) are not all zero, the same is true for the qi(x). But
this imply that ex is algebraic, a contradiction.
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Theorem 4.6. For any m ≥ 1, the following sequences are P -recursive, for
n ≥ 1:

#Π′n(12 · · ·m), #Π′n(π
i
m), #Π′n(1/2/ · · · /m).

Furthermore, for any π ` [3], the sequences #Π′n(π), #EΠ′n(π) and #OΠ′n(π),
n ≥ 1, are P -recursive.

Proof : The exponential generating function for the numbers #Π′n(12 · · ·m),
n ≥ 1, is given by F12···m(x) = exp(expm−1(x)−1−x). We have already seen
that f(x) = ex is D-finite, and g(x) = expm−1(x)− 1− x is algebraic since it
is a polynomial. Thus, by Theorem 4.4 the composition f(g(x)) = F12···m(x)
is D-finite.

The exponential generating functions expm−2(e
x− 1− x) and expm−1(e

x−
1−x), respectively, for the numbers #Π′n(π

i
m) and #Π′n(1/2/ · · · /m), n ≥ 1,

are D-finite since this functions are linear combinations of series of the form
xmeax, with m ∈ N and a ∈ R, and thus satisfy a linear homogeneous
differential equation with constant coefficients.

Finally, note that by the results of sections 2 and 3, the generating functions
for #Π′n(π), #EΠ′n(π) and #OΠ′n(π), for each π ` [3], are either specifica-
tions of the functions above, or rational functions, and thus are D-finite.

Since the generating functions of all sequences considered are D-finite, we
can use Theorems 4.1 and 4.2 to conclude that all these sequences are P -
recursive.

5. Gray Codes
A Gray code for a class of combinatorial objects is a list of these objects

so that the transition from one object in the list to its successor takes only
a “small change” (see [12] for a comprehensive survey). The definition of
“small change” depends on the particular class of objects. In our case, we
define the distance d(π, ω) between two partitions π, ω of [n] as the minimum
number of letters that must be moved between blocks of π, possibly creating
a new block, so that the resulting partition is ω.

If the maximum distance between any two consecutive elements of a Gray
code is k, then we say that the Gray code has distance k.

In this section, we describe Gray codes with distance 2 for the sets Π′n(π),
for π = 1/2/3, 123, 13/2. The remaining cases π = 12/3 and 1/23 are trivial.
We point out that 2 is the minimum possible distance for a Gray code for
these sets. Except for π = 123, the partition 12 · · ·n belongs to Π′n(π), and



SINGLETON FREE SET PARTITIONS AVOIDING A 3-ELEMENT SET 19

therefore, the distance between 12 · · ·n and any other partition must be at
least equal to 2. The set Π′2n(123) is formed by perfect matchings, and again
in this case, 2 is the minimum distance between two elements of this set.

We start with the case Π′n(13/2), for which we need the following defini-
tions.

Definition 2. Given a singleton free partition σ = B1/ · · · /Bt of [n − j],
j = 1, 2, define the partition σn of [n] as

σn =

{
B1/ · · · /Bt ∪ {n}, if j = 1

B1/ · · · /Bt/{n− 1, n}, if j = 2
.

Definition 3. Let σ = B1/ · · · /Bt−1/Bt and π be layered singleton free
partitions of [n]. We say that σ and π forms a good pair if whenever #Bt−1 ≥
3 and Bt = {n− 1, n}, then Bt−1 ∪ {n− 1, n} is not a block of π.

Lemma 5.1. If σ, π is a good pair of Π′n−j(13/2) and d(σ, π) ≤ 2 then σn, πn

is also good pair of Π′n(13/2) and d(σn, πn) ≤ 2 , for j = 1, 2.

Proof : If σ, π is a good pair, it follows from the definitions of good pair and
σn that σn, πn is also a good pair. Assume that d(σ, π) ≤ 2. This means
that one or two integers moved between blocks of σ to get ω, and the same is
true for the partitions σn and πn. Since σn and πn are obtained from σ and
π by inserting n is the last block, or by inserting the block {n − 1, n}, the
only non trivial situation to analyze is when j = 1 and the last block, say
Bt = {n − 2, n − 1}, of σ vanishes in π. That is, σ = B1/ · · · /Bt−1/Bt and
τ = B1/ · · · /Bt−1 ∪ Bt. In this case, we have σn = B1/ · · · /Bt−1/Bt ∪ {n}
and τn = B1/ · · · /Bt−1∪Bt∪{n}. But since σ and π are good pairs, we must
have Bt−1 = {n− 4, n− 3}, and therefore πn is obtained from σn by moving
the integers n−4 and n−3 to the last block. It follows that d(σn, πn) = 2.

Note that if we drop the good pair condition in the last lemma, we may have
layered singleton free partitions σ and π of [n−1] with distance 2 such that the
distance of σn and πn is greater than 2. For instance, d(123/45, 12345) = 2
but d(123/456, 123456) = 3.

Theorem 5.2. For each n ≥ 4 there is a Gray code sequence with distance
2,

π1, π2 . . . , πs,

for Π′n(13/2) such that any two consecutive elements are good pairs, π1 =
12 · · ·n and πs = 12 · · · (n− 2)/(n− 1)n.
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Proof : The list 1234, 12/34 is a good pair and forms a Gray code with dis-
tance 2 for Π′4(13/2). Assume the result for integers less than n, with n > 4,
and let

α1, . . . , αs and β1, . . . , βt

be Gray codes with distance 2 for Π′n−2(13/2) and Π′n−1(13/2), respectively,
in the conditions of the theorem. Then

βn1 = 12 · · · (n− 1)n,

βnt = 12 · · · (n− 3)/(n− 2)(n− 1)n,

αn1 = 12 · · · (n− 2)/(n− 1)n, and

αns = 12 · · · (n− 4)/(n− 3)(n− 2)/(n− 1)n.

Thus, βnt and αns is a good pair with d(βnt , α
n
s ) = 2 and we may use Lemma

5.1 to conclude that any other two consecutive partitions of the sequence

βn1 , . . . , β
n
t , α

n
s , . . . , α

n
1 . (5.1)

forms a good pair and have distance less than, or equal to 2. Moreover,
from the construction used in the proof of Theorem 2.10, we find that this
sequence is an exhaustive list of the elements of Π′n(13/2). This means that
the list (5.1) is a Gray code with distance 2 for Π′n(13/2) in the conditions
of the theorem.

Π′2(13/2) 12
Π′3(13/2) 123
Π′4(13/2) 1234, 12/34
Π′5(13/2) 12345, 12/345, 123/45
Π′6(13/2) 123456, 12/3456, 123/456, 12/34/56, 1234/56
Π′7(13/2) 1234567, 12/34567, 123/4567, 12/34/567, 1234/567, 123/45/67,

12/345/67, 12345/67
Π′8(13/2) 12345678, 12/345678, 123/45678, 12/34/5678, 1234/5678,

123/45/678, 12/345/678, 12345/678, 1234/56/78,
12/34/56/78, 123/456/78, 12/3456/78, 123456/78

Table 5.1. Gray codes for Π′n(13/2), n = 2, . . . , 8

Theorem 5.3. For each n ≥ 4 there is a Gray code sequence with distance 2
for Π′n(1/2/3) which starts with 12 · · ·n and is followed by 1n/2 · · · (n− 1).
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Proof : For n = 4, the list 1234, 14/23, 13/24, 12/34 is a Gray code with
distance 2. By induction, assume that

α0, α1, . . . , αt

is a Gray code sequence with distance 2 for Π′n−1(1/2/3), for some n−1 ≥ 4,
with α0 = 12 · · · (n − 1) and α1 = 1(n − 1)/23 · · · (n − 2). Recalling that
each partition in Π′n−1(1/2/3) has one or two blocks, given α = B1/B2 ∈
Π′n−1(1/2/3) define

nα = B1 ∪ {n}/B2 and αn = B1/B2 ∪ {n}.

For each i = 1, . . . , n− 1, let βi = i n/1 · · · î · · · (n− 1), where î means that
the integer i is not in the block, and let L be the sequence of partitions in
Π′n(1/2/3) defined by:

L = 12 · · ·n, β1, β2, . . . , βn−1, α
n
1 , α

n
2 , . . . , α

n
t ,

nαt, . . . ,
nα2,

nα1.

It is clear from the definitions that each consecutive partitions in L has
distance 2. Moreover, note that by Corollary 2.8, the number of elements in
L is

#L = 2 (#Π′n−1(1/2/3)− 1) + n

= 2
(
2n−2 − (n− 1)− 1

)
+ n

= 2n−1 − n.

That is, L is an exhaustive list of the elements in Π′n(1/2/3), and therefore
is a Gray code sequence with distance 2 for Π′n(1/2/3).

Π′2(1/2/3) 12
Π′3(1/2/3) 123
Π′4(1/2/3) 1234, 14/23, 24/13, 12/34
Π′5(1/2/3) 12345, 15/234, 25/134, 35/124, 45/123, 14/235, 24/135, 12/345,

125/34, 245/13, 145/23
Π′6(1/2/3) 123456, 16/2345, 26/1345, 36/1245, 46/1235, 56/1234, 15/2346,

25/1346, 35/1246, 45/1236, 14/2356, 24/1356, 12/3456, 125/346,
245/136, 145/236, 1456/23, 2456/13, 1256/34, 126/345, 246/135,
146/235, 456/123, 356/124, 256/134, 156/234

Table 5.2. Gray codes for Π′n(1/2/3), n = 2, 3, 4, 5, 6
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In the next theorem we construct a Gray code with distance 2 for the perfect
matchings of [2k], that is, for the set Π′2k(123), k ≥ 2. The next lemma,
whose proof is clear from the definitions, characterize perfect matchings with
distance 2.

Lemma 5.4. Two perfect matchings of [2k] have distance 2 if and only if all
but two of their blocks are equal.

Let α = B1/ · · · /Bk−1 be a perfect matching of [n] with n = 2(k − 1),
written in standard form. For each j = 1, . . . , k − 1 let Bj = {a, b} with
a < b, and define

α0 = B1/ · · · /Bj/ · · · /Bk−1/{n− 1, n},
αj1i = B1/ · · · /Bj−1/{a, n}/Bj+1/ · · · /Bk−1/{b, n− 1}, and

αj2i = B1/ · · · /Bj−1/{b, n}/Bj+1/ · · · /Bk−1/{a, n− 1}.

Lemma 5.5. Let α and α1 be two perfect matchings of [2(k−1)] with distance
2, and j ∈ [k − 1]. Then,

(1) d(α0, α0
1) = 2;

(2) d(α0, αj`) = 2, for ` = 1, 2;
(3) d(αj1, αj2) = 2;

(4) d(αj`, αj`1 ) = 2 for ` = 1, 2.

Proof : The first three conditions are clear since all but two of the blocks of
each of the pairs of partitions α0, α0

1, α0, αj` and αj1, αj2 are equal.
Let α = B1/ · · · /Bk−1 and α1 = B′1/ · · · /B′k−1 be perfect matchings of

[2(k − 1)], written in standard form and such that d(α, α1) = 2. Let n =
2(k − 1), j ∈ [k − 1] and assume that Bj = {a, b}, with a < b, so that

αj1 = B/{a, n}/{c, d}/{b, n− 1} and αj2 = B/{b, n}/{c, d}/{a, n− 1},
(5.2)

where B = B1/ · · · /B̂j/ · · · /B̂q/ · · · /Bk−1. Since the distance between α and
α1 is 2, there must be a block Bq = {c, d} of α, with c < d, and two integers
j′, q′ ∈ [k − 1] such that B′` = B` for ` 6= j′, q′, and either

B′j′ = {a, c} and B′q′ = {b, d} or B′j′ = {a, d} and B′q′ = {b, c}.

Now, if Bj = B′j, then it is clear that d(αj`, αj`1 ) = 2 since all but two of the
blocks of these partitions are equal, for ` = 1, 2. So, assume that Bj 6= B′j.
We have two cases to consider: a < c or c < a. We consider only the case
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a < c, the other case is analogous. Then, we have j < q and j′ < q′, and this
implies that

B′j = B′j′ = {a, c} and B′q′ = {b, d} or B′j = B′j′ = {a, d} and B′q′ = {b, c}.
In the first case we have

αj11 = B/{a, n}/{b, d}/{c, n− 1} and αj21 = B/{c, n}/{b, d}/{a, n− 1},
and in the second

αj11 = B/{a, n}/{b, c}/{d, n− 1} and αj21 = B/{d, n}/{b, c}/{a, n− 1},
In both cases, comparing the expressions of αj` given in (5.2) with that of

αj`1 , for ` = 1, 2, we conclude that their distance is 2.

Theorem 5.6. For each integer k ≥ 1, there is a Gray code sequence for
Π′2k(123) with distance 2.

Proof : The proof is by induction on k ≥ 1. For k = 1 and k = 2, the lists 12
and 12/34, 13/24, 14/23 are Gray codes with distance 2. Assume the result
for k − 1 ≥ 2, and let

Lk−1 = α1, α2, . . . , αs,

be a Gray code sequence for Π′2(k−1)(123) with distance 2, where s = (2k−3)!!

by Corollary 2.6.
For each i = 1, . . . , k − 1, let Ri be the list off all 2s partitions αi`j , j =

1, . . . , s and ` = 1, 2, starting with αi1i and ending in αi1i+1, defined by:

Ri = αi1i , α
i1
i−1, . . . , α

i1
1 , α

i2
1 , α

i2
2 , . . . , α

i2
s , α

i1
s , α

i1
s−1, . . . , α

i1
i+1.

Finally, let

Lk = α0
1, R1, α

0
2 R2, . . . , α

0
k−1, Rk−1, α

0
k, α

0
k+1, . . . , α

0
s.

By its construction, all partitions in Lk are perfect matchings and, by Lemma
5.5, any two consecutive partitions in Lk are distinct and have distance 2.
Moreover, the list Lk exhaust all elements of π2k(123), since its cardinal is
given by

#Lk = s+ (k − 1)2s

= (2k − 3)!! + (k − 1)2 ((2k − 3)!!)

= (1 + 2k − 2)((2k − 3)!!)

= (2k − 1)!!

Therefore, Lk is a Gray code with distance 2 for Π′2k(123).
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Π′2(123) 12
Π′4(123) 12/34, 13/24, 14/23
Π′6(123) 12/34/56, 16/34/25, 26/34/15, 36/24/15, 46/23/15, 16/23/45,

16/24/35, 13/24/56, 13/26/45, 12/36/45, 12/46/35, 13/46/25,
14/36/25, 14/26/35, 14/23/45

Table 5.3. Gray codes for Π′n(123), n = 2, 4, 6
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leur cercle de convergence. Comment. Math. Helv. 3, 1 (1931), 266–306.
[4] M. Klazar, On abab-free and abba-free set partitions, European J. Combin. 17, 1 (1996),

53–68.
[5] T. Koshy, Fibonacci and Lucas numbers with applications. New York : Wiley-Interscience,

2001.
[6] T. Mansour, Combinatorics of set partitions, CRC Press [Taylor and Francis Group], 2013.
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