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Abstract: In this paper, we investigate some stochastic comparisons in terms
of likelihood ratio ordering between spacings from independent random variables
exponentially distributed with different scale parameters. We partially solve some
open problems in Wen et al. [16] for a one-sample problem and in Hu et al. [5]
for a two-sample problem. Specifically, we prove that the second spacing is always
smaller than the third spacing in terms of the likelihood ratio order and we provide
the ordering among all spacings in the case n = 4. In the two-sample case, we
establish comparisons between the second spacings related to each sample under
certain conditions.
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1. Introduction
Given a set of independent random variables, X1, X2, . . . , Xn, let the order

statistics of these variables be X1:n ≤ X2:n ≤ . . . ≤ Xn:n. Then, the random
variables

Di:n = Xi:n −Xi−1:n,

for i = 1, . . . , n, with X0:n ≡ 0, are called spacings.
Spacings are of great interest in many areas. In particular, in auction the-

ory, the second and the last spacings represent reverse auction in the second-
price business auction and auction rent’s in buyer’s auction, respectively (see
Xu and Li [18]). In the reliability context, they correspond to times elapsed
between successive failures of components in a system. In addition, there
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(ECO2012-38442), by the Centro de Matemática da Universidade de Coimbra (CMUC), funded by
the European Regional Development Fund through the program COMPETE and by the Portuguese
Government through the FCT - Fundação para a Ciência e a Tecnologia under the project PEst-
C/MAT/UI0324/2013.

1



2 N. TORRADO AND R.E. LILLO

are many goodness-of-fit test based on spacings (see, e.g., Balakrishnan and
Rao [1, 2]) very useful in the context of life testing.

Many researchers have investigated stochastic relations in terms of sto-
chastic orderings between spacings of a random sample from independent
and identically distributed random variables. Some early references for this
case are Barlow and Proschan [3], Pledger and Proschan [12] and Kochar
and Kirmani [7]. The corresponding problem in single-outlier exponential
model has been studied by Khaledi and Kochar [6]. This topic has also been
studied by Wen et al. [16] and Xu et al. [17] in the multiple-outlier exponen-
tial model. When observations are heterogeneous, there are few references
due to the complicated distribution form of the spacings. From Kochar and
Korwar [8], we know that the survival function of D2:n is Schur convex in
(λ1, . . . , λn) and that the hazard rate of D2:2 is Schur concave in (λ1, λ2).
Note that for n ≥ 3, the hazard rate of D2:n is not Schur concave. Wen et
al. [16] conjectured that Di:n ≤lr Di+1:n for i = 1, . . . , n − 1. Hu et al. [4]
proved that D1:n ≤lr D2:n and D2:3 ≤lr D3:3 for all λi’s; and if λn+1 ≥ λi,
i = 1, . . . , n, then D2:n+1 ≤lr D2:n.

For two samples, Kochar and Rojo [9] and Kochar an Xu [10] established
condition for different stochastic orderings among spacings when one of those
samples is from heterogeneous exponential random variables and the other
one is from homogeneous exponential random variables. The case in which
both samples are from heterogeneous exponential random variables is inves-
tigated in Torrado and Lillo [15].

In this work, we investigate stochastic order relations among successive
spacings from a sample and also between spacings from two samples, in both
cases we consider that the observations are independent but not identically
distributed. In particular, for the one sample problem, we partially solve
open problems in Wen et al. [16]. When spacings are from two heteroge-
neous samples, we stochastically compare second spacings in the sense of the
likelihood ratio order by solving open problems in Hu et al. [5].

The rest of this article is organized as follows. We recall the definition
of likelihood ratio order, as well as, of the density function of spacings in
Section 2. Also in this section, we give some useful lemmas used in the
sequel. In Section 3, we present some advances on the conjecture in [16]. In
particular, we prove this conjecture for n = 4 and show that the second and
third spacings for any n are ordered according to the likelihood ratio order.
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In addition, we solve in Section 4 an open problem in [5] for the second
spacing. Finally, Section 5 makes some concluding remarks.

2. Preliminaries
First, let us introduce some notations and definitions. Let x = (x1, x2, . . . , xn),

n > 1 a vector with positive components, then

S(x) =
n∑
i=1

xi , (2.1)

is the first elementary symmetrical function of the positive x1, x2, . . . , xn.
For two random variables X and Y with densities fX and fY respectively,

X is said to be smaller than Y in the likelihood ratio order, denoted by
X ≤lr Y , if fY (t)/fX(t) is increasing in t. It is known that the likelihood
ratio order implies both the hazard rate and the reversed hazard rate orders
(see, e.g., [13]).

For heterogeneous but independent exponential random variables, Kochar
and Korwar [8] proved that, for i ∈ {2, . . . , n}, the distribution of Di is a
mixture of independent exponential random variables. Following Torrado et
al. [14] the density function of Di can be written as

fi(t) =

Mi∑
j=1

∆(βimj
, n)β(i)

mj
e−tβ

(i)
mj , (2.2)

with Mi =

(
n

n− i+ 1

)
,

β(i)
mj

= S(λmj
), (2.3)

where S(·) is defined as in (2.1) and mj indicates a group of indices of size
n− i+ 1, and

∆(β(i)
mj
, n) =

∑
ri−1,mj

 ∏
k∈Hmj

λk


 i−1∏
`=1


i−1∑
u=`

ru∈Hmj

λru + β(i)
mj



−1

, (2.4)

where Hmj
= {1, . . . , n} −mj and the outer summation is being taken over

all permutations of the elements of Hmj
.

Before proceeding to our main results, we recall four lemmas, which will
be used repeatedly in the following sections.
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Lemma 2.1 (Lemma 3.1, in Kochar and Korwar [8]). Let ∆(β
(i)
mj , n) be as

defined in (2.4). Suppose that m1 and m2 are two subsets of {1, . . . , n} of
size n− i+1 (1 < i ≤ n) and having all but one element in common. Denote
the uncommon element in m1 by a1 and that in m2 by a2. Then,

λa1∆(β(i)
m1
, n) ≥ λa2∆(β(i)

m2
, n), if λa2 ≥ λa1.

Lemma 2.2 (Chebyshev’s sum inequality, Theorem 1, in Mitrinovic [11]).
Let a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn be two decreasing sequences of
real numbers. Then

n
n∑
i=1

aibi ≥

(
n∑
i=1

ai

)(
n∑
i=1

bi

)
.

Lemma 2.3 (Lemma A.1, in Torrado et al. [14]). Let ∆(β
(i)
mj , n) be as in

(2.4) and β
(i)
mj as in (2.3). Then,

∆(β
(3)
(3,4), 4)∆(β

(4)
h , 4) ≥ ∆(β

(3)
(h,4), 4)∆(β

(4)
3 , 4) ≥ ∆(β

(3)
(h,3), 4)∆(β

(4)
4 , 4),

for h = 1, 2.

Lemma 2.4 (Lemma A.2, in Torrado et al. [14]). Under the same assump-
tions as those in Lemma 2.3

(a) ∆(β
(3)
(2,h), 4)∆(β

(4)
1 , 4) ≥ ∆(β

(3)
(1,2), 4)∆(β

(4)
h , 4),

(b) ∆(β
(3)
(1,h), 4)∆(β

(4)
2 , 4) ≥ ∆(β

(3)
(1,2), 4)∆(β

(4)
h , 4),

for h = 3, 4.

Remark that in Lemmas 2.3 and 2.4, from (2.1), we get that

β
(4)
j = S(λj) = λj and β

(3)
(j,`) = S(λj, λ`) = λj + λ`.

3. Comparisons between spacings related to a sample
Observing equation (2.2), note that Di:n ≤lr Di+1:n if and only if

fi+1(t)

fi(t)
=

∑Mi+1

j=1 ∆(β
(i+1)
mj , n)β

(i+1)
mj e−tβ

(i+1)
mj∑Mi

j=1 ∆(β
(i)
mj , n)β

(i)
mje

−tβ(i)
mj

,
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is increasing in t. Differentiating this equation with respect to t we have to
prove

Mi+1∑
j=1

Mi∑
k=1

∆(β(i)
mk
, n)∆(β(i+1)

mj
, n)β(i)

mk
β(i+1)
mj

e−t(β
(i)
mk

+β
(i+1)
mj )

(
β(i)
mk
− β(i+1)

mj

)
≥ 0.

(3.1)

Note that if
(
β

(i)
mk − β

(i+1)
mj

)
is positive for all mk and mj, then the Eq.(3.1)

holds. Throughout this paper we suppose without loss of generality that the
λi’s are in increasing order.

Wen et al [16] conjectured that successive spacings from heterogeneous ex-
ponential random variables are increasing in likelihood ratio ordering. Next,
we show that the second and the third simple spacings are ordered according
to likelihood ratio ordering for any n, but first we need to prove the following
result.

Lemma 3.1. Let β
(2)
−j = S(λ) − λj and β

(3)
(−j,−k) = S(λ) − λj − λk be for

1 ≤ j < k < ` ≤ n, where λ = (λ1, . . . , λn). Then,

β
(2)
−jβ

(3)
(−k,−`) + β

(2)
−kβ

(3)
(−j,−`) ≥ β

(2)
−`β

(3)
(−j,−k).

Proof : Note that,

β
(2)
−jβ

(3)
(−k,−`) = S2(λ)− S(λ) (λj + λk + λ`) + λj(λk + λ`),

β
(2)
−kβ

(3)
(−j,−`) = S2(λ)− S(λ) (λj + λk + λ`) + λk(λj + λ`),

β
(2)
−`β

(3)
(−j,−k) = S2(λ)− S(λ) (λj + λk + λ`) + λ`(λk + λj),

where λ = (λ1, . . . , λn). Then

β
(2)
−jβ

(3)
(−k,−`)+β

(2)
−kβ

(3)
(−j,−`)−β

(2)
−`β

(3)
(−j,−k) = S(λ)2−S(λ) (λj + λk + λ`)+2λjλk ≥ 0,

since S(λ)− λj − λ` − λk ≥ 0.

Theorem 3.2. Let X1, . . . , Xn be independent exponential random variables
such that Xi has hazard rate λi for i = 1, . . . , n, then

D2:n ≤lr D3:n.

Proof : We have to show that (3.1) holds. Note that, for j < k < `,

β
(2)
−k − β

(3)
(−j,−`) = (λj + λ`)− λk,



6 N. TORRADO AND R.E. LILLO

since β
(2)
−k = S(λ)−λk and β

(3)
(−j,−`) = S(λ)−λj−λ`. Let us denote au,1 = β

(2)
−j−

β
(3)
(−k,−`), au,2 = β

(2)
−k − β

(3)
(−j,−`) and au,3 = β

(2)
−` − β

(3)
(−j,−k), for u = 1, . . . ,

(
n

3

)
.

It is easy to see that au,1, au,2 ≥ 0 and au,3 can be positive or negative.
Moreover, these elements are ordered as follows:

au,1 = (λk + λ`)− λj ≥ au,2 = (λj + λ`)− λk ≥ au,3 = (λj + λk)− λ`.

Since

β
(2)
−j + β

(3)
(−k,−`) = β

(2)
−k + β

(3)
(−j,−`) = β

(2)
−` + β

(3)
(−j,−k) = 2S(λ)− λj − λk − λ`,

then e−t(β
(2)
−j +β

(3)
(−k,−`)) = e−t(β

(2)
−k+β

(3)
(−j,−`)) = e−t(β

(2)
−` +β

(3)
(−j,−k)). Hence, we have to

prove

Bu = au,1 bu,1β
(2)
−jβ

(3)
(−k,−`) + au,2 bu,2β

(2)
−kβ

(3)
(−j,−`) + au,3 bu,3β

(2)
−`β

(3)
(−j,−k) ≥ 0,

where

bu,1 = ∆(β
(2)
−j , n)∆(β

(3)
(−k,−`), n),

bu,2 = ∆(β
(2)
−k, n)∆(β

(3)
(−j,−`), n),

bu,3 = ∆(β
(2)
−` , n)∆(β

(3)
(−j,−k), n),

for u = 1, . . . ,

(
n

3

)
. By Lemma 2.1, we get bu,1 ≥ bu,2 ≥ bu,3, then,

Bu ≥ au,2 bu,2

(
β

(2)
−jβ

(3)
(−k,−`) + β

(2)
−kβ

(3)
(−j,−`)

)
+ au,3 bu,3β

(2)
−`β

(3)
(−j,−k) =

3∑
h=2

au,hcu,h ,

where

cu,2 = bu,2

(
β

(2)
−jβ

(3)
(−k,−`) + β

(2)
−kβ

(3)
(−j,−`)

)
and

cu,3 = bu,3β
(2)
−`β

(3)
(−j,−k).

It follows by Lemmas 2.2 and 3.1 that

Bu ≥
3∑

h=2

au,hcu,h ≥
1

2

(
3∑

h=2

au,h

)(
3∑

h=2

cu,h

)
≥ 0,
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for u = 1, . . . ,

(
n

3

)
. From all these inequalities, the required result follows

immediately.

Hu et al [4] proved for n = 3 the conjecture in [16], that is

D1:3 ≤lr D2:3 ≤lr D3:3.

In the following result, we extend the result in [4] to n = 4. Hu et al [4]
also proved that D1:n ≤lr D2:n for any n, and by Theorem 3.2 we know that
D2:n ≤lr D3:n for any n, so we have to show that D3:4 ≤lr D4:4.

Theorem 3.3. Let X1, . . . , X4 be independent exponential random variables
such that Xi has hazard rate λi for i = 1, . . . , 4, then

D3:4 ≤lr D4:4.

Proof : We have to show that 3.1 holds. Here, the matrix of β
(3)
mk − β

(4)
mj is

λ3 + λ4 − λ1 λ3 + λ4 − λ2 λ4 λ3

λ2 + λ4 − λ1 λ4 λ2 + λ4 − λ3 λ2

λ2 + λ3 − λ1 λ3 λ2 λ2 + λ3 − λ4

λ4 λ1 + λ4 − λ2 λ1 + λ4 − λ3 λ1

λ3 λ1 + λ3 − λ2 λ1 λ1 + λ3 − λ4

λ2 λ1 λ1 + λ2 − λ3 λ1 + λ2 − λ4

 (3.2)

To simplify the notation, we define β
(3)
(j,k) = λj + λk and β

(4)
j = λj. It is easy

to check that there are only four negative coefficients au,3 = λj + λk − λ` for
j < k < ` and u /∈ {j, k, `}. We can consider the terms au,1 = λk + λ`− λj ≥
au,2 = λj+λ`−λk ≥ 0 for u = 1, . . . , 4. Notice that exp

{
−t(β(3)

(k,`) + β
(4)
j )
}

=

exp
{
−t(β(3)

(j,`) + β
(4)
k )
}

= exp
{
−t(β(3)

(j,k) + β
(4)
` )
}

. Hence, we have to prove

Bu = ∆(β
(3)
(k,`), 4)∆(β

(4)
j , 4)β

(3)
(k,`)β

(4)
j (λk + λ` − λj)

+∆(β
(3)
(j,`), 4)∆(β

(4)
k , 4)β

(3)
(j,`)β

(4)
k (λj + λ` − λk)

+∆(β
(3)
(j,k), 4)∆(β

(4)
` , 4)β

(3)
(j,k)β

(4)
` (λj + λk − λ`) ≥ 0, (3.3)

where u /∈ {j, k, `}.
Now, if u = 1 or 2, using Lemma 2.3, we find that

∆(β
(3)
(3,4), 4)∆(β

(4)
3−u, 4) ≥ ∆(β

(3)
(3−u,4), 4)∆(β

(4)
3 , 4) ≥ ∆(β

(3)
(3−u,3), 4)∆(β

(4)
4 , 4).
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And, if u = 3 or 4, by Lemma 2.4, we have that

∆(β
(3)
(2,u), 4)∆(β

(4)
1 , 4) ≥ ∆(β

(3)
(1,2), 4)∆(β(4)

u , 4),

and

∆(β
(3)
(1,u), 4)∆(β

(4)
2 , 4) ≥ ∆(β

(3)
(1,2), 4)∆(β(4)

u , 4).

From this, we conclude that

Bu ≥ au,2 min {bu,1, bu,2}
(
β

(3)
(k,`)β

(4)
j + β

(3)
(j,`)β

(4)
k

)
+ au,3 bu,3β

(3)
(j,k)β

(4)
` ,

where

bu,1 = ∆(β
(3)
(k,`), 4)∆(β

(4)
j , 4),

bu,2 = ∆(β
(3)
(j,`), 4)∆(β

(4)
k , 4),

bu,3 = ∆(β
(3)
(j,k), 4)∆(β

(4)
` , 4),

for u = 1, . . . , 4. Note that

β
(3)
(k,`)β

(4)
j + β

(3)
(j,`)β

(4)
k ≥ β

(3)
(j,k)β

(4)
` ,

for j < k < `, since

β
(3)
(k,`)β

(4)
j + β

(3)
(j,`)β

(4)
k − β

(3)
(j,k)β

(4)
` = 2λjλk ≥ 0.

Hence, by Lemma 2.2

Bu ≥
3∑

h=2

au,hcu,h ≥
1

2

(
3∑

h=2

au,h

)(
3∑

h=2

cu,h

)
≥ 0,

where

cu,2 = min {bu,1, bu,2}
(
β

(3)
(k,`)β

(4)
j + β

(3)
(j,`)β

(4)
k

)
,

cu,3 = bu,3β
(3)
(j,k)β

(4)
` ,

for u = 1, . . . , 4. This proves the required result.
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4. Comparisons between spacings related to two samples
In the two samples problem, when X1, . . . , Xn are independent exponential

random variables with Xi having hazard rate λi, i = 1, . . . , n and Y1, . . . , Yn
are another random sample with Yi having hazard rate θi, i = 1, . . . , n,
Kochar and Rojo [9] proved that simple spacings are ordered according to
likelihood ratio order when the parameters are ordered in the majorization
order for n = 2, i.e., if (θ1, θ2) ≤m (λ1, λ2), then C2:2 ≤lr D2:2, where D2:2

and C2:2 are the second simple spacings from Xi’s and Yi’s, respectively. As
pointed out Kochar and Korwar [8], the hazard rate of D2:n is not Schur-
concave for n ≥ 3. Therefore the result in [9] can not be extended to n ≥ 3.
This topic has been studied for multiple-outlier exponential models in [5, 15].

Let X1, . . . , Xn be independent exponential distributions such that Xi has
hazard rate λ1, for i = 1, . . . , p and Xj has hazard rate λ∗ for j = p+1, . . . , n.
Let Y1, . . . , Yn be another set of independent exponential distributions such
that Yi has hazard rate λ2, for i = 1, . . . , p and Yj has hazard rate λ∗ for
j = p + 1, . . . , n. In particular, Hu et al. [5] showed that Ci:n ≤lr Di:n, for
i = 1, . . . , n if λ1 ≤ λ∗ ≤ λ2, where D2:n and C2:n are the second simple
spacing from Xi’s and Yi’s, respectively. Note that this is a particular case
of Theorem 3.3 in Torrado and Lillo [15].

For λ1 ≤ λ2 ≤ λ∗, Hu et al. [5] showed that spacings are increasing in the
likelihood ratio order for n = 2, 3. In the following result, we prove this open
problem for the second spacing for arbitrary n.

Theorem 4.1. Let X1, . . . , Xn be independent exponential distributions such
that Xi has hazard rate λ1, for i = 1, . . . , p and Xj has hazard rate λ∗ for
j = p + 1, . . . , n. Let Y1, . . . , Yn be another set of independent exponential
distributions such that Yi has hazard rate λ2, for i = 1, . . . , p and Yj has
hazard rate λ∗ for j = p+ 1, . . . , n. If λ1 ≤ λ2 ≤ λ∗, then

C2:n ≤lr D2:n,

where D2:n and C2:n are the second simple spacing from Xi’s and Yi’s, respec-
tively.

Proof : From (2.2), we know that the density function of D2:n is

f2:n(t) =
1

S(λ1)

(
pλ1 (S(λ1)− λ1) e

−t(S(λ1)−λ1) + qλ∗ (S(λ1)− λ∗) e−t(S(λ1)−λ∗)
)
.

where λ1 = (λ1, . . . , λ1, λ∗, . . . , λ∗). Analogously, we get the density function
of C2:n by interchanging λ1 and λ2. On differentiating f2:n(t) with respect to
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t, we get

f ′2:n(t) =
−1

S(λ1)

(
pλ1 (S(λ1)− λ1)

2 e−t(S(λ1)−λ1) + qλ∗ (S(λ1)− λ2)
2 e−t(S(λ1)−λ∗)

)
,

Thus, we have to prove that

pλ2 (S(λ2)− λ2)
2 eλ2t + qλ∗ (S(λ2)− λ∗)2 eλ∗t

pλ2 (S(λ2)− λ2) eλ2t + qλ∗ (S(λ2)− λ∗) eλ∗t
≥

pλ1 (S(λ1)− λ1)
2 eλ1t + qλ∗ (S(λ1)− λ∗)2 eλ∗t

pλ1 (S(λ1)− λ1) eλ1t + qλ∗ (S(λ1)− λ∗) eλ∗t
.

After some computations we get that the above expression is equivalent to

p2λ1λ2 (S(λ1)− λ1) (S(λ2)− λ2) e
(λ1+λ2)t

(
(S(λ2)− λ2)− (S(λ1)− λ1)

)
+

pqλ1λ∗ (S(λ1)− λ1) (S(λ2)− λ∗) e(λ1+λ∗)t
(

(S(λ2)− λ∗)− (S(λ1)− λ1)
)

+

pqλ2λ∗ (S(λ1)− λ∗) (S(λ2)− λ2) e
(λ2+λ∗)t

(
(S(λ2)− λ2)− (S(λ1)− λ∗)

)
+

pqλ2
∗ (S(λ1)− λ∗) (S(λ2)− λ∗) e2λ∗t

(
(S(λ2)− λ∗)− (S(λ1)− λ∗)

)
≥ 0.

Note that

(S(λ2)− λ2)−(S(λ1)− λ1) = pλ2+qλ∗−pλ1−qλ∗+λ1−λ2 = (p−1)(λ2−λ1) ≥ 0,
(4.1)

and

(S(λ2)− λ∗)− (S(λ1)− λ∗) = S(λ2)− S(λ1) = pλ2 + qλ∗ − pλ1 − qλ∗
= p(λ2 − λ1) ≥ 0,

since λ1 ≤ λ2 and p ≥ 1. Therefore, what remains to be proved is

pqλ∗e
λ∗t
(
λ1e

λ1t (S(λ1)− λ1) (S(λ2)− λ∗)
(

(S(λ2)− λ∗)− (S(λ1)− λ1)
)

+λ2e
λ2t (S(λ1)− λ∗) (S(λ2)− λ2)

(
(S(λ2)− λ2)− (S(λ1)− λ∗)

))
≥ 0.

Note that (S(λ2)− λ2) − (S(λ1)− λ∗) = (S(λ2)− S(λ1)) + (λ∗ − λ2) ≥ 0
since λ1 ≤ λ2 ≤ λ∗ and eλ2t ≥ eλ1t, then the above expression is equivalent
to

λ1 (S(λ1)− λ1) (S(λ2)− λ∗)
(

(S(λ2)− λ∗)− (S(λ1)− λ1)
)

+ λ2 (S(λ1)− λ∗) (S(λ2)− λ2)
(

(S(λ2)− λ2)− (S(λ1)− λ∗)
)
≥ 0.



LIKELIHOOD RATIO COMPARISONS AMONG SPACINGS 11

Hence, the required result follows from (4.1),

(S(λ2)− λ2)− (S(λ1)− λ∗) ≥ (S(λ1)− λ1)− (S(λ2)− λ∗)
⇔ (p− 1)λ2 − pλ1 + λ∗ ≥ (p− 1)λ1 − pλ1 + λ∗

⇔ λ1 ≤ λ2,

and

λ2 (S(λ1)− λ∗) ≥ λ1 (S(λ2)− λ∗) ⇔ pλ1λ2 + (q − 1)λ2λ∗ ≥ pλ1λ2 + (q − 1)λ1λ∗

⇔ λ1 ≤ λ2.

Recall that normalized spacings are defined as D∗i:n = (n − i + 1)Di:n, for
i = 1, . . . , n. Note that, from Theorem 3.1 in Torrado and Lillo [15] and
Theorem 4.1, we have that

λ1 ≤ λ2 ≤ λ∗ ⇒ C∗2:2 ≤lr D∗2:2,

where D∗2:2 and C∗2:2 are the second normalized spacings from two multiple-
outlier exponential models as before.

Theorem 4.2. Let X1, . . . , Xn be independent exponential distributions such
that Xi has hazard rate λi, for i = 1, . . . , n − 1 and Xn has hazard rate λ∗.
Let Y1, . . . , Yn be another set of independent exponential distributions such
that Yi has hazard rate λi, for i = 1, . . . , n− 1 and Yn has hazard rate θ∗. If
λ∗ ≤ λi ≤ θ∗ for i = 1, . . . , n− 1. Then,

C2:n ≤lr D2:n,

where D2:n and C2:n are the second simple spacing from Xi’s and Yi’s, respec-
tively.

Proof : Again, from (2.2), we know that the density function of D2:n is

f2:n(t) =
1

S(λ)

(
λ∗ (S(λ)− λ∗) e−t(S(λ)−λ∗) +

n−1∑
i=1

λi (S(λ)− λi) e−t(S(λ)−λi)

)
.

where λ = (λ1, λ2, . . . , λn−1, λ∗). Analogously, we get the density function of
C2:n by interchanging λ∗ and θ∗. On differentiating f2:n(t) with respect to t,
we get

f ′2:n(t) =
−1

S(λ)

(
λ∗ (S(λ)− λ∗)2 e−t(S(λ)−λ∗) +

n−1∑
i=1

λi (S(λ)− λi)2 e−t(S(λ)−λi)

)
,
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Thus, we have to prove that

θ∗ (S(θ)− θ∗)2 eθ∗t +
n−1∑
i=1

λi (S(θ)− λi)2 eλit

θ∗ (S(θ)− θ∗) eθ∗t +
n−1∑
i=1

λi (S(θ)− λi) eλit

≥
λ∗ (S(λ)− λ∗)2 eλ∗t +

n−1∑
i=1

λi (S(λ)− λi)2 eλit

λ∗ (S(λ)− λ∗) eλ∗t +
n−1∑
i=1

λi (S(λ)− λi) eλit
.

After some computations, we get that the above expression is equivalent to

n−1∑
i=1

n−1∑
j=1

λiλj (S(θ)− λi) (S(λ)− λj) e(λi+λj)t
(

(S(θ)− λi)− (S(λ)− λj)
)

+

λ∗ (S(λ)− λ∗) eλ∗t
n−1∑
i=1

λi (S(θ)− λi) eλit
(

(S(θ)− λi)− (S(λ)− λ∗)
)

+

θ∗ (S(θ)− θ∗) eθ∗t
n−1∑
i=1

λi (S(λ)− λi) eλit
(

(S(θ)− θ∗)− (S(λ)− λi)
)

+

λ∗ (S(λ)− λ∗) eλ∗tθ∗ (S(θ)− θ∗) eθ∗t
(

(S(θ)− θ∗)− (S(λ)− λ∗)
)
≥ 0.

Since (S(θ)− θ∗)− (S(λ)− λ∗) = 0, the last term of the above expression is
equal to zero. Note hat

(S(θ)− λi)− (S(λ)− λ∗) = θ∗ − λi ≥ 0,

(S(θ)− θ∗)− (S(λ)− λi) = λi − λ∗ ≥ 0,

and

(S(θ)− λi)− (S(λ)− λj) ≥ (S(θ)− θ∗)− (S(λ)− λj) = λi − λ∗ ≥ 0,

since λ∗ ≤ λi ≤ θ∗ for i = 1, . . . , n − 1. Hence, the required result follows
immediately.

Again, from Theorem 3.1 in Torrado and Lillo [15], we have a similar result
as Theorem 4.2 for normalized spacing, that is:

λ∗ ≤ λi ≤ θ∗, for i = 1, . . . , n− 1⇒ C∗2:2 ≤lr D∗2:2,
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where D∗2:2 and C∗2:2 are the second normalized spacings from two multiple-
outlier exponential models as before.

5. Discussion and Concluding Remarks
Let X1, . . . , Xn be independent exponential random variables such that Xi

has hazard rate λi for i = 1, . . . , n, we have established the conjecture by
Wen et al. [16] for n = 4, that is, D1:4 ≤lr D2:4 ≤lr D3:4 ≤lr D4:4. In addition,
we have proved that the second spacing is smaller than the third spacing
in the likelihood ratio order and for all n. These results have extended the
known results for spacings for the exponential case, but the general case still
remains an open problem.

For the two random samples problem, we have established that

λ1 ≤ λ2 ≤ λ∗ ⇒ C2:n ≤lr D2:n,

where D2:n and C2:n are the second simple spacings from two multiple-outlier
exponential models with hazard rate λ1 = (λ1, . . . , λ1, λ∗, . . . , λ∗) and λ2 =
(λ2, . . . , λ2, λ∗, . . . , λ∗), respectively. This result solves an open problem in
the literature (see Hu et al. [5]) for the second spacing from multiple-outlier
exponential model. We have also proved that

λ∗ ≤ λi ≤ θ∗ for i = 1, . . . , n− 1⇒ C2:n ≤lr D2:n,

where D2:n and C2:n are the second simple spacings from two samples of
exponential random variables with hazard rate λ = (λ1, λ2, . . . , λn−1, λ∗) and
θ = (λ1, λ2, . . . , λn−1, θ∗), respectively.
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