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ON THE EXPONENTIAL DECAY OF WAVES WITH
MEMORY

J. A. FERREIRA, P. DE OLIVEIRA AND G. PENA

Abstract: In this paper we consider general linear damped wave equations with
memory. We establish energy estimates that under the assumption of exponentially
bounded kernels, induce exponential decaying solutions. Numerical waves that mimic
their continuous counterpart are also introduced using a finite element approach.
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1. Introduction
This paper is concerned with the study of the decay of the solutions of the

following damped wave equation with memory

u′′(t) + cu′(t) +Au(t) =

∫ t

0

Ker (t− s; τ)Bu(s)ds+ f(t), t ∈ R+, (1)

where u(t), for t ∈ R+, denotes a function defined from Ω ⊂ Rn into R, c is
a function depending only on spatial variables and accounts for the damping
of the wave, Ker denotes a function, called the memory kernel, that depends
on a parameter τ > 0, f denotes a source term and A and B are second order
differential operators. Equation (1) is completed with homogeneous Dirichlet
boundary conditions and the following initial conditions{

u(0) = u0,

u′(0) = u1.
(2)

This type of differential problem arises in many contexts, such as modelling
the displacement of viscoelastic materials. Indeed, let u denote the displacement
of the material, f an external force being applied to the material and τ the
stress tensor associated. Newton’s second law states that

ρu′′ = ∇ · τ + f, (3)
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where ρ is the density of the material. Usually, the relation considered between
the stress tensor τ and the strain tensor ε is

τ (t) = Dε(t) (4)

where D is an elastic tensor. Assuming that the components of the strain and
the displacement satisfy

ε(t) =
1

2

(
∇u(t) +∇u(t)t

)
,

relation (4) accounts for a fickian type effect. However, if we assume that
the material has some viscoelastic properties modelled by a Maxwell-Wiechert
model and assume the following constitutive equation

τ (t) = E(0)Dε(t)−
∫ t

0

∂

∂s
E(t− s)Dε(s) ds,

where

E(t) = E0 +
N∑
i=1

Eie
−αit,

and E0 is the Young modulus of the spring arm, Ei, i = 1, . . . , N, are the Young
modulus of the Maxwell arms and αi = Ei

µi
, i = 1, . . . , N, being µi, i = 1, . . . , N,

their associated viscosities, then from (3), we obtain for the displacement the
following second order integro-differential equation

ρu′′ −∇ ·
(

1

2
E(0)D(∇u(t) +∇u(t)t)

)
=

−
∫ t

0

Ker (t− s)∇ ·
(
D(∇u(s) +∇u(s)t)

)
ds+ f,

with Ker (t) = 1
2

∑N
i=1Eiαie

−αit, t > 0.
Equations of type (1) have already been introduced in the literature, see

[5, 13, 15], to model viscoelastic physical phenomena. Without being exhaustive,
we mention [1, 4, 3, 8, 12, 14, 16, 18] for the study of qualitative properties of
partial differential problems defined by equations of type of (1). However, these
works deal essentially with energy estimates for the cases whenA and B represent
the Laplace operator, combined with exponential or polynomial decaying kernels.
For example, in [3], the authors study the energy decay for a wave equation
with nonlinear boundary damping. Also, in [14], acoustic boundary conditions
were considered and the authors established energy decrease results when the
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kernel function does not necessarily decay exponentially. Similar results were
obtained in [18] considering homogeneous Dirichlet boundary conditions but
imposing weak assumptions on the memory kernel. The study of the decay of
the solution of systems of wave equations has also been addressed in [1, 16].
In [1] the authors establish energy decreasing results for systems of two linear
wave equations with memory with homogeneous Dirichlet boundary conditions
with kernels exponentially dominated.
Energy decreasing results for quasilinear wave equations with memory were

consider in [4, 12]. In the first paper the authors consider a nonlinear reaction
term and a wave equation where the coefficient of the second derivative depends
on the solution was introduced in the second paper. Wave equations with
memory as singular perturbations of nonfickian diffusion equations with memory
have also been studied. Without being exhaustive we mention [2, 9, 10, 11].
This work aims at establishing energy estimates (and show their exponential

decay) for several variants of equation (1). This shall be accomplished in the
case A and B represent the Laplace operator, but also in the more general
setting as presented by (1), always under the assumption that the memory
kernel decays exponentially.
The paper is organized as follows: we start, in section 2 by introducing the

functional context necessary for the development of the energy estimates, as
well as some properties of the kernels. In section 3 we start by considering the
wave equation with no memory (A = B = −∆) and review classical estimates
for this case. In section 4, we explore the case where the coefficient of the second
time derivative vanishes, that is, the wave equation with memory is replaced
by the diffusion equation with memory that is usually used to model diffusion
phenomena (characterized by a nonfickian behaviour). We show that under
suitable assumptions on the parameters of the equation, exponential decay of the
waves is obtained. The full damped wave equation with memory is the object
of study of section 5. In this section we introduce a new energy functional that
is obtained from the classical one adding a new term induced by its memory
character. We establish conditions that lead to the exponential decreasing
of such energy functional. To measures the deviation of the gradient of the
solution and its evolution in time, a new term is added to the energy functional
under analysis. For this new energy functional we prove also its exponential
decreasing. The techniques used to obtain these estimates (as well as the
estimates themselves) are the motivation of a new energy functional definition
for the first equation to be explored in the coming section. Indeed, similar
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results are established in section 6 for more general problems. Numerical wave
equations that mimic their continuous counterpart are introduced in section
7 and their behaviour is explored in section 8. Finally in we summarize some
conclusions in section 9.

2. Notations and preliminaries
We introduce now the functional context needed in the following sections. Let

L2(Ω), L∞(Ω) and H1
0(Ω) be the usual Sobolev spaces. In L2(Ω) we consider

the usual inner product (·, ·) and the norm induced by this inner product is
denoted by ‖·‖ In H1

0(Ω) we consider the usual norm ‖·‖1. Let L
2(R+, H1

0(Ω))
be the space of functions v : R+ −→ H1

0(Ω) such that∫ T

0

‖v(t)‖2
1 dt <∞, ∀T > 0.

Let H1(R+, H1
0 (Ω)) be the subspace of L2(R+, H1

0 (Ω)) of all functions v such
that its weak derivative v′ : R+ −→ H1

0(Ω) belongs to L2(R+, H1
0(Ω)). By

L∞(R+, L2(Ω)) we represent the space of all functions v : R+ −→ L2(Ω) such
that

ess sup
t∈[0,T ]

‖v(t)‖ <∞, ∀T > 0.

We finally introduce Cm(R+, V ), m ∈ N (where V = L2(Ω) or V = H1
0(Ω)),

as the space of functions v : R+
0 −→ V with continuous derivatives v(j) : R+

0 −→
V , for j = 0, . . . ,m.
We start by proving the following auxiliar lemmas for the kernel function.

Lemma 1. Let Ker ∈ L2(R+). If there exist constants K,α > 0, such that

|Ker (s)| ≤ Ke−αs, s ∈ R+
0 (5)

then

‖Ker‖L1 ≤ K

α
and ‖Ker‖L2 ≤ K√

2α
.

Let γ be a nonnegative real and let us denote Kerγ, the function defined by

Kerγ (s) = eγsKer (s), s ∈ R+
0 .

For this function, the following result holds, which generalizes Lemma 1.
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Lemma 2. If Ker satisfies the hypothesis of Lemma 1 and γ < α then∥∥Kerγ∥∥L1 ≤
K

α− γ and
∥∥Kerγ∥∥L2 ≤

K√
2(α− γ)

.

Moreover, if Ker ∈ H1(R+) and Ker′ satisfies (5) then∥∥Ker′γ∥∥L1 ≤
K(1 + γ)

α− γ and
∥∥Ker′γ∥∥L2 ≤

K(1 + γ)√
2(α− γ)

.

3. Damped wave equation with no memory
We consider in this section the following (simpler) version of equation (1),

ρu′′(t) + cu′(t)−D1∆u(t) = −D2

∫ t

0

Ker (t− s; τ)∆u(s)ds, t ∈ R+, (6)

as well as its weak form counterpart: let u ∈ H1(R+, H1
0(Ω)) be such that

u′′ ∈ L2(R+, L2(Ω)) and, for all T > 0, holds the following
(ρu′′(t) + cu′(t), w) +D1(∇u(t),∇w) = D2

∫ t
0 Ker (t− s)(∇u(s),∇w) ds,

a. e. in (0, T ), ∀w ∈ H1
0(Ω),

u′(0) = u1,
u(0) = u0.

where τ is a parameter. If we assume that the kernel functionKer, when τ → 0,
is such that the integral term in equation (6) formally reduces to −D2∆u(t),
then equation (6) is replaced by the wave equation

ρu′′(t) + cu′(t)− (D1 −D2)∆u(t) = 0, t ∈ R+. (7)

We remark that this is the case for exponential kernels of the type Ker (s) =
1
τ e
− s
τ . Indeed, the wave equation with memory is reduced to the classical wave

equation.
Figure 1 illustrates the evolution of the solution of the IBVP defined by (6)

with Ω = [−1, 1], with homogeneous Dirichlet boundary conditions, a gaussian
profile as initial data and Ker (s; τ) = τ−1e−

s
τ , ρ = c = 1 for different values

of τ at t = 4. When the memory parameter τ decreases, we observe that
the corresponding solution approximates the case with no memory and wave
coefficient (D1 −D2).
We recall that for the solution of the IBVP involving equation (7), the energy

Eu (t) =
ρ

2
‖u′(t)‖2

+
D

2
‖∇u(t)‖2 , t ∈ R+

0 ,
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Figure 1. Restriction of solution at [−1, 1]×{0} for c = 0.25 and
two choices of D2.

where D = D1 −D2, satisfies the following:
(1) when the damping effect is null (c = 0),

Eu (t) = Eu (0) , t ∈ R+
0 ; (8)

(2) if c 6= 0, then

Eu (t) + c0 ‖u′(t)‖2
ds ≤ Eu (0) (9)

and the energy has an upper bound.
The proofs of (8) and (9) are classical and omitted here. However, the decay of
Eu, which is not guaranteed in the previous cases, can be established in present
of an added term m2u, that is, if we consider instead

ρu′′(t) + cu′(t)− (D1 −D2)∆u(t) +m2u(t) = 0, t ∈ R+. (10)

In this case it can be even shown a stronger result that states that

‖u′(t)‖2
+ ‖u(t)‖2

1 −→ 0, t→∞,
exponentially (see [7] and the references cited in this paper). Indeed, considering
the new variable uγ(t) = eγtu(t), the wave equation for uγ and the energy
method, it can be shown that there exists a class of wave problems (10) and a
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corresponding constant γ > 0 such that

‖u′(t)‖2 + ‖u(t)‖2
1 ≤ Ce−2γt

(
‖u(0)‖2

1 + ‖u′(0)‖2
)
, t ∈ R+

0 , (11)

where C > 0 denotes a constant that depends on the coefficients of the wave
equation (10) and on γ. Estimate (11) leads to exponential decreasing of Eu
when t→ 0.

4. Damped wave and diffusion equations with memory
Let us consider now in equation (6) the damping factor c = 1 and ρ → 0.

Formally, we obtain the following diffusion equation with memory

u′(t)−D1∆u(t) = −D2

∫ t

0

Ker (t− s)∆u(s)ds, t ∈ R+. (12)

Figure 2 illustrates the evolution of the solution of the IBVP defined by (6) with
Ω = [−1, 1], with homogeneous Dirichlet boundary conditions, a gaussian profile
as initial data and Ker (s) = τ−1e−

s
τ , c = 1, D1 = 0.1, D2 = 0.01, τ = 0.001

for different values of ρ. When ρ decreases we observe that for two different
time instances, that solution of the wave problem approaches the one of the
diffusion equation.
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(a) t = 0.5
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Figure 2. Restriction of solution at [−1, 1]× {0} for c = 1 and
two values of t.
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We present now two different estimates for the energy

Eu (t) = ‖u(t)‖2 +

∫ t

0

‖∇u(s)‖2 ds, t ∈ R+
0 ,

of the solution of the IBVP defined by (12) with homogeneous Dirichlet boundary
conditions. The first one is obtained using the energy method and the second
one is similar to the one established for instance in [6].

Proposition 1. Let Ker ∈ L1(R+) be a kernel satisfying (5). If the weak
solution u ∈ L2(R+, H1

0(Ω)) ∩ H1(R+, L2(Ω)) then there exist ε 6= 0, γ < α
and C1, C2 > 0 such that

‖u(t)‖2 + C1

∫ t

0

‖∇u(s)‖2 ds ≤ ‖u(0)‖2 , (13)

and

‖u(t)‖2 + C2

∫ t

0

e−2γ(t−s) ‖∇u(t)‖2 ≤ e−2γt ‖u(0)‖2 . (14)

where

C1 = 2

(
D1 − ε2 −

D2
2K

2

4ε2α2

)
, C2 = C1 +

D2
2K

2

2ε2α2

(
1 + (α− γ)2

(α− γ)2

)
− γCΩ,

and CΩ is the constant from the Friedrichs-Poincaré inequality.

Proof : We start by proving (13). Using the energy method, it can be shown
that

1

2

d

dt
‖u(t)‖2 +D1 ‖∇u(t)‖2 =

(
D2

∫ t

0

Ker (t− s)∇u(s) ds,∇u(t)

)
,

which leads to

d

dt
‖u(t)‖2 + 2(D1 − ε2) ‖∇u(t)‖2 ≤ D2

2

2ε2

(∫ t

0

|Ker (t− s)| ‖∇u(s)‖ ds
)2

.

(15)
As(∫ t

0

|Ker (t− s)| ‖∇u(s)‖ ds
)2

≤ ‖Ker‖L1

∫ t

0

|Ker (t− s)| ‖∇u(s)‖2 ds,
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Using Lemma 1, from (15) we obtain

‖u(t)‖2 + 2(D1 − ε2)
∫ t

0

‖∇u(t)‖2 ds

≤ D2
2

2ε2
K

α

∫ t

0

∫ s

0

|Ker (s− µ)| ‖∇u(µ)‖2 dµds+ ‖u(0)‖2 .

Moreover, as∫ t

0

∫ s

0

|Ker (s− µ)| ‖∇u(µ)‖2 dµds ≤ ‖Ker‖L1

∫ t

0

‖∇u(s)‖2 ds,

we conclude (13).
To prove estimate (14), we use the technique presented in [17]. Let γ > 0 be

a fixed constant and let uγ(t) = eγtu(t), t ∈ R+ for γ < α. Then, we have

1

2

d

dt
‖uγ(t)‖2 − γ ‖uγ(t)‖2 +D1 ‖∇uγ(t)‖2

=

(
D2

∫ t

0

Kerγ (t− s)∇uγ(s) ds,∇uγ(t)
)
.

Considering that ‖uγ(t)‖2 ≤ CΩ ‖∇uγ(t)‖2 and using Lemma 2, the analysis
presented before allow to conclude that

‖uγ(t)‖2 + C2

∫ t

0

‖∇uγ(s)‖2 ds ≤ ‖u(0)‖2 , (16)

where C2 = 2
(
D1 − ε2 − CΩγ − D2

2

4ε2
K2

(α−γ)2

)
. Inequality (16) leads to (14).

For the energy Eu we conclude its boundedness in bounded time intervals.
Moreover, from (14) we can establish conditions on the coefficients such that
‖u(t)‖ decreases exponentially.
Corollary 1. Under the assumption of Proposition 1, if

D1 −
D2K

α
> 0, (17)

then there exist constants C > and 0 < γ < α such that

‖u(t)‖2 +

∫ t

0

e−2γ(t−s) ‖∇u(s)‖2 ds ≤ Ce−2γt ‖u(0)‖2 , t ∈ R+
0 . (18)
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Proof : From Proposition 1 we have (14), that is,

‖u(t)‖2 + g(γ)

∫ t

0

e−2γ(t−s) ‖∇u(s)‖2 ds ≤ e−2γt ‖u(0)‖2 .

with g(γ) = 2
(
D1 − ε2 − CΩγ − D2

2

4ε2
K2

(α−γ)2

)
. Taking ε2 = D2K

2α , as g(0) =

D1 − ε2 − D2
2

4ε2
K2

α2 , it follows from (17) that g(0) > 0. Therefore, there exists
0 < γ < α such that (18) holds.

Corollary 1 establishes sufficient conditions that lead to the exponential
decreasing of

‖u(t)‖2 +

∫ t

0

e−2γ(t−s) ‖∇u(s)‖2 ds.

We remark that condition (17) means that the fickian character of the diffusion
process dominates the nonfickian counterpart.

5.Wave equation with memory
We consider in what follows the IBVP defined by the following damped wave

equation with memory

ρu′′(t) + cu′(t)−D1∆u(t) +m2u(t)

= −D2

∫ t

0

Ker (t− s)∆u(s) ds, t ∈ R+, (19)

with homogeneous Dirichlet boundary conditions.
We start by establishing a stability result, under a general assumption on the

kernel function Ker, for the energy

Eu,γ (t) = ‖u′(t)‖2
+ ‖u(t)‖2

1 +

∫ t

0

e−2γ(t−s) ‖∇u(s)‖2 ds, t ∈ R+
0 , (20)

where γ > is a constant. The last term in the definition of Eu,γ is motivated
by the energy functional for the diffusion equation with memory. If the kernel
Ker is dominated by a negative exponential, then we show that Eu,γ decreases
to zero exponentially. We observe that the energy functional introduced here
incorporates more terms that those considered in the literature. It should be
pointed out that other versions of the last energy functional were also studied in
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the literature. For instance, in [3] and [18], the authors considered the classical
energy functional

Eu (t) = ‖u(t)‖2
1 ,

while in [14] a term induced by the boundary conditions was added to the last
energy functional. In [4], for a quasilinear problem, a term related with the
reaction term was also added. The energy functional

Eu (t) =
1

2
‖u′(t)‖2

+
1

2

(
1−

∫ t

0

Ker (t− s)ds
)
‖∇u(t)‖2

+

∫ t

0

Ker (t− s) ‖∇u(t)−∇u(s)‖2 ds,

was studied in [16]. A similar definition was analyzed in [18].
A modification of the functional energy (20) will be introduced in this work

adding the term ∥∥∥∥∫ t

0

Ker (t− s)∇u(s)ds−∇u(t)

∥∥∥∥2

.

For this new functional energy we also prove its exponential decay.

Proposition 2. Let u ∈ L2(R+, H1
0 (Ω))∩H2(R+, L2(Ω)) be the weak solution

of the IBVP defined by (19) with homogeneous Dirichlet boundary conditions.
If Ker ∈ H1(R+) is a kernel such that Ker and Ker′ satisfies (5), then the
following estimate holds

ρ ‖u′(t)‖2
+ 2c0

∫ t

0

‖u′(s)‖2
ds+ (D1 − ε2) ‖∇u(t)‖2 +m2 ‖u(t)‖2

+ 2D2

(
Ker (0)−

(
D2K

4ε2
+ 1

)
K

α

)∫ t

0

‖∇u(s)‖2 ds

≤ ρ ‖u′(0)‖2
+D1 ‖∇u(0)‖2 +m2 ‖u(t)‖2 . (21)

where ε 6= 0.

Proof : Let

I(t) =

∫ t

0

Ker (t− s)∇u(s)ds and Id(t) =

∫ t

0

Ker′ (t− s)∇u(s)ds.



12 J. A. FERREIRA, P. DE OLIVEIRA AND G. PENA

for t > 0. Using the energy method it can be shown that

ρ

2

d

dt
‖u′(t)‖2

+ c0 ‖u′(t)‖2
+
D1

2

d

dt
‖∇u(t)‖2

+
m2

2
‖u(t)‖ ≤ D2 (I(t),∇u′(t)) .

As
d

dt
(I(t),∇u(t)) = Ker (0) ‖∇u(t)‖2 + (Id(t),∇u(t)) + (I(t),∇u′(t)) ,

we obtain

ρ

2
‖u′(t)‖2

+ c0

∫ t

0

‖u′(s)‖2
ds+

D1

2
‖∇u(t)‖2

+D2Ker (0)

∫ t

0

‖∇u(s)‖2 ds+
m2

2
‖u(t)‖2

≤ D2 (I(t),∇u(t))−D2

∫ t

0

(Id(s),∇u(s)) ds

+
ρ

2
‖u′(0)‖2

+
D1

2
‖∇u(0)‖2 +

m2

2
‖u(0)‖2 . (22)

We remark that, for ε 6= 0, holds the following

2D2 (I(t),∇u(t)) ≤ D2
2

ε2
‖Ker‖2

L2

∫ t

0

‖∇u(s)‖2 + ε2 ‖∇u(t)‖2 ,

and

−2

∫ t

0

(Id(s),∇u(s)) ds ≤ 2 ‖Ker′‖L1

∫ t

0

‖∇u(s)‖2 ds,

Taking the last estimates in (22) we obtain

ρ ‖u′(t)‖2
+ 2c0

∫ t

0

‖u′(s)‖2
ds+ (D1 − ε2) ‖∇u(t)‖2

+ 2D2

(
Ker (0)− D2

2ε2
‖Ker‖2

L2 − ‖Ker′‖L1

)∫ t

0

‖∇u(s)‖2 ds+m2 ‖u(t)‖2

≤ ρ ‖u′(0)‖2
+D1 ‖∇u(0)‖2 +m2 ‖u(t)‖2 . (23)

Using Lemma 2 (with γ = 0), from (23) we obtain (21).
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Corollary 2. Under the assumptions of Proposition 2 and if

Ker (0)− K

α
> 0 (24)

and
D2

D1
− 4

α

K2

(
Ker (0)− K

α

)
> 0 (25)

then there exists a constant C > 0 such that

Eu,0 (t) +

∫ t

0

‖u′(s)‖2
ds ≤ C

(
‖u′(0)‖2

+ ‖u(0)‖2
1

)
, t ∈ R+.

Corollary 2 establishes that Eu,0 (t) , t ∈ R+
0 , is bounded. In what follows we

establish conditions that allow us to conclude that the energy decreases to zero
exponentially.

Theorem 1. Let u ∈ L2(R+, H1
0(Ω)) ∩ H2(R+, L2(Ω)) be the weak solution

of the IBVP defined by (19) with homogeneous Dirichlet boundary conditions.
If Ker ∈ H1(R+) is a kernel such that Ker and Ker′ satisfies (5), then for
0 < γ < α, there exists a constant C > such that

ρ

2
‖u′(t)‖2

+ (D1 − ε2) ‖∇u(t)‖2 + 2(c0 − 2ργ)e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds

+ (m2 − γ ‖c‖∞) ‖u(t)‖2 + 2D2g(γ)e−2γt

∫ t

0

‖∇uγ(s)‖2 ds

≤ Ce−2γt
(∥∥u′γ(0)

∥∥2
+ ‖∇u(0)‖2 + ‖u(0)‖2

)
, t ∈ R+

0 , (26)

where uγ(t) = eγtu(t),

g(γ) = Ker (0)−
(
D2K(1 + γ)

4ε2
+ 1

)
K

α− γ , (27)

and ε 6= 0.

Proof : Lets consider γ > 0 and define uγ(t) = eγtu(t), t ≥ 0. It can be shown
that, for uγ, we have

ρu′′γ+(c−2γρ)u′γ−D1∆uγ(t)+(ργ2−cγ+m2)uγ = −D2

∫ t

0

Kerγ (t− s)∆uγ(s).
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Following the analysis presented in Proposition 2, it can be shown there exist
ε and η, arbitrary nonzero constants, and γ < α such that

ρ
∥∥u′γ(t)∥∥2

+ 2(c0 − 2γρ)

∫ t

0

∥∥u′γ(s)∥∥2
ds

+ (D1 − ε2) ‖∇uγ(t)‖2 + (ργ2 − ‖c‖∞ γ +m2) ‖uγ(t)‖2

+ 2D2

(
Ker (0)−

(
D2K(1 + γ)

4ε2
+ 1

)
K

α− γ

)∫ t

0

‖∇uγ(s)‖2 ds

≤ ρ
∥∥u′γ(0)

∥∥2
+D1 ‖∇uγ(0)‖2 + (ργ2 − γ ‖c‖∞ +m2) ‖uγ(t)‖2 . (28)

We compute now a lower bound for
∥∥u′γ(t)∥∥2. Since, for θ 6= 0, we have∥∥u′γ(t)∥∥2 ≥ (1− θ2)

∥∥eγtu′(t)∥∥2
+ γ2

(
1− 1

θ2

)
‖uγ(t)‖2

we deduce, for θ2 =
1

2
,∥∥u′γ(t)∥∥2 ≥ 1

2

∥∥eγtu′(t)∥∥2 − γ2 ‖uγ(t)‖2 . (29)

Considering (29) in (28) we obtain

ρ

2

∥∥eγtu′(t)∥∥2
+ (D1 − ε2) ‖∇uγ‖2 + 2(c0 − 2ργ)

∫ t

0

∥∥u′γ(s)∥∥2
ds

+ (m2 − γ ‖c‖∞) ‖uγ(t)‖2 +D2g(γ)

∫ t

0

‖∇uγ(s)‖2 ds

≤ ρ
∥∥u′γ(0)

∥∥2
+D1 ‖∇uγ(0)‖2 + (ργ2 − γ ‖c‖∞ +m2) ‖uγ(t)‖2 ,

where g(γ) is defined by (27). This inequality leads immediately to (26).

Corollary 3. Under the assumptions of Theorem 1 and if (2) and (25) hold,
then there exist constants C, γ > 0 such that, for all t ∈ R+

0

Eu,γ (t) + e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds ≤ Ce−2γt

(
‖u′(0)‖2

+ ‖u(0)‖2
1

)
. (30)

Proof : By (24) and (25) and choosing a suitable value for ε,

g(0) =

(
Ker (0)−

(
D2K

4ε2
+ 1

)
K

α

)
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is positive. Then there exists γ ∈
(

0,min
{
α, c02ρ ,

m2

‖c‖∞

})
such that, from (26),

we obtain (30).

From Corollary 3 we conclude that

lim
t→∞

(
Eu,γ (t) + e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds

)
= 0

exponentially. We observe that condition (25) imposed to guarantee the bound-
edness of Eu,0 (t) is sufficient to prove the existence of γ > 0 such that Eu,γ (t)
decreases exponentially.

Remark 1. If we consider a wave propagation in viscoelastic material following
by a Maxwell-Wiechert model, then Ker (s) = 1

2

∑n
i=1Eie

−αis where αi = Ei
µi
.

In this case we can take

α =
mini=1,...,nEi

maxi=1,...,n µi
.

To guarantee condition (25) we need to assume that the Young models Ei, i =
1, . . . , n, are significantly larger than the viscosities µi, i = 1, . . . , n.

We establish in what follows an estimate for the energy functional

Eu,∇,γ(t) = Eu,γ (t) +

∥∥∥∥∫ t

0

Ker (t− s)∇u(s) ds−∇u(t)

∥∥∥∥2

(31)

for t > 0, where u is a solution of (42). Under suitable regularity conditions
and using the energy method, it is straightforward to show the following result.

Theorem 2. Let u ∈ L2(R+, H1
0(Ω)) ∩ H2(R+, L2(Ω)) be the weak solution

of the IBVP defined by (19) with homogeneous Dirichlet boundary conditions.
If Ker ∈ H1(R+) is a kernel such that Ker and Ker′ satisfies (5), then for
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0 < γ < α, there exists C > 0 such that

ρ

2
‖u′(t)‖2

+ (m2 − γ ‖c‖∞) ‖u(t)‖2 + (D1 −D2) ‖∇u(t)‖2

+ 2(c0 − 2ργ)e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds

+D2

∥∥∥∥∫ t

0

Ker (t− s)∇u(s)ds−∇u(t)

∥∥∥∥2

+D2g(γ)

∫ t

0

e−2γ(t−s) ‖∇u(s)‖2 ds ≤ Ce−2γt
(
‖u′(0)‖2

+ ‖u(0)‖2
1

)
, t ∈ R+

0 ,

(32)

where ε 6= 0, uγ(t) = eγtu(t) and g(γ) is defined by

g(γ) = Ker (0)− K(1 + γ)

α− γ

(
1 +Ker (0) +

K(1 + γ)

α

)
. (33)

Proof : Let γ > 0 be a real such that γ < α and let

I(t) =

∫ t

0

Kerγ (t− s)∇uγ(s)ds and Id(t) =

∫ t

0

Ker′γ (t− s)∇uγ(s)ds.

for t > 0. It can be shown that uγ(t) satisfies the following relation

ρ
d

dt

∥∥u′γ(t)∥∥2
+ (ργ2 − γ ‖c‖∞ +m2)

d

dt
‖uγ(t)‖2 + 2(c0 − 2ργ)

∥∥u′γ(t)∥∥2

+D1
d

dt
‖∇uγ(t)‖2 ≤ 2D2

(
Id(t),∇u′γ(t)

)
. (34)

It follows that

(
I(t),∇u′γ(t)

)
= −1

2

d

dt
‖I(t)−∇uγ(t)‖2 −Ker (0) ‖∇uγ(t)‖2

+
1

2

d

dt
‖∇uγ(t)‖2 +Ker (0) (I(t),∇uγ(t))

− (Id(t),∇uγ(t)) + (I(t), Id(t)) ,
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and together with (34) we obtain

ρ
∥∥u′γ(t)∥∥2

+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(t)‖2 + 2(c0 − 2ργ)

∫ t

0

∥∥u′γ(s)∥∥2
ds

+ (D1 −D2) ‖∇uγ(t)‖2 +D2 ‖I(t)−∇uγ(t)‖2

+ 2D2Ker (0)

∫ t

0

‖∇uγ(s)‖2 ds ≤ 2D2Ker (0)

∫ t

0

(I(s),∇uγ(s)) ds

− 2D2

∫ t

0

(Id(s),∇uγ(s)) ds+ 2D2

∫ t

0

(I(s), Id(s)) ds

+ ρ
∥∥u′γ(0)

∥∥2
+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(0)‖2 +D1 ‖∇uγ(0)‖2 . (35)

It can be shown the following∫ t

0

(I(s),∇uγ(s)) ds ≤
∥∥Kerγ∥∥L1

∫ t

0

‖∇uγ(s)‖2 ds, (36)

−
∫ t

0

(Id(s),∇uγ(s)) ds ≤
∥∥Ker′γ∥∥L1

∫ t

0

‖∇uγ(s)‖2 ds,

and ∫ t

0

(I(s), Id(s)) ds ≤
∥∥Kerγ∥∥L1

∥∥Ker′γ∥∥L1

∫ t

0

‖∇uγ(s)‖2 ds. (37)

Using Lemma 2 and (36)-(37), from (35) we get

ρ
∥∥u′γ(t)∥∥2

+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(t)‖2 + 2(c0 − 2ργ)

∫ t

0

∥∥u′γ(s)∥∥2
ds

+ (D1 −D2) ‖∇uγ(t)‖2 +D2 ‖I(t)−∇uγ(t)‖2

+ 2D2

(
Ker (0)− K(1 + γ)

α− γ

(
1 +Ker (0) +

K(1 + γ)

α

))∫ t

0

‖∇uγ(s)‖2 ds

≤ ρ
∥∥u′γ(0)

∥∥2
+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(0)‖2 + (D1 −D2) ‖∇uγ(0)‖2 .

Considering that ∥∥u′γ(t)∥∥2 ≥ 1

2

∥∥eγtu′(t)∥∥2 − γ2 ‖uγ(t)‖2 ,
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we obtain

ρ

2

∥∥eγtu′(t)∥∥2
+ (m2 − γ ‖c‖∞) ‖uγ(t)‖2 + 2(c0 − 2ργ)

∫ t

0

∥∥u′γ(s)∥∥2
ds

+ (D1 −D2) ‖∇uγ(t)‖2 +D2

∥∥∥∥∫ t

0

Kerγ (t− s)∇uγ(s)ds−∇uγ(t)
∥∥∥∥2

+ 2D2g(γ)

∫ t

0

‖∇uγ(s)‖2 ds

≤ ρ
∥∥u′γ(0)

∥∥2
+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(0)‖2 + (D1 −D2) ‖∇uγ(0)‖2 ,

(38)

where g(γ) is given by (33). Inequality (32) is easily obtained from (38).

Corollary 4. Under the assumption of Theorem 2, if

0 <
K

α

K + α

K − α < Ker (0) (39)

and
D1 −D2 > 0, (40)

then there exist constants C, γ > 0 such that

Eu,∇,γ(t) + e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds ≤ Ce−2γt

(
‖u′(0)‖2

+ ‖u(0)‖2
1

)
, t ∈ R+

0 ,

(41)
where uγ(t) = eγtu(t).

Proof : From (39) it follows that g(0) > 0. Then there exists γ ∈
(

0,min{α, c02ρ ,
m2

‖c‖∞
}
)

and C > 0 such that

‖u′(t)‖2
+ ‖u(t)‖2 + e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds

+ ‖∇u(t)‖2 +

∥∥∥∥∫ t

0

Ker (t− s)∇u(s)ds−∇u(t)

∥∥∥∥2

∫ t

0

‖∇u(s)‖2 ds ≤ Ce−2γt
(
‖u′(0)‖2

+ ‖u(0)‖2
1

)
,

and this inequality leads to (41) .
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From the last result we conclude

lim
t→∞

(
Eu,∇,γ(t) + e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds

)
= 0,

exponentially, and consequently Eu,∇,γ(t) decreases exponentially.

6. Continuous energy estimates for general operators
In this section we extend the results presented before for the wave equation

to general integro-differential equation (1) where the operators A and B are
defined by

Av = −
n∑

i,j=1

∂

∂xi

(
aij

∂v

∂xj

)
+

n∑
i=1

∂

∂xi
(aiv) + a0v,

Bv = −
n∑

i,j=1

∂

∂xi

(
bij

∂v

∂xj

)
+

n∑
i=1

∂

∂xi
(biv) + b0v,

where aij, bij, i, j = 1, . . . , n and ai, bi, i = 0, . . . , n are functions whose
regularity shall be specified later and v ∈ C2(Ω).
Let us introduce the weak form of the IBVP (1)-(2). Let u ∈ H1(R+, H1

0 (Ω))
be such that u′′ ∈ L∞(R+, L2(Ω)) and, for all T > 0, holds the following

(ρu′′(t) + cu′(t), w) + a(u(t), w) =

∫ t

0

Ker (t− s)b(u(s), w) ds+ (f(t), w),

a. e. in (0, T ), ∀w ∈ H1
0(Ω),

u′(0) = u1,
u(0) = u0,

(42)
where, for v, w ∈ H1

0(Ω),

a(v, w) =
n∑

i,j=1

(
aij

∂v

∂xj
,
∂w

∂xi

)
−

n∑
i=1

(
aiv,

∂w

∂xi

)
+ (a0v, w),

b(v, w) =
n∑

i,j=1

(
bij

∂v

∂xj
,
∂w

∂xi

)
−

n∑
i=1

(
biv,

∂w

∂xi

)
+ (b0v, w).

We assume that aij, bij ∈ L∞(Ω), i, j = 1, . . . , n, ai, bi ∈ L∞(Ω), i = 1 . . . , n
and a0, b0, c ∈ L∞(Ω) and these coefficients satisfy the following conditions:

H1. There exists c0 > 0 such that c ≥ c0 in Ω.
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H2. a(·, ·) is symmetric, continuous and elliptic, ie,

a(u, v) = a(v, u), ∀u, v ∈ H1
0(Ω),

and there exist ae, ac > 0 such that

|a(u, v)| ≤ ac ‖u‖1 ‖v‖1 , ∀u, v ∈ H1
0(Ω),

and
a(u, u) ≥ ae ‖u‖2

1 , ∀u ∈ H1
0(Ω)

H3. b(·, ·) is continuous and elliptic, ie, there exist be, bc > 0 such that

|b(u, v)| ≤ bc ‖u‖1 ‖v‖1 , ∀u, v ∈ H1
0(Ω),

and
b(u, u) ≥ be ‖u‖2

1 , ∀u ∈ H1
0(Ω)

Let Eu,γ (t) be defined by (20). In the first result we establish an estimate for
the usual energy for the wave equation

Eu,0 (t) +

∫ t

0

‖u′(s)‖2
ds, t ∈ R+

0 ,

where u is a solution of (42), that leads to the boundedness of Eu,0 (t) in bounded
time intervals.

Theorem 3. Let u ∈ H2(R+, L2(Ω))
⋂
L2(R+, H1

0(Ω)) be a solution of (42).
If hypothesis A1-A3 hold, Ker ∈ H1(R) and Ker and Ker′ satisfy (5), then
for η, ε 6= 0 we have

ρ ‖u′(t)‖2
+
(
ae − ε2

)
‖u(t)‖2

1 +
(
2c0 − η2

) ∫ t

0

‖u′(s)‖2
ds

+

(
2Ker (0)be −

(
bcK

2ε2
− 2

)
Kbc
α

)∫ t

0

‖u(s)‖2
1 ds

≤ ρ ‖u′(0)‖2
+ ac ‖u(0)‖2

1 +
1

η2

∫ t

0

‖f(s)‖2 ds, t ∈ R+
0 . (43)

Proof : Considering in (42) w = u′(t) we obtain

(u′′(t), u′(t)) + (cu′(t), u′(t)) + a (u(t), u′(t))

=

∫ t

0

Ker (t− s)b (u(s), u′(t)) ds+ (f(t), u′(t)) ,
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which can be rewritten in the following equivalent form

ρ
d

dt
‖u′(t)‖2

+ 2c0 ‖u′(t)‖2
+
d

dt
a(u(t), u(t))

≤ 2

∫ t

0

Ker (t− s)b(u(s), u′(t)) ds+ 2 (f(t), u′(t)) . (44)

It can be shown that holds the following∫ t

0

Ker (t− s)b (u(s), u′(t)) ds =
d

dt

∫ t

0

Ker (t− s)b(u(s), u(t)) ds

−Ker (0)b(u(t), u(t))−
∫ t

0

Ker′ (t− s)b(u(s), u(t))ds. (45)

Considering the representation (45) in (44) we further deduce that for all η 6= 0,

ρ
d

dt
‖u′(t)‖2

+ 2c0 ‖u′(t)‖2
+
d

dt
a(u(t), u(t)) + 2Ker (0)b(u(t), u(t))

≤ 2
d

dt

∫ t

0

Ker (t− s)b(u(s), u(t)) ds− 2

∫ t

0

Ker′ (t− s)b(u(s), u(t)) ds

+
1

η2
‖f(t)‖2 + η2 ‖u′(t)‖2

.

Integrating over [0, t] and using A3 leads to

ρ ‖u′(t)‖2
+a(u(t), u(t))+

(
2c0 − η2

) ∫ t

0

‖u′(s)‖2
ds+2beKer (0)

∫ t

0

‖u(s)‖2
1 ds

≤ 2

∫ t

0

Ker (t− s)b(u(s), u(t)) ds+ 2

∫ t

0

∫ s

0

Ker′ (s− µ)b(u(µ), u(s)) dµds

+
1

η2

∫ t

0

‖f(s)‖2 ds+ ρ ‖u′(0)‖2
+ a(u(0), u(0)). (46)

Using Lemma 1 it can be shown that

2

∫ t

0

Ker (t− s)b(u(s), u(t)) ds ≤ b2
c

2ε2
K2

α

∫ t

0

‖u(s)‖2
1 ds+ ε2 ‖u(t)‖2

1 ,

and

2

∫ t

0

∫ s

0

Ker′ (s− µ)b(u(µ), u(s)) dµds ≤ bc ‖Ker′‖L1

∫ t

0

‖u(s)‖2
1 ds.

Considering the last two inequalities in (46) we obtain (43).
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Corollary 5. Under the assumptions of Theorem 3, if ε, ξ, η 6= 0, are such that

ae − ε2 > 0, (47)

2c0 − η2 > 0, (48)

2Ker (0)be −
(
bcK

2ε2
− 2

)
Kbc
α

> 0 (49)

there exists a constant C > 0 such that

Eu,0 (t)+

∫ t

0

‖u′(s)‖2
1 ds ≤ C

(
‖u′(0)‖2

+ ‖u(0)‖2
1 +

∫ t

0

‖f(s)‖2 ds

)
, t ∈ R+

0 ,

(50)

From the upper bound (50) we conclude that, for an isolated system (f = 0),
Eu,0 (t) is bounded by the the energy of the system at t = 0.
In what follows we prove, for a class of differential operators A,B and kernels

Ker, that there exists a constant γ > 0 such that

Eu,γ (t) + e−2γt

∫ t

0

∥∥u′γ(s)∥∥2

1
ds, t ∈ R+

0 ,

decays to zero when t → ∞. We start by establishing and upper bound for
Eu,γ (t) .

Theorem 4. Under the assumptions of Theorem 3, for ε, η 6= 0 and 0 < γ < α,
we have

ρ

2
‖u′(t)‖2

+ (ae − γ ‖c‖∞) ‖u(t)‖2 + (ae − ε2) ‖∇u(t)‖2

+ (2(c0 − 2γρ)− η2)e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds+ g(γ)

∫ t

0

e−2γ(t−s)‖u(s)‖2
1ds

≤ 1

η2

∫ t

0

e2γ(t−s) ‖f(s)‖2 ds+ cp

(
‖u′(0)‖2

+ ‖u(0)‖2
)
, t ∈ R+

0 , (51)

where cp = max{ρ, γ, ργ2 − γ ‖c‖∞ , ae}, uγ = eγtu(t), t ∈ R+
0 and

g(γ) = 2Ker (0)be −
(
bcK(1 + γ)

2ε2
− 2

)
K(1 + γ)bc
α− γ (52)
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Proof : Let uγ(t) = eγtu(t). This function satisfies

ρ
(
u′′γ(t), w

)
+(c0−2γρ)

(
duγ
dt

(t), w

)
+(γ2ρ−γ ‖c‖∞)(u(t), w)+a(uγ(t), w)

≤
∫ t

0

Kerγ (t− s)b(uγ(s), w) ds+ (fγ(t), w),

for w ∈ H1
0(Ω), where Ker (s; γ) = Ker (s)eγs. Following the proof of Theo-

rem 3, it can be shown the following

ρ

2

d

dt

∥∥u′γ(t)∥∥2
+

1

2
(γ2ρ− γ ‖c‖∞)

d

dt
‖uγ(t)‖2 +

1

2

d

dt
a(uγ(t), uγ(t))

+Ker (0)b(uγ(t), uγ(t)) + (c0 − 2ργ)
∥∥u′γ(t)∥∥2

=

∫ t

0

Ker′γ (t− s)b(uγ(s), uγ(t))ds

+
d

dt

∫ t

0

Kerγ (t− s)b(uγ(s), uγ(t)) ds+ (fγ(t), u
′(t)) ,

that leads to

ρ
∥∥u′γ(t)∥∥2

+ (ργ2 − γ ‖c‖∞) ‖uγ(t)‖2 + ae ‖uγ(t)‖2
1

+ 2Ker (0)be

∫ t

0

‖uγ(s)‖2
1 ds+ 2(c0 − 2γρ− η2)

∫ t

0

∥∥u′γ(s)∥∥2
ds

≤ 2bc

∫ t

0

∫ s

0

Ker′ (s− µ; γ) ‖uγ(µ)‖1 ‖uγ(s)‖1 dµds

+ 2bc

∫ t

0

Kerγ (t− s) ‖uγ(s)‖1 ‖uγ(t)‖1 ds+
1

2η2

∫ t

0

‖fγ(s)‖2 ds

+ ρ
∥∥u′γ(0)

∥∥2
+ (ργ2 − γc) ‖uγ(0)‖2 ,+ac ‖uγ(0)‖2

1

where η 6= 0.
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As before, for 0 < γ < α, we also have

ρ
∥∥u′γ(t)∥∥2

+ (ργ2 − γ ‖c‖∞ + ae) ‖uγ(t)‖2 + (ae − ε2) ‖∇uγ(t)‖2

+ (2(c0 − 2γρ)− η2)

∫ t

0

∥∥u′γ(s)∥∥2
ds+ g(γ)

∫ t

0

‖uγ(s)‖2
1 ds

≤ 1

η2

∫ t

0

‖fγ(s)‖2 ds+ ρ
∥∥u′γ(0)

∥∥2
+ (ργ2 − γ ‖c‖∞) ‖uγ(0)‖2 + ae ‖uγ(0)‖2

1

where ε 6= 0, that implies

ρ

2

∥∥eγtu′(t)∥∥2
+ (ae − γ ‖c‖∞) ‖uγ(t)‖2 + (ae − ε2) ‖∇uγ(t)‖2

+ (2(c0 − 2γρ)− η2)

∫ t

0

∥∥u′γ(s)∥∥2
ds+ g(γ)

∫ t

0

‖uγ(s)‖2
1 ds

≤ 1

η2

∫ t

0

‖fγ(s)‖2 ds+ ρ
∥∥u′γ(0)

∥∥2

+ (ργ2 − γ ‖c‖∞) ‖uγ(0)‖2 + ae ‖uγ(0)‖2
1 , (53)

where g(γ) is defined by (52). Finally, (51) is immediately from (53).

Corollary 6. Under the assumptions of Theorem 4, if the parameters ε, η 6= 0
satisfy the inequalities (47), (48) and (49), then there exist constants C, γ > 0
such that

Eu,γ (t) + e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds

≤ Ce−2γt

(∫ t

0

e2γs ‖f(s)‖2 ds+ ‖u′(0)‖2
+ ‖u(0)‖2

1

)
, t ∈ R+

0 ,

where uγ(t) = eγtu(t).

Corollary 6 allows to conclude that in a isolated system, that is, with f = 0,
we have

lim
t→∞

(
Eu (t) + e−2γt

∫ t

0

∥∥u′γ(s)∥∥2
ds

)
= 0,

exponentially and consequently Eu (t) decreases to zero with the same rate.
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7. Decay of numerical waves with memory
In this section we establish that numerical approximations for the solution of

the IBVP (1)-(2) with homogeneous Dirichlet boundary conditions present the
same qualitative behaviour of the solution of this problem. Let Ω ⊂ R2 be a
bounded polygonal domain and let h > 0 be a fixed parameter and let Th be
an admissible triangulation of Ω with diameter h, that is,

h = max
K∈Th

diam(K),

where diam(K) denotes the diameter of the element K Let Vh be the space of
piecewise polynomials of degree m defined in Th, that is

Vh = {v ∈ C0(Ω) : v = 0 on ∂Ω, v = pm in K, K ∈ Th},

where pm denotes a polynomial of degree at mostm. By P∂Ω and PΩ we represent
the set of nodes of Th on ∂Ω and Ω, respectively. Let {φP , P ∈ PΩ} be a basis
of Vh. The finite element approximation for the solution of the IBVP (1), (2)
with homogeneous Dirichlet boundary conditions is uh(x, t) =

∑
P∈PΩ

αP (t)φP (x)

that satisfies the following



(u′′h(t), wh) + (cu′h(t), wh) + a(uh(t), wh)

=

∫ t

0

Ker (t− s)b(uh(s), wh) ds+ (f(t), wh),

a. e. in R+, ∀wh ∈ Vh,
u′h(0) = u1,h,
uh(0) = u0,h.

(54)

In (54) u1,h and u0,h are approximations of u1 and u0 in Vh. To compute uh(t) we
need to solve the following system of second order integro-differential equations
Mhα

′′(t) + Chα
′(t) + Ahα(t) =

∫ t

0

Ker (t− s)Bhα(s) ds+ Fh(t), t ∈ R+,

α′(0) = U1,h,
α(0) = U0,h,

(55)
where α(t) = [(αP (t))P∈PΩ

] , Ui,h, i = 0, 1, are the vectors whose components
are the coordinates of ui,h, i = 0, 1, with respect to the basis {φP , P ∈ PΩ},
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and
Mh = [((φP , φQ))P,Q∈PΩ

] ,

Ch = [((cφP , φQ))P,Q∈PΩ
] ,

Ah = [(a(φP , φQ))P,Q∈PΩ
] ,

Bh = [(b(φP , φQ))P,Q∈PΩ
] ,

Fh(t) = [((f(t), φQ))Q∈PΩ
] .

Introducing the new variable Z(t) = (z1(t), z2(t)) where z1(t) = α(t), z2(t) =
α′(t), then the initial value problem (55) of second order is equivalent to Z ′(t) = AhZ(t) +

∫ t

0

Ker (t− s)BhZ(s) ds+ Fh(t), t ∈ R+,

Z(0) = Uh,
(56)

where

Ah =

[
0 I

−M−1
h Ah −M−1

h Ch

]
,Bh =

[
M−1

h Bh 0
0 0

]
,

Fh(t) =

[
0

M−1
h Fh

]
,Uh =

[
U0,h

U1,h

]
.

As the unique solution of the IVP (56) is smooth enough, then for the unique
solution uh(t) ∈ Vh of (54) it can be shown the following result.

Proposition 3. Let us suppose that the assumptions of Theorem 3 hold for
the finite element solution uh. If (47), (48) and (49) also hold then there exist
constants C, γ > 0 such that

Euh,γ (t) + e−2γt

∫ t

0

∥∥u′h,γ(s)∥∥2
ds

≤ Ce−γt
(∫ t

0

‖f(s)‖2 ds+ ‖u′h(0)‖2
+ ‖uh(0)‖2

1

)
, t ∈ R+

0 ,

where uh,γ(t) = eγtuh(t).
For f = 0 we have

lim
t→∞

(
Euh,γ (t) + e−γt

∫ t

0

∥∥u′h,γ(s)∥∥2
ds

)
= 0,

exponentially.
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For the particular case A = B = −∆ the previous result can be improved. In
fact the following result can be stated for the energy Euh,∇,γ.

Proposition 4. Let us suppose that the assumptions of Theorem 1 are valid
for the finite element solution uh. If the conditions (39) and (40) also hold then
there exist constants C, γ > 0 such that

Euh,∇,γ(t) + e−2γt

∫ t

0

∥∥u′h,γ(s)∥∥2
ds

≤ Ce−2γt

(∫ t

0

‖f(s)‖2 ds+ ‖u′h(0)‖2
+ ‖uh(0)‖2

1

)
, t ∈ R+

0 .

For f = 0 we have

lim
t→∞

(
Euh,∇,γ(t) + e−2γt

∫ t

0

‖uh,γ(s)‖2 ds

)
= 0,

exponentially.

8. Numerical results
In this section we illustrate the qualitative behaviour of numerical solutions

of (55) for the equation studied in section 6, a particular choice of kernel and a
set of associated parameters. The choice of kernel is motivated by the example
given and its frequent reference in literature.
Let us introduce the specifics of our test problem. Let Ω = (−1, 1)2. In this

setup, consider the following differential problem:
u′′(t) + cu′(t)−D1∆u(t) = −D2

∫ t

0

Ker (t− s)∆u(s)ds, t ∈ (0, T ),

u(x, y, 0) = e−
x2+y2

0.1 , (x, y) ∈ Ω,
u′(x, y, 0) = 0, (x, y) ∈ Ω
u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T ],

where T > 0 and c,D1, D2, τ > 0 are constants. In this equation we take
exponential kernels of the form Ker (t) = τ−1e−

t
τ , t ∈ R+

0 .
Following the spatial discretisation in (54), we introduce the time step ∆t

and a uniform partition tj = j∆t, j = 0, 1, 2, . . . , N = [ T∆t ]. Applying standard
centered finite differences schemes in time and the composite trapezoidal rule
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to the formulation (55), the following second order in time method is obtained:(
un+1
h − 2unh + un−1

h

∆t2
, v

)
+ c

(
un+1
h − un−1

h

2∆t
, v

)
+D1

(
∇un+1

h ,∇v
)

=
D2∆t

2τ

n∑
j=0

(
e−

tn+1−tj+1
τ ∇uj+1

h + e−
tn+1−tj

τ ∇ujh,∇v
)

(57)

where ujh is an approximation for u(tj), j = 0, 1, . . . , N .
Let

In+1 =
D2∆t

2τ

n∑
j=0

(
e−

tn+1−tj+1
τ ∇uj+1

h + e−
tn+1−tj

τ ∇ujh
)
.

It is easy to show that In satisfies
In+1 = e−

∆t
τ In +

D2∆t

2τ

(
e−

∆t
τ ∇unh +∇un+1

h

)
, n > 1

I1 =
D2∆t

2τ

(
e−

∆t
τ ∇u0

h +∇u1
h

)
With this new notation, method (57) can be rewritten as((

1

∆t2
+

c

2∆t

)
un+1
h , v

)
+

(
D1 −

D2∆t

2τ

)(
∇un+1

h ,∇v
)

=

(
2

∆t2
unh +

(
c

2∆t
− 1

∆t2

)
un−1
h , v

)
+ e−

∆t
τ (In,∇v) . (58)

Remark 2. The integral term in (42), discretized in (57), should be imple-
mented following (58).

Let the fully discretisation of Euh,∇,γ (31) be defined by

Eh,n =

∥∥∥∥unh − un−2
h

2∆t

∥∥∥∥2

+ ‖unh‖2
1 + ‖In −∇unn‖2 , n > 2.

The behaviour of Eh,n is clearly illustrated in Figure 3, for different values of
D2 and τ . It can be observed that the larger the damping factor c is, the faster
the discrete energy approximates zero.
A similar result is observed when analysing the numerical solution at the

central point (0, 0) of the square [−1, 1]2. As expected from the previous results,
the solution at this point approximates zero. In Figure 4 we plot the numerical
solution at this point, for the same profiles as in Figure 3.
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Figure 3. Plot of discrete energy for different damping factors
and coefficients D2, τ (D1 = 1).

9. Conclusions
Wave equations with memory, can be reduced in certain scenarios, to a

classical wave equation or to the diffusion equation with memory that is often
used to model diffusion processes characterized by fickian and nonfickian mass
fluxes. Based in these two facts, a new energy functional for the wave equation
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Figure 4. Discrete solution at point (0,0) for different damping
factors and coefficients D2, τ .

with memory is introduced in this paper. Using the energy method, upper
bounds for this new energy functional are established. Such upper bounds are
then used to establish sufficient conditions for its exponential decay. We remark
that exponential decay of other energy functionals were proved in the literature
and some of them can be obtained from the results presented here. The results
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obtained for the wave equation were generalized for a more general class of
problems.
To simulate the energy behaviour we introduce a fully discrete model based

on finite element approach. We showed that the semi-discrete counterpart of
the equation (obtained by discretisation in space with finite elements) inherits
the same property. The numerical waves defined using the exponential kernel
Ker (s) = τ−1e−

s
τ , also exhibit the same qualitative behaviour.
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