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1. Introduction

In [13], we pursued the study of the categorical notion of fundamental group
introduced in [34] and provided a generalised version of the Hopf formula for
the description of the fundamental group within the semi-abelian context [35].
Examples of semi-abelian categories are the categories of groups, Lie algebras,
compact Hausdorff groups, crossed modules, and similar non-abelian structures.
In the present work, we define and study higher fundamental groups within
the wider context of descent-exact homological categories [3]. This allows us
to cover a lot of other categories, let us just mention here the categories of
topological groups, locally compact abelian groups, and Banach spaces (and
bounded linear maps).

In order to understand what is a descent-exact homological category, let us
first recall the well-known Tierney’s description of abelian categories:

abelian = additive + Barr-exact
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Let us also recall that a category is Barr-exact [1] when it is regular (i.e. is
finitely complete and has coequalizers of every kernel pair) and every internal
equivalence is the kernel pair of some morphism. It turns out that in a Barr-
exact category C , every regular epimorphism f : E → B is effective for descent,
which means that the pullback functor p∗ : (C ↓ B) → (C ↓ E) is monadic.
This can be viewed as a form of exactness condition on a category, that we call
here descent-exactness (see [24] for a general notion of exactness). Thus, the
kind of categories we consider are

pointed + protoadditive + regular︸ ︷︷ ︸
homological

+ descent-exact

where, in presence of the other axioms, the protomodularity [6] condition can
be equivalently expressed by saying that the split short five lemma holds. These
axioms have numerous consequences. For instance homological lemmas such
as the snake lemma or the 3 by 3 lemma still hold in this general context (see
the monograph [3] for a general introduction to homological and semi-abelian
categories). Note that the descent-exact homological category of topological
groups is neither additive nor exact.

The notion of fundamental group is related to the concept of normal extension
coming from the categorical Galois theory [31]. In order to give an idea of this
relation, let us consider what happens in a simple case. With respect to the
reflection of the category Gp of groups into the category Ab of abelian groups
given by the abelianisation functor ab: Gp → Ab (we write η : 1 ⇒ ab for the
unit of this reflection), one says that a surjective homomorphism p : E → B
(an extension) is a normal extension if the first projection π1 of its kernel pair

Eq(p)×E Eq(p)
p1

//

p2
//

τ // Eq(p)

σ
�� π1

//

π2

// Eooδoo

is such that the naturality square

E

p

��

ηE
// ab(E)

ab(p)
��

B ηB
// ab(B)

is a pullback. As shown in [31], this property is also equivalent to the fact
that p is a central extension of groups: the kernel Ker(p) of p is a subgroup
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of the center of E. Now it is always possible to turn an extension p : E → B
into a normal extension: taking the quotient of E by [Ker(p), E], the induced
factorisation I1(p) of p

E
p

//

��

B

E
[Ker(p),E]

I1(p)

;;

is a normal extension. This procedure gives a reflection

I1 : Ext(Gp) → NExt(Gp)

of the category Ext(Gp) of extensions of groups into the category NExt(Gp)
of normal extensions of groups (we shall write η1 for the unit of this reflection).
Now let us assume that p : E → B is the normalisation of some free presentation
f : F → B. In that case, it turns out that the Galois group Gal(p, 0) of p,
defined as the group of automorphisms of 0 in the groupoid

ab(Eq(p)×E Eq(p))
ab(τ)

// ab(Eq(p))

ab(σ)

�� ab(π1)
//

ab(π2)
// ab(E),ab(δ)oo

is an invariant of B: the first fundamental group π1(B) of B. This extends to
a functor π1 : Gp → Ab. It was shown in [20] that this functor can be viewed
as a left (pointwise) Kan extension in two different ways: as a Kan extension
of the composite functor Gal(I1(−), 0) along the codomain functor Cod:

Ext(Gp)
Cod

zzuu
uu

uu
uu

uu Gal(I1(−),0)

$$I
II

II
II

II
I

Gp
π1

//

⇒

Ab

or as a Kan extension of the composite functor Ker ◦ I1 along Cod where Ker
is the kernel functor:

Ext(Gp)
I1

//

Cod
��

NExt(Gp)

Ker
��

Gp
π1

//

⇒

Ab,

that is as a satellite of the normalisation functor I1. Moreover, it was known
since [34] that the first fundamental group of B can be described, directly from



4 MATHIEU DUCKERTS-ANTOINE

the presentation f : F → B, by the famous Hopf formula [30] for the second
integral homology group of B:

π1(B) ∼= Gal(I1(f), 0) ∼=
[F, F ] ∩Ker(f)

[Ker(f), F ]
∼= H2(B,Z)

Let us go a bit further and let us remark that the data

Γ = (C ,X , I, η, E),

with C = Gp, X = Ab, I = ab, and E the class RegEpi(Gp) of regular
epimorphisms in Gp, is actually what is called a closed Galois structure (see
section 2.3 for a precise definition). Similarly, the data

Γ1 = (ExtE(C ),NExtΓ(C ), I1, η
1, E1)

given by ExtE(C ) = Ext(Gp), NExtΓ(C ) = NExt(Gp), and E1 the class of
double extensions [32] (a class of arrows in ExtE(C ) defined relatively to E),
is also a closed Galois structure that satisfies some of the conditions that Γ
satisfies. Inductively this leads to a tower of closed Galois structures

Γn = (ExtnE(C ),NExtnΓ(C ), In, η
n, En)

satisfying a suitable set of axioms. It is in that case possible to define higher fun-
damental groups functors in the following way: for n ≥ 1, the nth-fundamental
group functor πΓ

n , with respect to the Galois structure Γ can be defined as the
pointwise right Kan extension of G Γ

n = Domn−1
(
GalΓn−1

(In(−), 0)
)

along the
functor Codn : ExtnE(C ) → C :

ExtnE(C )
Codn

{{vvvvv
vvvvv G Γ

n

&&M
MMMMMMMMM

C
πΓ
n

//

⇒

Ab(X )

where Ab(X ) (= Ab) is the category of internal abelian groups in X , and
Domn and Codn are iterated versions of the domain and codomain functors.
The other definition in term of satellites and the higher Hopf formulae [10] for
the description of the higher fundamental groups are also available. We have
the isomorphisms

πn(B) ∼= G
Γ
n (F ) ∼= Hn+1(B,Z)

where F is any n-fold projective presentation of B (see the end of the section
2.6 for a definition).
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Of course (with the exception of some minor details), nothing above is special
to the category of groups and the fundamental group functors can be defined
and studied in any descent-exact homological category with enough projective
objects provided that the basic reflector I is sufficiently good. By this, we
mean that I preserves pullbacks of type

A //

��

B
g
��

D
h

// C

where g is a split epimorphism and h a regular epimorphism.
It should be understood here that what we seek is a good definition of ho-

mology in our general setting. Some previous works in the field tend to show
that the notion of fundamental group effectively provides the right notion. In
particular we want to mention [23] in which generalized Hopf formulae were
given for the Barr-Beck cotriple homology when the coefficient functor is the
reflection of a monadic semi-abelian category into one of its Birkhoff subcat-
egories (a subcategory closed under quotients and subobjects). This led the
author of [17] to take the Hopf formulae as the definition of homology objects
in any semi-abelian category with enough regular projectives (with respect to a
Birkhoff reflection once again). Still in the same situation, homology functors
were already proved to be satellites in [25]. Note that the latter approach to
homology has the advantage that it doesn’t require at all projective objects.

The last important aspect of the present work concerns a simplification of
the formulae for fundamental groups functors that occurs when the reflector I
factors as a reflector of the same kind followed by a protoadditive reflector. The
notion of protoadditive functor was proposed in [21] as the suitable replacement
of the notion of additive functor in the context of homological categories. In
particular several connections with non-abelian homology were already studied
in the series of papers [21, 22, 13]. A protoadditive functor between homological
categories is a functor which preserves split short exact sequences, i.e. short
exact sequences

0 // Ker(f)
ker(f)

// A
f

//
B

s
oo // 0

where f admits a section s. Such functors allow the introduction in the Hopf
formulae of some homological closure operator [8] associated with the reflection.
Particularly nice formulae are obtained when the reflector is additive or comes
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from a torsion theory (see the last section). The refined Hopf formula in the
special case of the first fundamental group functor was the essential content of
[13].
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2. Galois structures and extensions

2.1. Descent-exact homological categories. A descent-exact homological
category is a regular pointed protomodular category in which every regular
epimorphism is an effective descent morphism. We are going to recall what
these terms mean and provide three main classes of such categories.
Pointed categories. A category is pointed when it has an object which is both
initial and terminal. This zero object is denoted by 0. For two objects X and
Y , we also write 0 for the unique morphism from X to Y which factors through
the zero object.
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Regular categories. A category C is regular [2] if it is finitely complete, every
morphism f can be factorised as a regular epimorphism followed by a monomor-
phism and regular epimorphisms are stable under pullbacks.
Protomodular categories. A pointed category C is protomodular [6] if

• it has pullbacks along split epimorphisms;
• it satisfies the split short five lemma, i.e. given any commutative diagram

Ker(f)
ker(f)

//

u
��

A
f

//

v
��

B

w
��

s
oo

Ker(f ′)
ker(f ′)

// A′
f ′

//

B′

s′
oo

with f ◦ s = 1B, f ′ ◦ s′ = 1B′, if u, v are isomorphisms then v is also an
isomorphism.

Note that the notion of protomodularity is generally defined more conceptually
by a property of the so-called fibration of points (with no need of a zero object).
A pointed protomodular category is unital [7], i.e. for any X and Y , the pair
of morphisms

X
ιX=(1X ,0)

// X × Y Y.
ιY =(0,1Y )

oo

is jointly extremal-epimorphic (if ιX and ιY factor through the same monomor-
phism, this monomorphism is an isomorphism). Let us mention here that the
product of two objects X and Y may be computed in a pointed category with
pullbacks along split epimorphisms as the pullback of X → 0 along Y → 0.
If the category has finite limits (equalisers actually), the pair of morphisms
(ιX , ιY ) is jointly epimorphic (f ◦ ιX = f ′ ◦ ιX and f ◦ ιY = f ′ ◦ ιY implies
f = f ′) and an object can only have one internal group structure: to be an
internal group is a property. There is a useful criterion which can be used to
recognise if a category is protomodular: if X → C is a conservative functor
which preserves pullbacks and C is protomodular, then X is also protomodu-
lar. In a pointed protomodular category, we write

0 // K
k

// A
f

// B // 0

when f is a regular epimorphism and k its kernel. Since in this context a
regular epimorphism is always the cokernel of its kernel, we may call a sequence
as above a short exact sequence.
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Morphisms of effective descent. A morphism f : A → B in a category C with
pullbacks is an effective descent morphism if the pullback functor

f ∗ : (C ↓ B) → (C ↓ A)

is monadic. In a regular category, every effective descent morphism is a regular
epimorphism. Note that the converse holds, in particular, in any Barr-exact
category, i.e. a regular category in which every internal equivalence relation
is effective (the kernel pair of some morphism). Thus the descent-exactness
condition, that says that every regular epimorphism is effective for descent,
can be viewed as a weakened version of the the Barr-exactness condition. The
reader is invited to consult [36] for a nice introduction to descent theory.
Almost abelian categories. An almost abelian category [40] can be described in
our terms as a category which is homological and cohomological (its dual cate-
gory is homological). Every almost abelian category is descent-exact [29, Sec-
tion 4.4]. The original definition is the following: a category is almost abelian
if it is additive, has kernels and cokernels and moreover normal epimorphisms
are pullback-stable and normal monomorphisms are pushout-stable. The cat-
egories of locally compact groups, normed vector spaces, Banach spaces (and
bounded linear maps), Fréchet spaces are almost abelian. Of course, every
abelian category is almost abelian.
Semi-abelian categories. A category is semi-abelian [35] when it is Barr-exact,
pointed protomodular and has binary coproducts. Among the basic examples
of semi-abelian categories are the categories of groups, Lie algebras, rings,
crossed modules, compact Hausdorff groups. Semi-abelian varieties (in the
sense of universal algebra) have been completely characterised:

Theorem 2.1. [9] A finitary algebraic theory T is semi-abelian, i.e. has a semi-
abelian category T(Set) of models, precisely when, for some natural number n,
the theory T contains

• a unique constant 0;
• n binary operations α1(X, Y ), . . ., αn(X, Y ) satisfying αi(X,X) = 0;
• an (n+ 1)-ary operation θ(X1, . . . , Xn+1) satisfying

θ(α1(X, Y ), . . . , αn(X, Y ), Y ) = X.

Using this theorem, it is easy to show that the category of groups, for in-
stance, is semi-abelian. Indeed it is easy to check that the above equations are
satisfied with 1 as the unique constant in the theory, n = 1, α1(X, Y ) = X.Y −1



FUNDAMENTAL GROUP FUNCTORS IN DESCENT-EXACT HOMOLOGICAL CATEGORIES 9

and θ(X, Y ) = X.Y . More recently, it was shown that the category of cocom-
mutative Hopf algebras over a field of characteristic zero is also semi-abelian
[27]. It should be noted that a category C is in fact abelian if and only if both
C and C op are semi-abelian.
Topological semi-abelian varieties. A topological semi-abelian variety [4] is the
category of models in Top of some semi-abelian theory T. An example is the
category of topological groups Gp(Top) which is known to be not exact and not
additive. Therefore Gp(Top) is neither a semi-abelian category nor an almost
abelian category. Nevertheless, it is known that every topological semi-abelian
variety is (cocomplete and) homological [4, Theorem 50] and descent-exact [29,
Section 4.5]. Note that the categories of models of semi-abelian theories in the
category of compact Hausdorff spaces are themselves semi-abelian categories
[4, Theorem 50].
Torsion theories. A torsion theory [12, 37] in a pointed category C is a couple
(T ,F ) of full replete subcategories of C such that:

• every morphism f : T → F with T ∈ T and F ∈ F is zero;
• for any object A in C there exists a short exact sequence:

0 // T
k

// A
f

// F // 0

with T ∈ T , F ∈ F .

For a torsion theory (T ,F ) in C , the subcategories T and F are called,
respectively, the torsion part and the torsion-free part of the torsion theory.
As one can easily check from the definition, T is in fact a full replete normal
mono-coreflective subcategory of C and F a full replete normal epi-reflective
subcategory of C . For M a class of monomorphisms and (T ,F ) a torsion
theory in a pointed category C , one says that the torsion theory isM-hereditary
if T is closed under M-subobjects. In [28], torsion-free subcategories of semi-
abelian categories were characterized as being precisely the (descent-exact)
homological categories with binary coproducts and stable coequalisers. It turns
out that all the three classes of examples of descent-exact homological categories
we have given are torsion free subcategories (of their exact completions). But
not every descent-exact homological category is a torsion-free subcategory of
some semi-abelian category.

2.2. Categories with a class of extensions. As (implicitly) stated in the
introduction, we shall work with pairs (C , E) that satisfy some of the conditions
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that are satisfied by the pair (C ,RegEpi(C )) for C a descent-exact homological
category and RegEpi(C ) the class of regular epimorphisms of C .
Axioms on extensions. Let C be a pointed protomodular category and E a
subclass of RegEpi(C ). We shall denote the class of morphisms in E which are
also split epimorphisms by Split(E) and the full subcategory of the category
Arr(C ) of arrows whose objects are morphisms in E by ExtE(C ). We shall
write (C ↓E B) for the full subcategory of the comma category (C ↓ B) whose
objects are the arrows in E with codomain B. The pair (C , E) satisfies

(E1): if E contains the isomorphisms in C ;
(E2): if pullbacks of morphisms in E exists and are in E ;
(E3): if E is closed under composition;
(E4): if g ◦ f in E implies that g is also in E ;
(E5): if given a commutative diagram in C

Ker(a)
ker(a)

//

k
��

A1
a

//

f
��

A0

Ker(b)
ker(b)

// B
b

// A0

with a and k in E , then necessarily f is also in E .
(M): if every morphism in E is monadic, i.e. for all f : A → B in E , the

change-of-base functor f ∗ : (C ↓E B) → (C ↓E A) is monadic.

Let us recall here that for every f : A → B in E the functor f ∗ has a left
adjoint f! (composition with f ). This determines a category of Eilenberg-

Moore algebras (C ↓E A)T
f

for the corresponding monad T f = f ∗f! and f is
monadic precisely when the comparison functor

KT f

: (C ↓E B) → (C ↓E A)T
f

is an equivalence of categories.
Double extensions. Given a pair (C , E) which satisfies (E2) as above, it is pos-
sible to define a good class of morphisms E1 in ExtE(C ) as follows: a morphism
(f1, f0) : a → b in ExtE(C ) is in E1 (and is called a double E-extension [32]) if
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all morphisms in the commutative diagram

A1

〈a,f1〉
KKK

K

%%K
KKK

f1

((

a

  

A0 ×B0
B1

p2
//

p1
��

B1

b
��

A0
f0

// B0

are in E .

Theorem 2.2. Going from (C , E) to (ExtE(C ), E1) preserves the following
sets of axioms:

(1) {(E1) − (E3)};
(2) {pointed, protomodular, (E1) − (E5), E ⊆ RegEpi(C )};
(3) {pointed, protomodular, (E1) − (E5), (M)}.

Proof : For the assertion 1 see [23, Proposition 3.5] or [19, Proposition 1.6]
and for the assertion 2 see [17, Proposition 1.8]. Let us now consider the
last assertion. Let us first remark that the axioms imply in particular that
every morphism in E is a regular epimorphism (or equivalently here) a normal
epimorphism (see for instance [18, Remark 1]). Then one concludes by [18,
Lemma 9] and assertion 2. Indeed our axiom (E5) is easily seen to imply the
axiom (E5) used in this last reference (see the discussion in [19, page 153]).

Isomorphisms of pairs. Given two pairs (C , E) and (X ,F), we shall say that
an isomorphism F : C → D is an isomorphism of pairs

F : (C , E) → (X ,F)

if F (E) = F .

2.3. Galois structures. A structure Γ = (C ,X , I, H, η, ǫ, E ,F) is a closed
Galois structure [33] if

•

C

I
''

⊥ X

H

ff

is an adjunction with unit and counit

η : 1C ⇒ H ◦ I, ǫ : I ◦H ⇒ 1X ,
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• the pairs (C , E), (X ,F) satisfy (E1), (E2) and (E3);
• I(E) ⊆ F and H(F) ⊆ E ;
• ηC : C → HI(C) is in E for all C in C ;
• ǫX : IH(X) → X is an isomorphism for all X in X .

We shall denote a closed Galois structure Γ by

(C , E)
Γ=(I,H,η,ǫ)

/ (X ,F)

and we shall assume that H is an inclusion and ǫX an identity for all X. Of
course it is possible to compose closed Galois structures like we can compose
adjunctions.
Types of extensions. With respect to a closed Galois structure Γ as above, an
extension f : A → B is said to be

(1) trivial if the naturality square

A
ηA

//

f
��

HI(A)

HI(f)
��

B ηB
// HI(B)

is a pullback;
(2) normal if it is a monadic extension and if f ∗(f) is trivial.

When the context is not clear, we speak of Γ-trivial and of Γ-normal extensions.
We shall also write TExtΓ(C ) and NExtΓ(C ) for the categories of Γ-trivial ex-
tensions and Γ-normal extensions respectively (considered as full subcategories
of ExtE(C )).

In the following we shall be particularly interested in reflectors I which pre-
serve pullbacks of the type A, i.e. pullbacks

A //

��

B
g
��

D
h

// C

(A)

where h is in E and g in Split(E). The main examples of such functors are the
so-called Birkhoff reflectors and the protoadditive reflectors.
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Birkhoff reflector. The reflector I is a strongly E-Birkhoff reflector [17, 23] if,
for every morphism f : A → B in E , all arrows in the diagram

A ηA

**

f

""

〈f,ηA〉
''

B ×HI(B) HI(A)

��

// HI(A)

HI(f)
��

B ηB
// HI(B)

are in E . If C is a semi-abelian variety and X a subvariety, the reflector I
is necessarily a strongly RegEpi(C )-Birkhoff reflector. It suffices to remember
that a subvariety is precisely a class of algebras which is closed under quotients,
products and subobjects. This is the type of functors which was considered in
the works [23, 17, 18]. The proof that these functors preserve pullbacks of type
A can be found in [23, Lemma 4.4].
Protoadditive functors. A functor F : C → X between pointed protomodular
categories is protoadditive [21] if it preserves split short exact sequences : if one
has a split short exact sequence in C

0 // Ker(f)
ker(f)

// A
f

//
B

s
oo // 0

(s a section of f ), then its image by F is also a split short exact sequence in
X :

0 // F (Ker(f))
F (ker(f))

// F (A)
F (f)

// F (B)
F (s)

oo // 0

This notion was introduced to extend the notion of additive functor to a non-
abelian context. They also have been used in relation to homology in [22, 13].
Let us recall from [5] that a protosplit monomorphism in a pointed protomod-
ular category C is a normal monomorphism k : K → A that is the kernel of a
split epimorphism. Some examples of protoadditive functors are provided by
the following

Theorem 2.3. [22] For (T ,F ) a torsion theory in a homological category C ,
the following conditions are equivalent:

(1) the torsion subcategory T is M-hereditary, for M the class of protosplit
monomorphisms;

(2) the reflector C → F is protoadditive.
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Trivialisation functor. For a closed Galois structure Γ such that the reflector I
preserves pullbacks of the kind A, one always gets an induced Galois structure

ΓSplit : (C , Split(E))
(I,H,η,ǫ)

/ (X , Split(F))

for which the inclusion functor

TExtΓSplit
(C )

H̃1
// ExtSplit(E)(C )

admits a left adjoint T1. We shall write η̃1 for the unit of the adjunction
T1 ⊣ H̃1. The trivialization T1(f) of an extension f : A → B in Split(E) is
given by η∗B(HI(f)) as in the diagram

A ηA

**

f

""

〈f,ηA〉
''

B ×HI(B) HI(A)

T1(f)
��

// HI(A)

HI(f)
��

B ηB
// HI(B).

Indeed η̃1f = (〈f, ηA〉, 1B) : f → T1(f) and we shall write η̃
1
f = 〈f, ηA〉.

Normalisation functor. When every extension is monadic, the inclusion functor

NExtΓ(C )
H1

// ExtE(C )

also has a left adjoint I1 and we write η1 for the unit of the adjunction I1 ⊣ H1.
The normalization I1(f) of an extension f : A → B is given by the commutative
diagram

Eq(f)
π2

//

η̃
1
π1

$$H
HH

HH
HH

HH

π1

��

A
η1f

!!B
BB

BB
BB

BB

f

��

T1[f ] //

T1(π1)

����
��

��
��

��
��

��
�

I1[f ]

I1(f)

��		
	
		

		
		

		
		

	

A
f

// B

(B)
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in which the three squares are pullbacks and pushouts. In fact, the morphism

η̃
1
π1
: π1 → T1(π1) is a morphism in (C ↓E A)T

f

and η1f : f → I1(f) the corre-
sponding morphism in C ↓E B. Using the above diagram, it easy to show that
I(I1(f)) = I(f). Note also that I1 restricted to ExtSplit(E)(C ) is T1. See [15]
for a detailed explanation.
Radicals. The reflector I : C → X induces a radical, i.e. a normal subfunctor
µ : [−]Γ,0 → 1C such that [X/[X]Γ,0]Γ,0 = 0 for all X in C , given by

0 // [−]Γ,0
µ

// 1C

η
// HI // 0

There are relations between some properties of this radical and properties of
the reflector:

Lemma 2.4. Let

Γ: (C , E)
(I,H,η,ǫ)

/ (X ,F)

be such that

• C is pointed protomodular;
• (C , E) satisfies (E4), (E5) and E ⊆ RegEpi(C ).

Then

• I preserves pullbacks of the form A if and only if [−]Γ,0 preserves them;
• I is protoadditive if and only if [−]Γ,0 is protoadditive.

The radical µ1 : [−]Γ1,0 → 1ExtE(C ) corresponding to I1:

0 // [−]Γ1,0
µ1

// 1ExtE(C )
η1

// H1I1 // 0

admits a nice description. First note that, for f in ExtE(C ), µ1
f = (µ1

f , 0)

where µ1
f is the kernel of η1f . Then, since µ1

f = π2 ◦ µ
1
π1

(see diagram B), it is

easy to check that µ1
f = π2 ◦ ker(π1) ◦ k where k is the monomorphism in the
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commutative diagram

[Ker(f)]Γ,0

��

[Ker(π1)]Γ,0

  

µKer(f)

""

[f ]Γ,1 = [π1]Γ,1

µ1
π1

&&M
MMMMMMMMMMMMMMMMMMMMMMM

k

��

ker([π1]Γ,0)
// [Eq(f)]Γ,0

µEq(f)

��

[π1]Γ,0
//

��

[A]Γ,0

µηA

��

Ker(f)
ker(π1)

// Eq(f)
π1

//

ηEq(f)

��

η1π1

MMM
M

&&M
MMM

A

ηA

��

T1[π1]

T1(π1)vvvv

::vvvv

xxqqqqqqqqqq

HI(Eq(f))
HI(π1)

// I(A)

where the left hand square is a pullback. Note that if f is normal, then Ker(f)
is in X and the converse is true when I is protoadditive. One also sees here
that, for f : A → B in Split(E), one has

[f ]Γ,1 = [A]Γ,0 ∩Ker(f)

Closure operators. Let M(E) be the full subcategory of Arr(C ) determined by
the kernels of morphisms in E . For an object k : K → A in M(E), the closure
of k with respect to X is determined by the following rule:

k
X

A = ker(ηCoker(k) ◦ coker(k)) = coker(k)−1(µCoker(k))

This defines an endofunctor ·
X
: M(E) → M(E) which has the following

properties:

• Cod = Cod ◦ ·
X

;

• ∀k ∈ M(E) : k ≤ k
X

;

• ∀k, l ∈ M(E) : k ≤ l ⇒ k
X

≤ l
X

;

• ∀k ∈ M(E) : k
X

= k
X

X

;
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that is an idempotent closure operator [41]. This closure operator also has the
following additional property: ∀f : A → B ∈ E and k : K → B ∈ M(E)

f−1(k)
X

= f−1(k
X
),

that is every morphism in E is “open”. In the context of a homological category
C with E = RegEpi(C ), such closure operators were called homological (see
[8]) and were already used to describe the first fundamental group functor in
[13].

2.4. Derived Galois structures (simple case).

Theorem 2.5. Let us assume that

Γ: (C , E)
(I,H,η,ǫ)

/ (X ,F) (C)

is a closed Galois structure such that

• C is pointed protomodular;
• (C , E) satisfies (E4), (E5) and (M);
• I preserves pullbacks of type A.

Then one has a closed Galois structure

Γ1 : (ExtE(C ), E1)
(I1,H1,η

1,ǫ1)
// (NExtΓ(C ),F1)

such that

• ExtE(C ) is pointed protomodular;
• (ExtE(C ), E1) satisfies (E4), (E5) and (M);
• I1 preserves pullbacks

a //

��

b

g
��

d
h

// c

with h in E1 and g in Split(E1).
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Proof : We just have to check here that any pullback of the form above, i.e. any
pullback

A1

��

a !!C
CC

CC

// B1
b
!!B

BB
BB

g1
��

A0

��

// B0

g0

��

D1

d !!C
CC

CC

h1
//

OO

C1
c
!!B

BB
BB

OO

D0
h0

//

OO

C0

OO

with h = (h1, h0) in E1 and g = (g0, g1) in Split(E1), is preserved by I1. If one
takes kernel pairs, then by commutation of limits, one finds a diagram

Eq(a)

��

π1 ##G
GG

GG
G

// Eq(b)
π1

##G
GG

GG
G

ĝ1
��

A1

��

// B1

g1

��

Eq(d)

π1 ##G
GG

GG
G

ĥ1
//

OO

Eq(c)
π1

##G
GG

GG
G

OO

D1
h1

//

OO

C1

OO

where the front and back faces are pullbacks of the form (A). Then applying
the radical rΓ to this diagram one obtains a cube

[Eq(a)]Γ,0

��

&&NNNNNNN

// [Eq(b)]Γ,0

&&NNNNNNN

[ĝ1]Γ,0
��

[A1]Γ,0

��

// [B1]Γ,0

[g1]Γ,0

��

[Eq(d)]Γ,0

&&NNNNNNN

[ĥ1]Γ,0
//

OO

[Eq(c)]Γ,0

&&NNNNNNN

OO

[D1]Γ,0
[h1]Γ,0

//

OO

[C1]Γ,0

OO
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Consequently, one finds a pullback

[a]Γ,1 //

��

[b]Γ,1

��

[d]Γ,1 //

OO

[c]Γ,1

OO

and one concludes using Lemma 2.4.

2.5. Derived Galois structures (composite case). Let us consider a com-
posite of closed Galois structures

Γ′′ : (C , E)
Γ=(I,H,η,ǫ)

/ (X ,F)
Γ′=(F,U,θ,ζ)

/ (Y ,G) (D)

where

• C is pointed protomodular;
• (C , E) satisfies (E4), (E5) and (M);
• I preserves pullbacks of type A;
• F is protoadditive.

Theorem 2.6. Let f : A → B be in E . The following conditions are equiva-
lent:

(1) f is an Γ′′-normal extension;
(2) f is Γ-normal and Ker(f) ∈ Y .

Proof : Let us assume that f is a Γ′′-normal extension. Then in the following
commutative diagram the composite of the left pointing squares is a pullback:

FI(A×B A)

FI(π1)
��

I(A×B A)

I(π1)
��

oo E ×B A

π1

��

oo // A

f
��

FI(A)

OO

I(A)oo

OO

Aoo

f
//

OO

B

Since the middle square is in E1, this implies that this square is, in fact, a
pullback (see [26, Lemma 1.1]), and we find that f is a Γ-normal extension.
The fact that Ker(f) lies in Y for any Γ′′-normal extension f has already been
remarked above.

Let us assume now that f is Γ-normal and Ker(f) ∈ Y . Then one sees that
in the commutative diagram
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Ker(f)
ker(π1)

//

ηKer(f)

��

Eq(f)
π1

//

ηEq(f)

��

(3)

A

ηA
��

oo

I(Ker(f))
I(ker(π1))

//

θI(Ker(f))
��

I(Eq(f))
I(π1)

//

θI(Eq(f))
��

(4)

I(A)

θI(A)
��

oo

FI(Ker(f))
FI(ker(π1))

// FI(Eq(f))
FI(π1)

// FI(A)oo

the square (3) is a pullback (since f is Γ-normal) and ηKer(f) an isomorphism. It
follows that the second row is a split short exact sequence. By protoadditivity
of F , the third row is also a split short exact sequence, and we obtain by
protoadditivity of C that (4) is a pullback because θI(Ker(f)) is an isomorphism,
by assumption. Thus (3)+(4) is a pullback and f is a Γ′′-normal extension.

Theorem 2.7. One has a composite of closed Galois structures

Γ′′
1 : (ExtE(C ), E1)

(I1,H1,η
1,ǫ1)

/ (NExtΓ(C ),F1)
(F1,U1,θ

1,ζ1)
/ (NExtΓ′′(C ),G1)

of type D where F1 = (F ◦ I)1 ◦H1 is protoadditive.

Proof : it suffices to check that F1 is protoadditive. This follows from the next
lemma.

Lemma 2.8. Let f : A → B be a Γ-normal extension. Then

[f ]Γ′′,1 = 0
F
Ker(f) = [Ker(f)]Γ′′,0.

This implies that [−]Γ′′
1 ,1

restricted to NExtΓ(C ) is protoadditive and therefore,
that the restriction F1 of (F ◦ I)1 to NExtΓ(C ) is also protoadditive.

Proof : First note that Ker(f) lies in X since f is a Γ-normal extension. Then,
as in the proof of Theorem 2.6, we see that the last row in the following diagram
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is exact:

[f ]Γ′′,1

ker([π1]Γ′′,0)
//

k
��

[Eq(f)]Γ′′,0

[π1]Γ′′,0
//

��

[A]Γ′′,0

µA

��

oo

Ker(f)

ηKer(f)

��

ker(π1)
// Eq(f)

π1
//

��

Aoo

��

FI(Ker(f))
FI(ker(π1))

// FI(Eq(f))
FI(π1)

// FI(A)oo

It follows that the left column in this diagram is also exact (note that the right
solid bottom square is a double E-extension) and the first part of the result
follows. Now, let us start with a split short exact sequence

0 // K1

ker(p1)
//

k
��

A1

p1
//

a
��

B1

b
��

s1
oo // 0

0 // K0
ker(p0)

// A0

p0
// B0

s0
oo // 0

in NExtΓ(C ). Then, by commutation of limits, one finds that the first row in
the commutative diagram

Ker(k)

��

// Ker(a)

��

// Ker(b)

��

oo

K1

ker(p1)
//

k
��

A1

p1
//

a
��

B1

b
��

s1
oo

K0
ker(p0)

// A0

p0
// B0

s0
oo

is a split short exact sequence and, since [−]Γ′′,0 restricted to X is protoaddi-
tive, that one has a split short exact sequence

0 // [k]Γ′′,1
// [a]Γ′′,1

// [b]Γ′′,1oo // 0.

2.6. Higher extensions and presentations. In the sequel, we will use the
notation for the finite ordinals: 0 = ∅ and n = {0, . . . , n − 1} for n ≥ 1. We
now adopt many notations from [23]. We write P(n) for the poset of subsets
of n viewed as a category. Let (C , E) be a pair that satisfies the axioms (E1) to
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(E3). The category ExtnE(C ) is the full subcategory of C (P(n)op) determined by
the n-fold E-extensions. An n-fold E-extension A is a functor A : P(n)op → C

such that for all 0 6= I ⊆ n, the limit limJ(I A(J) exists and the induced
morphism A(I) → limJ(I A(J) is in E . We shall use the notation AS = A(S),
aTS = A(S, T ) : A(T ) → A(S) (for S ⊆ T ⊆ n), ai = ann\{i} = A(n \ {i}, n)

and A = (AS)S⊆n. Let us define, for i ∈ N, si : N → N by

si(k) =

{
k if k < i
k + 1 if k ≥ i

and −i : P(N) → P(N) by Si = {si(k) | k ∈ S}. For every n ≥ 0, one has a
pair (ExtnE(C ), En) which satisfies the axioms (E1) to (E3). For any 0 ≤ i < n,
there is also an isomorphism

δi : (Ext
n
E(C ), En) → (ExtEn−1(Extn−1

E (C )), (En−1)1)

which maps a n-extension A to the natural transformation

δi(A) = (a
Si∪{i}
S )S⊆n−1 : (ASi∪{i})S⊆n−1 → (ASi)S⊆n−1

and an arrow f : A → B between n-extensions to:

(ASi∪{i})S⊆n−1

(f
Si∪{i})S⊆n−1

//

��

(BSi∪{i})S⊆n−1

��

(ASi)S⊆n−1
(f

Si)S⊆n−1

// (BSi)S⊆n−1

Actually, the class En is defined inductively by transport along the isomorphism
δn−1 and it is only proved afterwards that, for i = 0, . . . , n−2, δi also preserves
extensions (see [19, Proposition 1.16] for more details). Here we have made the
identifications Ext0E(C ) = C , Ext1E(C ) = ExtE(C ) and the corresponding
identifications of classes of extensions. We define also δ+i = Cod ◦ δi and
δ−i = Dom◦ δi. Here the functors Cod and Dom are the codomain and domain
functors (they send an arrow to its codomain and domain, respectively).

Lemma 2.9. For A in ExtnE(C ) and 0 ≤ i < j < n, the diagram in Extn−2
E (C )

.
δj−1(δ

−
i (A))

//

δi(δ
−
j (A))

��

.

δi(δ
+
j (A))

��.
δj−1(δ

+
i (A))

// .
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is commutative.

Let us also recall that for every 0 ≤ i < n, one has an isomorphism

ρi : (Ext
n
E(C ), En) → (Extn−1

E1 (ExtE(C )), (E1)n−1)

which maps a n-fold E-extension A to

ρi(A) = (a
Si∪{i}
Si : ASi∪{i} → ASi)S⊆n−1.

Using this, we can also define the isomorphism

(ρi, ρi) : ExtEn(ExtnE(C )) → Ext(E1)n−1(Extn−1
E1 (ExtE(C )))

which is determined on objects by

(ρi, ρi)(f : A → B) = ρi(f) : ρi(A) → ρi(B)

The following rules hold (see [17, Lemma 4.2]): for i < j

δj−1 ◦ ρi = (ρi, ρi) ◦ δj

and for j < i

δj ◦ ρi = (ρi−1, ρi−1) ◦ δj.

Let us recall from [39] the following definition. Let n ≥ 1. The direction of a
n-fold E-extension A is

Kern(A) =

n−1⋂

i=0

Ker(ai).

This defines a functor

Kern : ExtnE(C ) → C

such that

Kern(A) ∼= Ker(Kern−1(ρi(A))) ∼= Kern−1(Ker(δi(A)))

for every i = 0, . . . , n− 1. We shall also consider the functor

ιn : C → ExtnE(C )

that maps an object A in C to the n-fold E-extension given by

(ιn(A))S =

{
A if S = n
0 if S 6= n
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The left adjoint of ιn is Domn : ExtnE(C ) → C given by Domn(A) = An and
the right adjoint of ιn is Kern. Note that Kern(ιn(A)) ∼= A = Domn(ιn(A))
and that

Domn(A) ∼= Dom(Domn−1(ρi(A))) ∼= Domn−1(Dom(δi(A))).

There also exists a functor Codn : ExtnE(C ) → C given by Codn(A) = A0 with
properties similar to the properties of the functor Domn.
Projective objects and presentations. Let (C , E) satisfies (E1) to (E3). An
object P of C is E-projective if for any morphism f : A → B in E the function

HomC (P, f) : HomC (P,A) → HomC (P,B)

is surjective. One says that C has enough E-projective objects if every object C
of C has at least a 1-fold E-projective presentation, i.e. there exists a morphism
f : P → C in E with an E-projective domain. Let us recall that, if C has
enough E-projective objects, ExtnE(C ) has enough En-projective objects and
an object P in ExtnE(C ) is En-projective if and only if PS is E-projective for
every S ⊆ n. For C in C and P in ExtnE(C ) (n ≥ 2), one says that P is
a n-fold E-projective presentation of C if PS is E-projective for every S 6= 0
and Codn(P ) = P0 = C. One denotes the category of n-fold E-projective
presentations by PresnE(C ). For C in C , we write PresnE(C) for the fibre over C
of the functor Codn : PresnE(C ) → C . Note that there is at least one morphism
between any two objects of PresnE(C).

Proposition 2.10. Let (F, U, η, ǫ) : C ⇀ X be an adjunction,

G = (G = F ◦ U, ǫ : G → 1C , δ : G → G2)

the induced comonad on C , and P the class of morphisms in C which are sent
by U to split epimorphisms in C . Then C has enough P-projective objects and
(C ,P) satisfies (E1) to (E3).

This proposition can be applied to the following categories (for some semi-
abelian theory T): T(Set) and T(HComp) which are monadic over Set (see
[38] for the monadicity of the second one) and T(Top) which is monadic over
Top ([4],[42]). In each of theses cases, the class P sits inside the class of regular
epimorphisms (note that a regular epimorphism in T(Top) is a surjective (open)
homomorphism whose codomain has the quotient topology [4]).
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2.7.Higher derived Galois structures. Using our description of the radical
rΓ1

and using the same kind of principles as in [17], one finds by induction and
Theorem 2.5 the following

Theorem 2.11. Given Γ of type C, one has for all n ≥ 1 a closed Galois
structure

Γn : (Ext
n
E(C ), En)

(In,Hn,η
n,ǫn)

/ (NExtnΓ(C ),Fn)

of type C where In is defined as the unique functor such that the diagram

ExtnE(C )
In

////

δi
��

NExtnΓ(C )

δi
��

ExtEn−1(Extn−1
E (C ))

(In−1)1

// NExtΓn−1
(Extn−1

E (C ))

commutes for i = 0, . . . , n − 1. The radical [−]Γn,0 factors as ιn([−]Γ,n) for
some functor [−]Γ,n : Ext

n
E(C ) → X and one has [δi(−)]Γn−1,1 = ιn−1[−]Γ,n.

The diagram

ExtnE(C )
In

// //

ρi
��

NExtnΓ(C )

ρi
��

Extn−1
E1 (ExtE(C ))

(I1)n−1

// NExtn−1
Γ1

(ExtE(C ))

also commutes and [ρi(−)]Γ1,n−1 = ι1[−]Γ,n for i = 0, . . . , n− 1.

Similarly to the previous theorem one has

Theorem 2.12. Given a Galois structure Γ′′ of type D, one has for every
n ≥ 1 a composite of closed Galois structures

Γ′′
n : (Ext

n
E(C ), En)

(In,Hn,η
n,ǫn)

/ (NExtnΓ(C ),Fn)
(Fn,Un,θ

n,ζn)
/ (NExtnΓ′′(C ),Gn)

of type D where Fn = (F ◦ I)n ◦Hn is protoadditive.

3. Fundamental group functors

3.1. Galois groups. Let us assume that

Γ: (C , E)
(I,H,η,ǫ)

/ (X ,F) (E)

is a closed Galois structure such that
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• C is pointed, protomodular, and admits intersections

[Dom(p)]Γ,0 ∩Ker(p)

for any morphism p : E → B in E ;
• (C , E) satisfies (E4), (E5) and (M);
• I preserves pullbacks of type A.

Galois groupoid. The Galois groupoid [34] GalΓ(p) of a normal extension p is
the image under I of the kernel pair of p (viewed as an internal groupoid in C )

Eq(p)×E Eq(p)
p1

//

p2
//

τ // Eq(p)
π1

//

π2

//

σ
��

E.δoo

That is, GalΓ(p) is the internal groupoid in X

I(Eq(p)×E Eq(p))
I(p1)

//

I(p2)
//

I(τ) // I(Eq(p))
I(π1)

//

I(π2)
//

I(σ)

��

I(E)I(δ)oo

Galois-group. The Galois group [34] of a normal extension p : E → B is defined
as the object GalΓ(p, 0) in the following pullback:

GalΓ(p, 0) //

��

HI(Eq(p))

〈HI(π1),HI(π2)〉
��

0 // HI(E)×HI(E).

The Galois group construction gives in fact a functor

GalΓ(−, 0) : NExtΓ(C ) → Ab(X )

which is a Baer invariant with respect to the functor Cod: NExtΓ(C ) → C ,
i.e.

Proposition 3.1. [20] Two morphisms

f = (f1, f0), g = (g1, g0) : p → q

in NExtΓ(C ) such that f0 = Cod(f) = Cod(g) = g0 have the same image by
GalΓ(−, 0)

GalΓ(f, 0) = GalΓ(g, 0) : GalΓ(p, 0) → GalΓ(q, 0).

Since Cod commutes with I1, one finds
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Corollary 3.2. The functor

GalΓ(I1(−), 0) : ExtE(C ) → Ab(X )

is a Baer invariant with respect to Cod.

Theorem 3.3. [34] One has a natural isomorphism

GalΓ(−, 0) ∼= [Dom(−)]Γ,0 ∩Ker(−).

The Galois group GalΓ(p, 0) inherits an internal group structure from the
composition of the groupoid GalΓ(p) and can be viewed, internally, as the
group of automorphisms of 0. But as we have recalled, if C is a finitely complete
protomodular category, any of its objects underlies at most one internal group
structure so that we do not have to keep track of the group structure: only the
object itself will be of interest.

3.2. The fundamental group functors as Kan extensions. We now
consider a Galois structure

Γ: (C , E)
(I,H,η,ǫ)

/ (X ,F) (F)

of type E with a pair (CP ,P) such that (E1) to (E3) hold and such that CP is a
subcategory of C with sufficiently projective objects with respect to a subclass
P of E . Then ExtnP(CP) is a subcategory of ExtnE(C ).

For n ≥ 1 one defines a functor G Γ,P
n : ExtnP(CP) → Ab(X ) by

G
Γ,P
n = Domn−1

(
GalΓn−1

(δn−1In(−), 0)
)

Note that this functor is well defined. Indeed, for P a n-extension,

GalΓn−1
(δn−1In(P ), 0) = ιn−1(A) ∈ NExtn−1

Γ (C )

for some A in C , and one finds A = Domn−1(ιn−1(A)) = Kern(ιn−1(A)) ∈ X .
One could also use Kern−1 instead of Domn−1 in the definition of G Γ,P

n . Con-
sequently, the internal abelian group structure is also preserved (Kern−1 pre-
serves limits). Moreover, if one consider GalΓn−1

(−, 0) as a functor of type
NExtΓn−1

(Extn−1
E (C )) → NExtn−1

Γ (C ), one obtains, using Theorem 3.3, a
mono-morphism

γ : GalΓn−1
(−, 0) ⇒ Ker

and consequently another monomorphism

γ = Kern−1γδn−1In : G
Γ,P
n ⇒ Kern ◦ In.
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whose component at P is Kern−1(ker(ηn−1
δ−n−1In(P )

◦ ker(δn−1In(P )))).

Lemma 3.4. The functor G Γ,P
n is an invariant with respect to Cod ◦ δi = δ+i

for 0 ≤ i < n.

For this we use the following

Lemma 3.5. For P any n-fold P-projective presentation

G
Γ,P
n (P ) = Domn−1

(
G

Γn−1,Pn−1

1 (δiP )
)

for 0 ≤ i < n.

Proof : First, let us note that

G
Γn−1,Pn−1

1 (δiP ) = Gal(Γn−1)0((I1)n−1δi(P ), 0) = GalΓn−1
(δiIn(P ), 0)

So we are going to prove that

Domn−1GalΓn−1
(δiIn(P ), 0) = Domn−1GalΓn−1

(δjIn(P ), 0).

for 0 ≤ i < j < n. Now, let us remark that, since δ−i (P ) and δ−j (P ) are both

projective, both δj−1(δ
−
i (P )) and δi(δ

−
j (P )) are in Split(En−2). Consequently,

one finds a commutative diagram

.
δj−1δ

−
i (P )

//

δiδ
−
j (P )

��

  A
AA

AA
AA

A
.

δiδ
+
j (P )=δiδ

+
j In(P )

��

.

δiδ
−
j In(P )

��













δj−1δ
−
i In(P )

44jjjjjjjjjjjjjjjjjjj

.
δj−1δ

+
i (P )=δj−1δ

+
i In(P )

// .

where δiδ
−
j In(P ) and δj−1δ

−
i In(P ) are both in Split(En−2) and

[δj−1δ
−
i In(P )]Γn−2,1 ∩Ker(δiδ

−
j In(P ))

=[δ−j−1δ
−
i In(P )]Γn−2,0 ∩Ker(δj−1δ

−
i In(P )) ∩Ker(δiδ

−
j In(P ))

=[δ−i δ
−
j In(P )]Γn−2,0 ∩Ker(δiδ

−
j In(P )) ∩ Ker(δj−1δ

−
i In(P ))

=[δiδ
−
j In(P )]Γn−2,1 ∩ Ker(δj−1δ

−
i In(P ))
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Therefore

δj−1

(
[δ−i In(P )]Γn−1,0 ∩Ker(δiIn(P ))

)

=δj−1[δ
−
i In(P )]Γn−1,0 ∩ δj−1Ker(δiIn(P ))

=ι1
(
[δj−1δ

−
i In(P )]Γn−2,1

)
∩Ker(δj−1δiIn(P ))

=ι1
(
[δj−1δ

−
i In(P )]Γn−2,1 ∩Ker(δiδ

−
j In(P ))

)

=ι1
(
[δiδ

−
j In(P )]Γn−2,1 ∩ Ker(δj−1δ

−
i In(P ))

)

=ι1
(
[δiδ

−
j In(P )]Γn−2,1

)
∩Ker(δiδjIn(P ))

=δi[δ
−
j In(P )]Γn−1,0 ∩ δiKer(δjIn(P ))

=δi
(
[δ−j In(P )]Γn−1,0 ∩ Ker(δjIn(P ))

)

Finally, applying the composite Domn−2◦Dom to both sides gives the result.

Lemma 3.6. For P any n-fold P-projective presentation

G
Γ,P
n (P ) = Dom

(
G

Γ1,P1

n−1 (ρi(P ))
)

for 0 ≤ i < n.

Proof : Let 0 ≤ i < n− 1. First let us remark that

G
Γ1,P1

n−1 (ρi(P )) = Domn−2
(
Gal(Γ1)n−2

(δn−2(I1)n−1ρiP, 0)
)

= Domn−2
(
Gal(Γ1)n−2

((ρi, ρi)δn−1In(P ), 0)
)

Now (ρi, ρi)δn−1In(P ) is the En-extension

ρi(δn−1In(P )) : ρi(δ
−
n−1In(P )) → ρi(δ

+
n−1In(P ))

and Gal(Γ1)n−2
((ρi, ρi)δn−1In(P ), 0) is given by the pullback

Gal(Γ1)n−2
((ρi, ρi)δn−1In(P ), 0) //

��

[ρi(δ
−
n−1In(P ))](Γ1)n−2,0

��

Ker(ρi(δn−1In(P ))) // ρi(δ
−
n−1In(P ))

or equivalently by the pullback

ρi(GalΓn−1
(δn−1In(P ), 0)) //

��

ρi([δ
−
n−1In(P ))]Γn−1,0)

��

ρi(Ker(δn−1In(P ))) // ρi(δ
−
n−1In(P ))
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The case i = n − 1 is proved in a similar way with the help of the previous
lemma.

Definition 3.7. Let n ≥ 1. The nth-fundamental group functor πΓ,P
n (−), with

respect to the Galois structure Γ and the class P, is the pointwise right Kan
extension of G Γ,P

n = Domn−1
(
GalΓn−1

(In(−), 0)
)

along the functor Codn.

ExtnP(CP)
Codn

zztttttttttt G Γ,P
n

&&NNNNNNNNNN

CP
πΓ,P
n (−)

//

⇒

Gp(X )

Indeed, we need to prove that the fundamental group functors exists.

Lemma 3.8. Let n ≥ 0, C be in CP and let us consider the comma square

C ↓ Codn
QC

//

PC

��

ExtnP(CP)

Codn

��

1
C

//

⇒

CP

The full subcategory Pn
C of C ↓ Codn, whose objects are of type

(1C : C → C = Codn(P ), P )

with P in PresnP(C), is initial. In fact, for every object

Q = (h : C → Codn(Q), Q)

of C ↓ Codn, there exists a weak terminal object in Pn
C ↓ Q.

Proof : Let n ≥ 0 ang Q = (h : C → Codn(Q), Q) be in C ↓ Codn. Recall that
an object in Pn

C ↓ Q (n ≥ 0) is a map

(1C : C → C = Codn(P ), P )
f

// (h : C → Codn(Q), Q)

in C ↓ Codn that is a map f : P → Q in ExtnP(CP) such that Codn(f) = h
and P ∈ PresnP(CP). We shall denote by

(1C : C → C = Codn(Q⋆), Q⋆)
Q⋆

// (h : C → Codn(Q), Q)

any weak terminal object in Pn
C ↓ Q (if any exists).
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With the convention that Cod0 = 1CP
, the result is true when n = 0. Let

n > 0 and let us suppose that for 0 ≤ k < n the result is true. Let us write

δn−1(Q) = Q1
q

// Q0

One consider a weak terminal object

Q⋆
0 = (1C : C → C = Codn−1(Q⋆

0), Q
⋆
0)

in P
n−1
C ↓ Q0 where

Q0 = (h : C → Codn−1(Q0), Q0)

and form a commutative diagram

Q⋆
1 Q⋆

1

((

q⋆

  

u
%%

Q⋆
0 ×Q0

Q1

��

// Q1

q
��

Q⋆
0 Q⋆

0

// Q0

where u : Q⋆
1 → Q⋆

0×Q0
Q1 is a 1-fold Pn−1-projective presentation of Q⋆

0×Q0
Q1.

Of course Q⋆, determined by

δn−1(Q
⋆) = Q⋆

1

q⋆
// Q⋆

0,

is in PresnP(C). Finally, it is easy to check that Q⋆ : Q⋆ → Q, given by

δn−1(Q
⋆) = (Q⋆

1,Q
⋆
0) : q

⋆ → q,

is an object

(1C : C → C = Codn(Q⋆), Q⋆)
Q⋆

// (h : C → Codn(Q), Q)

which is weakly terminal in Pn
C ↓ Q.
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In fact, one has the following situation

Pn
C

Q̃C
//

i
��

=

PresnP(C)

��

C ↓ Codn
QC

//

PC

��

ExtnP(CP)

Codn

��

G Γ,P
n

// Gp(X )

1
C

//

⇒

CP

(G)

where Q̃C is an isomorphism and the inclusion i initial. We are going to show
that G Γ,P

n restricted to PresnP(C) has a limit. For this, we first prove the
following

Lemma 3.9. Let 1 ≤ n, C ∈ CP and f, g : P → Q be two morphisms in
PresnP(C ) such that Codn(f) = Codn(g). Then

G
Γ,P
n (f) = G

Γ,P
n (g) : G

Γ,P
n (P ) → G

Γ,P
n (Q)

Proof : The case n = 1 follows from Corollary 3.2. Now let n > 1 and let us
suppose that the result holds for 0 ≤ k < n and any Galois structure of type
F. It is possible to construct a diagram

P ′
p

//

f ′

��

g′

��

P

f
��

g
��

Q′
q

// Q

(H)

in PresP(CP) such that

Codn−1ρ0(f
′) = Codn−1ρ0(g

′); δ+0 (p) = 1; δ+0 (q) = 1;

δ+0 (f ◦ p) = δ+0 (q ◦ f
′); δ+0 (g ◦ p) = δ+0 (q ◦ g

′).

Consequently G Γ,P
n (p) and G Γ,P

n (q) are isomorphisms and one can conclude
using Lemma 3.4 and Lemma 3.6. Let us give some details about the con-
struction of the diagram above (note that the proof is a modified version
of [16, Theorem 2.3.10]). For i = 0, . . . , n − 1, we define P (i) = (PS0)S⊆i,
Q(i) = (QS0)S⊆i, f

(i) = (fS0)S⊆i and g(i) = (gS0)S⊆i in ExtiP(CP). One eas-
ily check that δ+i (P

(i+1)) = P (i) and δ+i (Q
(i+1)) = Q(i) and so on. Then we



FUNDAMENTAL GROUP FUNCTORS IN DESCENT-EXACT HOMOLOGICAL CATEGORIES 33

construct inductively some commutative diagrams D
(i)
f and D

(i)
g :

P ′(i)
p(i)

//

f ′(i)

��

P (i)

f (i)

��

Q′(i)

q(i)
// Q(i)

P ′(i)
p(i)

//

g′(i)
��

P (i)

g(i)
��

Q′(i)

q(i)
// Q(i)

for i = 0, . . . , n− 1. First, we set D
(0)
f = D

(0)
g

P ′(0)
p(0)

//

f ′(0)=g′(0)
��

P0

f0=g0
��

Q′(0)

q(0)
// Q0

where p(0) (q(0)) is any 1-fold E-projective presentations of P0 (Q0), and f ′(0) =

g′(0) is any lifting of f0p
(0) = g0p

(0) along q(0). Then having constructed D
(i)
f ,

one constructs D
(i+1)
f using the diagram:

A
a

//

δiP
′(i+1) 00

c
  

.

��

$$I
IIIIIIII

// .

##H
HH

HH
HH

HH

δiP
(i+1)

��

B
b

//

δiQ
′(i+1)

00

.

��

// .

δiQ
(i+1)

��

P ′(i)

##F
FFFF

// P (i)

""E
EE

EE

Q′(i) // Q(i)

where a and b are 1-fold E i-projective presentations and c is a suitable lifting.

One constructs D
(i)
g similarly. Finally, one obtains the diagram H via

P ′(n−1)

����

δ0(P
′)
//

++

P (n−1)

����

δ−0 (P )
δ0(P )
oo

����

Q′(n−1)
δ0(Q

′)
//

33Q(n−1) δ−0 (P )
δ0(Q)
oo

where the dotted arrows (which determine p and q) are obtained as liftings once

again. Note that Codn−1ρ0(f
′) and Codn−1ρ0(g

′) are given by D
(0)
f = D

(0)
g .
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Looking at diagram G, one sees that

C ↓ Codn
QC

// ExtnP(CP)
G Γ,P
n

// Gp(X )

has a limit if and only if

PresnP(C) // ExtnP(CP)
G Γ,P
n

// Gp(X ) (I)

has a limit. Then, using Lemma 3.9, we find that this last limit exists and we
can write

limG
Γ,P
n ◦QC

∼= G
Γ,P
n (P )

for P any n-projective P-presentation of C. Indeed the image of the diagram
I can be viewed as a subcategory of Gp(X ) which is an equivalence relation.
We have proved:

Theorem 3.10. For n ≥ 1, the nth-fundamental group functor (with respect
to the Galois structure Γ and the class P) exists and, for any object C in CP

and P any n-fold P-projective presentation of C, one has

πΓ,P
n (C) ∼= G

Γ,P
n (P ).

Note that, for n = 1, this result shows that our definition of the first fun-
damental group perfectly agrees with the definition given in [34]: π1(C) is the
Galois group of some weakly universal normal extension of C (a weak initial
object in NExtΓ(C)). It suffices to note that, for P a projective presentation
of C, I1(P ) is a weakly universal normal extension of C. Let us also mention
that the existence of π1 is already proved in [20] (In a different context and
without emphasis on the pointwise character of the Kan extension).

3.3. The fundamental group functors as satellites. The fundamental
groups functors defined as above coincide with various other homology defined
in more restricted contexts. Indeed it is easy to show (using a slight modifica-
tion of the arguments given in the section 6 of [20]) that

πΓ,P
n = RanCodn(Kern ◦ In),
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that is πΓ,P
n is the pointwise right satellite of In with respect to Codn and Kern:

ExtnP(CP)
In

//

Codn

��

NExtnΓ(C )

Kern

��

CP
πΓ,P
n

//

⇒

X ,

so that πΓ,P
n (−) ∼= Hn+1(−, I) where Hn+1(−, I) is defined as in [25]. For the

sake of completeness, we give here the explanation. Let C be in CP . It is
sufficient to show that a natural transformation of the form

l : ∆L ⇒ Kern ◦ In ◦QC ,

for some L in X , factors (uniquely) through γQC : G Γ,P
n ◦QC ⇒ Kern◦In◦QC .

Let (f, P ) = (f : C → Codn(P ), P ) be in C ↓ Codn and let us consider the
following morphisms in C ↓ Codn determined by :

δ−n−1(P )
ηn−1

δ
−
n−1(P )

//

δn−1(P )
��

In−1(δ
−
n−1(P ))

��

0

��

oo

δ+n−1(P ) // 0 0oo

Codn(P ) // 0 0oo

C
f

hhQQQQQQQQQQQQQQQ

OO
88qqqqqqqqqqqqqq

Since In−1δn−1In(P ) = In−1Inδn−1(P ) = In−1δn−1(P ), the naturality of l gives
us a commutative diagram:

L

l(f,P )

��

L

��

L

��

Kern(In(P ))
α=Kern−1(ηn−1

δ
−
n−1In(P )

◦ker(δn−1In(P )))

// Kern−1(In−1δ
−
n−1In(P )) 0oo

and consequently l(f,P ) factors through (γQC)(f,P ) = γP , the kernel of the
morphism α.
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3.4. Hopf formulae.
First formulae. Let Γ be a structure of the F.

Theorem 3.11. Let 1 ≤ n and P be a n-fold P-projective presentation. Then

G
Γ,P
n (P ) ∼=

[Domn(P )]Γ,0 ∩ Kern(P )

[P ]Γ,n

Proof : By induction. Let n = 1 and let P = p : P1 → P0. Then, one can check
that all the faces in the following cube are pullbacks

[P1]Γ0
∩ Ker(p)

η̂1p

��

**TTTTTTTTTTTT

// Ker(p)

��

&&M
MMMMMMMM

[P1]Γ,0

��

// P1

η1p

��

[I1[p]]Γ,0 ∩Ker(I1(p))

**TTTTTTTTTTT

// Ker(I1(p))

&&M
MM

MM
MM

M

[I1[p]]Γ,0 // I1[p]

Indeed, the right hand and front faces are pullbacks, since p = I1(p) ◦ η1p and

ηP1
= η1p ◦ ηI1[p]. It follows that the morphism η̂1p is in E by (E2), thus a normal

epimorphism, and Ker(η̂1p) = Ker(η1p). Finally, one has

G
Γ,P
1 (P ) = GalΓ(I1(p), 0)

∼= [I1[p]]Γ,0 ∩ Ker(I1(p))

∼=
[P1]Γ,0 ∩ Ker(p)

Ker(η̂1p)

=
[Dom(P )]Γ,0 ∩ Ker(P )

[P ]Γ,1
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Let n ≥ 2 and let us assume that the results holds for all 1 ≤ k < n and
Galois structures of type E. Then one has

G
Γ,P
n (P ) = Dom(G Γ1,P1

n−1 (ρ0(P )))

∼= Dom

(
[Domn−1(ρ0(P ))]Γ1,0 ∩Kern−1(ρ0(P ))

[ρ0(P )]Γ1,n−1

)

∼=
Dom

(
ι1[Domn−1(ρ0(P ))]Γ,1 ∩ Kern−1(ρ0(P ))

)

Dom(ι1[P ]Γ,n)

∼=
[Domn−1(ρ0(P ))]Γ,1 ∩Dom(Kern−1(ρ0(P )))

[P ]Γ,n

Since Domn−1(ρ0(P )) is a morphism in P with a projective codomain, it is
a split E-extension and then

[Domn−1(ρ0(P ))]Γ,1 ∼=[Dom(Domn−1(ρ0(P )))]Γ,0 ∩ Ker(Domn−1(ρ0(P )))

∼=[Domn(P )]Γ,0 ∩Ker(Domn−1(ρ0(P )))

Finally, one has

[Domn−1(ρ0(P ))]Γ,1 ∩Dom(Kern−1(ρ0(P )))

∼= [Domn(P )]Γ,0 ∩ Ker(Domn−1(ρ0(P ))) ∩ Dom
(
Kern−1(ρ0(P ))

)

∼= [Domn(P )]Γ,0 ∩ Kern(P ).

Refined formulae. If the composite Galois structure Γ′′ is as in D and such that
Γ is of kind F, then the descriptions of the fundamental groups can be refined,
as shown in the following theorem (the case n = 1 in a restricted context can
be found in [13]). One first establishes some lemmas.

Lemma 3.12. Let

0 // ι(A) // P
f

// Q // 0

be a short exact sequence with A in C , f in E1, P in ExtE(C ) and Q in
NExtΓ(C ). Then one has a short exact sequence

0 // A // Ker(P )
Ker(f)

// Ker(Q) // 0

with Ker(f) in E , Ker(P ) in C and Ker(Q) in X . Moreover, one has

ι(A)
NExtΓ(C )

P = ι(A
Y

Ker(P )).
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Proof : Let us consider the following commutative diagram

(Ker(f))−1(0
Y

Ker(Q))
//

��

0
Y

Ker(Q)

��

Ker2(f) //

i
��

66

Ker(P )
Ker(f)

//

��
(∗)

Ker(Q)

��

A //

��

P1

p
��

f1
// Q1

q
��

0 // P0
f0

// Q0

Since f is in E1, its restriction Ker(f) to the kernels of P and Q must be in
E and, since q is Γ-normal, Ker(Q) is in X . But the last row being exact, f0
is an isomorphism and the square (∗) is a pullback. This implies that i is an
isomorphism. To check the second assertion is easy. It suffices to note that,

since q is Γ-normal, one has rΓ,1(q) = ι(0
Y

Ker(Q)) and

ι(A)
NExtΓ′′(C )

P = f−1(ι(0
Y

Ker(Q)))

= ι(f−1
1 (0

Y

Ker(Q)))

= ι((Ker(f))−1(0
Y

Ker(Q)))

= ι(((Ker(f))−1(0))
Y

Ker(P ))

= ι(A
Y

Ker(P )).

Corollary 3.13. Let

0 // ιn(A) // P
f

// Q // 0

be a short exact sequence with A in C , f in En, P in ExtnE(C ) and Q in
NExtnΓ(C ). Then one has a short exact sequence

0 // A // Kern(P )
Kern(f)

// Kern(Q) // 0

with Kern(f) in E , Kern(P ) in C and Kern(Q) in X .
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Theorem 3.14. Let 1 ≤ n and P be a n-fold P-projective presentation. Then

G
Γ′′,P
n (P ) ∼=

([Domn(P )]Γ,0)
Y

Domn(P ) ∩Kern(P )

([P ]Γ,n)
Y

Kern(P )

Proof : Let n = 1. One decomposes the formula in Theorem 3.11. Clearly, in
our case

[Dom(P )]Γ′′,0 = ([Dom(P )]Γ,0)
Y

Dom(P ).

Furthermore the arrow η1p in the proof of Theorem 3.11, the cokernel of [P ]Γ′′,1,
can be factorised as h ◦ g where g is the cokernel of [P ]Γ,1 and h the cokernel

of 0
Y

Ker(I1(p))
. Let us consider the following commutative diagram

ĝ−1(0
Y

Ker(I1(p))
) //

��

Ker(p)
ker(p)

//

ĝ

��

P1

g

��

0
Y

Ker(I1(p))
//

��

Ker(I1(p)) // I1[p]

h
��

0 // (F ◦ I)1[p]

in which all rectangles are pullbacks. Then one sees that there is an isomor-
phism

Ker(η1p) = Ker(h ◦ g) ∼= ĝ−1(0
Y

Ker(I1(p))
)

between the domains of the normal monomorphisms

ker(h ◦ g) and ĝ−1(ker((θ ◦ η)Ker(I1(p)))).

Since ĝ is in E , one has the following equalities:

ĝ−1(0
Y

Ker(I1(p))) = (ĝ−1(0))
Y

Ker(p)

= (Ker(ĝ))
Y

Ker(p)

= (Ker(g))
Y

Ker(p)

= ([P ]Γ,1)
Y

Ker(p).
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Let n ≥ 2 and let us assume that the theorem holds for all 1 ≤ k ≤ n − 1
and all Galois structures of type D. Then, in particular,

G
Γ′′,P
n (P ) ∼=

Dom

(
([Domn−1(ρ0(P ))]Γ1,0])

NExtΓ′′(C )

Domn−1(ρ0(P ))

)
∩Dom(Kern−1(ρ0(P )))

Dom
(
([ρ0(P )]Γ1,n−1)

NExtΓ′′(C )

Kern−1(ρ0(P ))

)

(J)
One has [Domn−1(ρ0(P ))]Γ1,0 = ι([Domn−1(ρ0(P ))]Γ,1). Applying Lemma 3.12
to the short exact sequence

ι([Domn−1(ρ0(P ))]Γ,1) // Domn−1(ρ0(P ))
η1
Domn−1(ρ0(P ))

// I1(Dom
n−1(ρ0(P )))

gives us

([Domn−1(ρ0(P ))]Γ1,0])
NExtΓ′′(C )

Domn−1(ρ0(P )) = ι(([Domn−1(ρ0(P ))]Γ,1)
Y

Ker(Domn−1(ρ0(P )))).

Since Domn−1(ρ0(P )) has a projective codomain (see the proof of Theorem
3.11), the numerator of J can be rewritten as

Dom

(
([Domn−1(ρ0(P ))]Γ1,0])

NExtΓ′′(C )

Domn−1(ρ0(P ))

)
∩ Dom(Kern−1(ρ0(P )))

∼= ([Domn−1(ρ0(P ))]Γ,1)
Y

Ker(Domn−1(ρ0(P ))) ∩Dom(Kern−1(ρ0(P )))

∼= ([Domn(P )]Γ,0)
Y

Domn(P ) ∩Ker(Domn−1(ρ0(P ))) ∩ Dom(Kern−1(ρ0(P )))

∼= ([Domn(P )]Γ,0)
Y

Domn(P ) ∩Kern(P ).

It remains to rewrite the denominator of J. We have to figure out what
is the closure of [ρ0(P )]Γ1,n−1 = ι([P ]Γ,n) in Kern−1(ρ0(P )) with respect to
NExtΓ′′(C ). Starting from the short exact sequence

ιn−1([ρ0(P )]Γ1,n−1) // ρ0(P )
(η1)n−1

ρ0(P )
// (I1)n−1(ρ0(P ))

and applying Corollary 3.13 gives us a short exact sequence

[ρ0(P )]Γ1,n−1
// Kern−1(ρ0(P ))

Kern−1((η1)n−1
ρ0(P ))

// Kern−1((I1)n−1ρ0(P ))
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where Kern−1((I1)n−1ρ0(P )) is Γ-normal. Finally, we get by Lemma 3.12 that

Dom
(
([ρ0(P )]Γ1,n−1)

NExtΓ′′(C )

Kern−1(ρ0(P ))

)
= Dom((ι[P ]Γ,n)

NExtΓ′′(C )

Kern−1(ρ0(P )))

= ([P ]Γ,n)
Y

Kern(P ).

4. Examples

4.1. Groups. As a first example, we consider a composite adjunction of the
form

Gp
ab

,,
⊥ Ab

F
++

⊥

⊇
ll F

⊇
ll

where Gp is the category of groups, Ab the category of abelian groups and
F the torsion-free part of a hereditary torsion theory (T ,F ) in Ab (M-
hereditary for the class M = Mono(C ) of all monomorphisms in C ). If we
choose P = E = RegEpi(C ) and the classes F and G accordingly, we get a
situation in which Theorem 3.14 can be applied. Let us recall from [23] that
for, P in ExtnE(C ),

[P ]Γ,n =
∏

I⊆n

[
⋂

i∈I

Ker(pi),
⋂

i/∈I

Ker(pi)].

where the commutator [−,−] is the classical commutator from group theory.
We now need to understand what is the closure associated with the subcategory
F . First let us recall (from [11] for instance) that the hereditary torsion theories
in Ab are completely classified. They are in bijection with radicals of the form

tP(A) =
∨

p∈P

tp(A)

where P is a set of prime numbers and

tp(A) = {a ∈ A | ∃n ∈ N : ord(a) = pn}

Here ord(a) denotes the order of a. Let us fix a set P and let FP be the
associated torsion-free subcategory of Ab.

One can prove that the corresponding closure of a normal subgroup K of a
group A such that K ≥ [A,A] = [A]Γ,0 is

K
FP

A = {a ∈ A | ∃m ∈ 〈P〉 : am ∈ K}. (K)

where 〈P〉 is the ideal generated by P in the (commutative) monoid (N0, ·, 1).
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Lemma 4.1. Let q : A → B be a surjective homomorphism with B abelian.
One has

q−1(tP(B)) = {a ∈ A | ∃m ∈ 〈P〉 : q(a)m = 1}.

q−1(tP(B))

��

// tP(B)

��

A q
// B

Proof : (⊆:) Let a be in q−1(tP(B)), that is a ∈ A such that

q(a) =
k∏

i=1

bi

for some bi ∈ tpi(B) and pi ∈ 〈P〉. Then, there exist li ∈ N such that b
p
li
i

i = 1,

and, for m =
∏k

i=1 p
li
i (∈ 〈P〉),

q(a)m =

k∏

i=1

bmi =

k∏

i=1

(b
p
li
i

i )
∏

j 6=i p
lj
j = 1.

(⊇:) We prove by induction that for all m in 〈P〉,

{a ∈ A | q(a)m = 1} ⊆ q−1(tP(B)).

Since tP(B) is a normal subgroup of B, the inclusion holds for m = 1. Now,
let m > 1 be in 〈P〉 and let us decompose it as

m = m′ · pl

with p ∈ P , l ∈ N and m′ ∈ 〈P \ {p}〉(⊆ 〈P〉) such that 1 ≤ m′ < m. One
knows from Bezout’s theorem that one can find some c′, c ∈ Z such that

c′ ·m′ + c · pl = 1.

For a ∈ A such that q(a)m = 1, one has

(q(a)m
′

)p
l

= q(a)m
′·pl = 1

and

q(ap
l

)m
′

= (q(a)p
l

)m
′

= q(a)m
′·pl = q(a)m = 1,

so that, by definition,

q(a)m
′

∈ tp(B) ⊆ tP(B)
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and, by induction,

q(ap
l

) ∈ tP(B).

Hence,

q(a) = q(a)c
′·m′+c·pl = (q(a)m

′

)c
′

︸ ︷︷ ︸
∈ tP(B)

· (q(a)p
l

)c︸ ︷︷ ︸
∈ tP(B)

∈ tP(B)

and a is in q−1(tP(B)).

For A a group and P any n-fold P-projective presentation of A, the formulae

πn(A) ∼=
([Pn]Γ,0)

FP

Pn
∩ Kern(P )

([P ]Γ,n)
FP

Kern(P )

in Theorem 3.14 become

πn(A) ∼=
{k ∈ Kern(P ) | ∃m ∈ 〈P〉 : km ∈ [Pn, Pn]}

{k ∈ Kern(P ) | ∃m ∈ 〈P〉 : km ∈
∏
I⊆n

[
⋂
i∈I

Ker(pi),
⋂

i∈n\I

Ker(pi)]}
.

For P = ∅, the Brown-Ellis formulae [10] for the integral homology of a group
are recovered:

Hn+1(A,Z) ∼=
[Pn, Pn] ∩Kern(P )∏

I⊆n

[
⋂
i∈I

Ker(pi),
⋂

i∈n\I

Ker(pi)]
∼= πn(A).

4.2. Topological groups. We consider here the adjunctions

Gp(Top)
ab

..

⊥ Ab(Top)
F

..

⊥

⊇
nn Ab(Haus)

⊇
nn

where Ab(Haus) is the category of Hausdorff abelian topological groups. The
functor ab sends a topological group G on G/[G,G] with the quotient topology

and F sends an abelian topological group G on G/{0}G where {0}G is the
topological closure of the trivial subgroup. If we fix E = RegEpi(Gp(Top))
and P the class of morphisms in Gp(Top) which are split in the category Top,
we are in a position to apply our Theorem 3.14 . For (K, k) a normal subobject
of a topological group A such that K ≥ [A,A], one finds that

K
Ab(Haus)
A = K

Top
,
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the topological closure of K in A. Obviously, the inequality

K
Top

≤ qK
−1(0

Ab(Haus)
A/K ) = K

Ab(Haus)
A

holds since coker(k) = qK : A → A/K is continuous. The converse inequality

q−1
K (0

Ab(Haus)
A/K ) ≤ K

Top

is also valid since the map qK is open [4, Proposition 21]. Then, for P a n-fold
P-projective presentation of a topological group A, we have

πn(A) ∼=
[Pn, Pn]

Top
∩ Kern(P )

∏
I⊆n

[
⋂
i∈I

Ker(pi),
⋂
i/∈I

Ker(pi)]
Top

.

4.3. Torsion theories. Let us consider an adjunction of the form

C

F
&&

⊥ F

⊇

ee

where C is an descent-exact homological category and F the torsion free part
of a torsion theory in C . Let us assume that the torsion theory is M-hereditary
for a class M that contains the protosplit monomorphisms and, moreover, that
C has enough projective objects with respect to a class P ⊆ E = RegEpi(C ).
Then, for P a n-fold P-projective presentation of an object A of C , one obtains:

πn(B) ∼=
0
F
Pn

∩Kern(P )

0
F
Kern(P )

=
r(Pn) ∩Kern(P )

r(Kern(P ))

This expression becomes trivial when the torsion subcategory is closed under
normal subobjects. In fact, if M is a pullback stable class of monomorphisms
containing the normal monomorphisms, then one finds that f−1(rY ) = rX for
every morphism f : X → Y in M (this is a modified version of [11, Proposi-
tion 3.3 (1)]) . This shows that many torsion theories do not give interesting
invariants. However, not all torsion-free subcategories are closed under normal
monomorphism. For instance, let us consider an adjunction of the type

T(HComp)
F

--
⊥ T(Prof)
⊇

nn
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where T is a semi-abelian theory and T(Prof) the category of models of this
theory in the category of profinite spaces. T(Prof) is in fact the torsion-
free part of the torsion theory (T(ConnComp),T(Prof)) where T(ConnComp)
is the category of connected compact Hausdorff T-algebras [8]. The torsion
part of the theory is closed under protosplit monomorphisms [22] so that
the reflector F (which sends an algebra A on A/Γ0(A) [4]) is protoadditive.
Considering the normal subobject 〈ei

π
2 〉 of S1 in Gp(HComp), one sees that

T = Gp(ConnComp) is not closed under normal subobjects. So this gives an
example of adjunction for which one obtains (a priori) interesting invariants.
The descriptions from Theorem 3.14 become in that case

πn(B) ∼=
Γ0(Pn) ∩Kern(P )

Γ0(Kern(P ))
.

Similar results can be obtained for any regular epi-reflection of an almost
abelian category into one of its full replete subcategory.
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