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GENERALIZED GOLDBERG FORMULA
ANTONIO DE NICOLA AND IVAN YUDIN

ABSTRACT: In this paper we prove a useful formula for the graded commutator
of the Hodge codifferential with the left wedge multiplication by a fixed p-form
acting on the de Rham algebra of a Riemannian manifold. Our formula generalizes
a formula stated by Samuel I. Goldberg for the case of 1-forms. As first examples
of application we obtain new identities on locally conformal Kéhler manifolds and
quasi-Sasakian manifolds.

1. Introduction

Since the early days of Differential Geometry it became apparent the impor-
tance of formulae that relate various differential objects on a manifold. Let
us mention among others Bianchi identities, Weitzenbock formula, Frolicher-
Nijenhuis calculus. It should be noted that all the above results can be
obtained by elementary, although tedious and long, computations. Their
importance lies in the psychological /practical plane, as they permit to work
with the quantities in question without undergoing into error-prone calcula-
tions, thus forming a swiss-knife kit of a differential geometer. In this article
we prove a formula that we hope will deserve its place in the kit.

Let (M, g) be a Riemannian manifold. As usual, Q*(M) denotes the de
Rham algebra of differential forms on M and § : Q*(M) — QY M) the
Hodge codifferential. Given a k-form w, we denote by €, the operator on
Q* (M) defined by €,0 = w A0, for every 6 € Q'(M). In Theorem 4, we prove
the following expression for the graded commutator of § with €, in terms of
Frolicher-Nijenhuis operators

[0, €] = €50 — Lo — (=1 iy0. (1)
Here, w® € QFY(M,TM) denotes the vector valued form obtained from

w € QF(M) by metric contraction and w® € QF(M, TM) is a vector valued
k-form defined in Section 3.
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2 A. DE NICOLA AND I. YUDIN

Let & be a vector field and 7 its metric dual 1-form. In Corollary 5 we show
that in this case Formula (1) takes the form

{0,€n} + Le = €5y + U(Leg)#s (2)

where the curly bracket denotes the anticommutator. Equation (2) was
stated by Goldberg in [9] and on page 109 of [10]. In both cases, Gold-
berg refrained from explicitly proving this result. Nevertheless, he proved a
partial case of (2) on pages 110-111 of [10] under the condition that & gener-
ates a flow of conformal transformations. The absence of a published proof
can be one of the causes that Equation (2) is not widely known.

Let us give a simple example of use of (1). Let (M,g,J) be a Kéahler
manifold and let Q(X,Y) = ¢(X,JY) be its fundamental 2-form. Then
O# = J is parallel and € is closed and coclosed. One gets easily that the
associated vector valued 2-form Q¢ vanishes (see equation (21)). Thus (1)
becomes

[5, EQ] + £J = 0. (3)

This is of course a well-known formula in Kahler geometry, but usually it
takes several pages of local computations to prove it.
In Theorem 6 we show the importance of the condition

[0, €] + Lo» =0 (4)

for a p-form w. Namely, we prove that if (4) holds for all w € S, where S is
subset of Q2*(M), then the subalgebra

O, (M) = {B| LsB =0, w e 5}

of Q*(M) is quasi-isomorphic to Q*(M) as CDGA, with the quasi-isomorphism
given by the embedding. Note that in the case M is Kéhler manifold, this
quasi-isomorphism is the first step in the proof of formality of Kahler mani-
folds given in [4]. Employing Formula (1), in Theorem 7 we give a complete
characterization of all forms w that satisfy (4).

In Section 4 we consider the case of locally conformal Kahler manifolds. By
applying Formula (1), we get the following result which in a sense generalizes
Equation (3). Let (M, J,g) be a locally conformal Kéhler manifolds with
fundamental 2-form €2, Lee 1-form #, and anti-Lee 1-form 7. Then, for any
p-form 3 we have

0,€0]B =P —n)nAB— LB+ QNigs. (5)
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Finally, in Section 5 we show how our formula works in the context of

quasi-Sasakian manifolds. In Theorem 9 we prove the following result. Let
(M, ¢,&,1, g) be a quasi-Sasakian manifold and let A := —¢ o V. Then

0, €3] = —tr(A)e, — Ly + 2€p0 4. (6)

The special case of Formula (6) for Sasakian manifolds was first proved by
Fujitani in [8] by complicated computation in local coordinates. This formula
was crucial for the proof of the main result in our recent article [3] on Hard
Lefschetz Theorem for Sasakian manifolds. We hope that (6) will allow us
to obtain a suitable generalization of Hard Lefschetz Theorem for quasi-
Sasakian manifold.

2. Preliminaries

In this section we remind some notions and results of Frolicher-Nijenhuis
calculus [6, 7] which will be used later. Let M be a smooth manifold of
dimension n. The direct sum Q*(M) := @)_, Q*(M) has a structure of a
commutative differential graded algebra (CDGA) with respect to the wedge
product A and the exterior derivative d: QF(M) — QFFL(M). We write
QF(M, TM) for the space of skew-symmetric T M-valued k-forms on M.

Denote by ¥, the permutation group on {1, ..., m}. For k and s such that
k+s = m, let Shy s be the subset of (k, s)-shuffles in ¥,,,. Thus for o € Shy,
we have

o(l)<o(2)<---<a(k), olk+1)<---<alk+s).
Let ¢ € QP(M,TM). We define the operator i4 of degree p — 1 on Q*(M)
by
(i) (Y1, Yoreo1) = ) (=170 (6(Yoq)s -+ Yon)s Yorrns - - -+ Yotprio)
O'ESthg_l

where w € QF(M). The Lie derivative L, is an operator of degree p on Q*(M)
defined as the graded commutator [iy, d].
We recall now the fundamental theorem of Frolicher-Nijenhuis calculus.

Theorem 1 ([7]). Let 0: Q*(M) — Q*(M) be a derivation of degree p.
Then there are unique ¢ € QP(M, TM) and o € QP (M, TM), such that
0= Ly+1y.

As a consequence of the above theorem, we get:

(i) If a T'M-valued p-form ¢ is different from 0, then 74 # 0.
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(i) If 9: (M) — Q*(M) is a derivation such that [0, d] = 0, then there is
a unique ¢ € QP(M,TM), such that 0 = Ly.

For a k-form w € Qf(M) and TM-valued p-form ¢ , we define the T'M-
valued (p + k)-form wA¢ by
(WAQ) (Y1, .., Ypir) = Z (=1)°w (Yo), -+ You) @(Yotrs1)s - - s Yo(iin))-

O'EShkﬁ,,

Following [6], we will define the contraction (sometimes called trace) operator
C: QF(M,TM) — QP~Y(M) as follows. Every ¢ € QP(M,TM) can be written
locally as a finite sum ) ,_; w;AX;, where X are vector fields and w; € QP(M).
Then

C¢) =Y ixwi

1€l
One can check that C(¢) does not depend on the choice of the local presen-
tation for ¢. We will use the following property [6, eq. (2.12)]

Clw A ¢) = (=1 wA C(¢) + (=1)* Pigw, (7)
for any w € QF(M) and ¢ € QP(M, TM). Given w € QF(M), we define
€o: QP(M,TM) — QP (M, T M)
O — WAQ.

For an operator A: Q*(M) — Q*(M) and w € Q*(M) we abbreviate the
composition €, 0 A by w A A. It is easy to check that

w N\ i¢ = iw/\¢>- (8)
We will need the following fact.

Proposition 2. Let M be a smooth manifold, w € Q*(M), and ¢ € QP(M,TM).
Then,

WALy = Lops = (=1 Pigng- (9)
Proof: The computation
,Cw/\¢ = [iwA¢, d] = [w N iqg, d] = (—1)k+p(dw) A i(;g +wA £¢.

proves the claim. u
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3. Generalized Goldberg Formula

In this section we prove the main result of the article. Let M be a
smooth manifold equipped with a Riemannian metric ¢ and let V denote
the corresponding Levi-Civita connection. Using V, we can define the map
dV: QP(M, TM) — QPYL(M,TM) similarly to the standard exterior deriva-
tive, as follows

p+1

A7 (Vi Vo) = D (=1, (604, Voo Vo))

s=1
+Z(_1)S+t¢ ([YS)YH7}/17"'7)/;:97"'7?7}7"'7ylr?+1> :

s<t

Since for the Levi-Civita connection we have Y, Z] = VyZ — VY, one can
easily check that

p+l1

(d¥O) (Vi Y1) = D (1) (Vv ) (Yi,.. Yoo Ypur). (10)

s=1
Moreover, note that dV is related to the Riemann curvature by the formula

(dY)2¢(Ye, .. Yora) = Y (1) R(Yoq), Yo) (6(Ya), - - Yape2) -

o€Shs,,
For w € QF(M) and ¢ € QP(M, TM), we have
d¥ (wAg) = (dw)Ag + (—1) wA (dV¢) .
Note that for any vector field X € QY(M,TM), we get
dVX (Y) = VyX.

Hence, d¥X = VX. Thus we can think about V-parallel vector fields as a
generalization of harmonic functions. For any k-form w and any vector field
X, we get
L’Xw = VXLU + iVXw.

In other words

Vx=Lx—igvx. (11)
This equation suggests the following generalization of the covariant deriva-
tive. Namely, for ¢ € QP(M, T M) we define
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We get
w N\ ng =wA £¢) —wA idvqﬁ = Ew/\¢ — (—1>p+ki(dw)A¢ — (—1)piwAdV¢

p+k

= Ew/\d) - (_1>p+kidw/\¢+(—1)kw/\dv¢ = Ew/\d) - (_1> Z.dv(w/\gi))

that is,
w N ng = Vw/\qs. (13>

This equation is a generalization of the property

fVx=V;x

for the usual covariant derivative, where f € C*(M) and X € Q°(M,TM).

The Hodge codifferential is abstractly defined as the Hodge dual of the
operator d on €2. It is well known that given a local orthonormal frame X7,
..., X, onU C M, the following local expression for the codifferential holds

n

0= —ZiXtOvXt.

t=1

Since both iy, and V, are derivations of Q*(U), we see that ¢ is a differential
operator of order 2 on Q*(U), and thus also on 2*(M).

Let w € QP(M). Then [§,¢,] is a differential operator of order 1 and of
degree p — 1 on Q*(M). Thus it can be expressed in a unique way as a sum

€a+v¢5+i¢

for suitable (p—1)-form o, T M-valued (p—1)-form ¢, and T'M-valued (p+1)-
form . Our aim is to identify «, ¢ and v for a given w.
For w € QP(M), we define w? € "~Y(M,TM) and w¥ € QP(M,TM) by

n n

W =) (ix,w)AX; W =) (Vxw)AX,. (14)

t=1 t=1

It is easy to see that w? and w" do not depend on the choice of the orthonor-
mal frame X, ..., X,,. Therefore w” and wV are well-defined. By applying
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the contraction operator C to (14), we get
n

Clw?) =) ijw=0 (15)
CwY) = zn:iXtVth = —dw. (16)

t=1

Proposition 3. For any w € QF (M) , we have d¥ (w¥) + (dw)® = V.

Proof: Let X1, ..., X,, be an orthonormal frame on an open set U in M. By
definition of wY and the Leibniz rule for dV, we get
dv (w?) = zn: d (ix,w) AX; + (=1 zn: ix,wAVX,. (17)
Further, - o
(dw)™ = zn:iXt (dw) AX;. (18)

t=1
Note that for every 1 <t < n, we have

d (ith) + 1y, (dw) = ,Cth = Vth + 1y x,w.

Therefore, summing (17) with (18) we get
d¥ (W) + (dw)” =) VxwAXp + > ivx,wiX; + (-1 ixwAVX,
=1 =1 t=1

n
= wY + Z ivxtw/\Xt + (_1)p—1 Z ith/\VXt.
t=1 t=1
Let us denote the expression

n n
Z iVXtW/\Xt + (_1>p71 Z iXtCU/\VXt
t=1 t=1
by T. Since T = dV (w#) + (dw)® — WY, we see that T does not depend
on the choice of the orthonormal basis X7, ..., X,, and that T is a tensor
on M. Let x € M. Then there is an local orthonormal frame Xy, ..., X,
on an open neighbourhood of z such that (VX;), = 0 for every 1 <t < n.
Computing T, with respect to this basis, we see that T, = 0. Since x is an
arbitrary point of M, we see that T' = 0. u
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Let us define for every w € QP(M) the T'M-valued form

w® =dv (w#) + wV. (19)

Note that by Proposition 3 we can write it in two other ways
w® = 2dY (w#) + (dw)”, (20)
w® = 2wY — (dw)” . (21)

Now (15) and (16) give the following expression for dw in terms of w®
1
dw = —5 C(w?). (22)

We can now prove a formula for the commutator of the codifferential with
the left wedge multiplication by a k-form.

Theorem 4. Let w € QP(M). Then

[0, €] = €50 — Vs — (—1)Pi,v. (23)
Or, using the Lie derivative instead of the covariant derivative,

[0, €0] = €50 — Low — (1) ig0. (24)
Proof: Let X be a vector field and w € QP (M). Then

lixoVx,e,] =lix,e]oVx +ixo[Vyx, el
= €xwVX T ixevyw
= €,wVx + ix, evyw] + (—1)Pev wix
= Viyurx + €ixvyw + (1) evyuix
= €ixVxw + Vigurx + (—=1)"iv wnx.
Now (23) follows by substituting X; instead of X and summing up over t.
Since w? € QP~L (M, TM), from (12) we get
Vit = Lot — (=17 Vigery = Lo + (1) igv(o)-
Therefore
[0, €] = €5 — Lot — (1) (igv(wr) + iwv) -

As a corollary we can get Formula (4) in Goldberg’s article [9].
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Corollary 5. Let £ be a vector field on a Riemannian manifold M, and n
its metric dual 1-form. Then n° = (L¢g)¥, that is

{0, €p} + Le = €5y + i(reg)# (25)

where {—, —} denotes the anti-commutator of operators and (Leg)* is the
metric contraction of the (0,2)-tensor Leg.

Proof: We have to check that dVn® +nV = (L¢g)#. Since n* = &, we have
for any vector field Y

(@) (V) = (dYE)(Y) = VyE = ) g(X;, Vy€) Xy, (26)
t=1
where X1, ..., X,, is a local orthonormal frame on M. Further,
N (Y) =) (Vxm)(Y)Xi =D g(Vx&Y)Xe (27)
t=1 t=1

It is well known that

(Leg)(Y, Z) = 9(VvE, Z) + g(&, V), (28)
for any vector fields &, Y and Z. Therefore, adding (26) and (27), we get

(dVE+n")(Y) = D (Leg) (X, V) Xy = (Leg)* (V).
|

Let S be a set of differential forms on M. We will denote by S* the set
of vector valued forms w#, where w € S. Further we write QZS#(M ) for the

intersection of the kernels of operators L 4, w € S. We have the following
theorem that generalizes several known facts.

Theorem 6. Let (M, g) be a compact Riemannian manifold. Suppose S C
(M) is such that [0,e,] + Lo# = 0 for all w € S. Then the inclusion
J: QZS#(M) — (M) is a quasi-isomorphism of CDGAs.
Proof: Let w € S. Since [0, ¢,] + L+ = 0 and 6% = 0, we get that

[0, L] = —[6,]6,€,]] = 0.

Since the Hodge Laplacian A is the graded commutator of d and ¢, we have
also that [A, L] = 0.
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Let 8 be a harmonic p-form. We are going to show that € QZZS#(M ).
This will imply by Hodge theory that 7 induces a surjection in cohomology.
Since [A, L #] = 0 for all w € S, we get immediately, that A(L#3) =0, i.e.
L.+ is harmonic. But, since [ is closed, we have L _x0 = di#( is an exact
form. Thus by Hodge theory, L 40 = 0.

It is left to show that j induces an injection in cohomology. Let § €
Qﬁs#(M) such that [#] = 0 in HP(M). Then § = dG6S3, where G is the
Green operator for A. We are going to show that G653 € QZZ:S#(M). For this,
it is enough to prove that £ +G = GL_# for every w € S. In fact, then

L+G00 =GoL+0 =0, Vw € S.
We have
I — GA =1, I — AG =14, (29)

where I is the orthogonal projection on the set of harmonic forms. Now we
multiply the equation £ +A = AL # by G on the left and right hand sides.
We get

GL+AG = GAL +G.

Applying (29) we obtain
GL # — GL #1Ix = L 4G — TIAL +G. (30)

As we saw above, £ 4 annihilates harmonic forms, hence £ «IIn = 0. To
finish the proof it is enough to check that IIaL,+ = 0. Let a € QF(M). By
Hodge theory, we can write a as ag + aa + a4, where o is in the image of ¢,
ayq is in the image of d, and aa is harmonic. Note that £_saa = 0. Further,
L #ag = £di sy, where the sign depends on the degree of w. In particular,
L #ayq is exact, and therefore IIaL #ay = 0. Finally, since [0, €,] + L4 = 0,
we get
L w5 = —[5, GW]OQ; = —5((.0 A Oz(;).

Hence, £ x5 is a coexact form and thus IIaL xzas = 0. u

The previous theorem shows the importance of the property [d, w]+L 4 = 0
for a differential form w. In the following theorem we characterize all the
forms with this property.

Theorem 7. Let (M, g) be a Riemannian manifold and w a p-form on M,
with p > 1. Then

[5, Ew] +L#=0
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iof and only if one of the following conditions holds

(i) p =1 and w” is a Killing vector field;
(17) p > 2 and w is parallel.

Proof: Let us consider first the case p = 1. Suppose & = w™ is Killing. Then
L¢g = 0. By Corollary 5, we have

W = (Leg)* = 0.
Applying (22), we get dw = —2 C(w®) = 0. By (25), we obtain that {8, e, } +

Le = 0.
Now, suppose that {9, e,} + L¢ = 0. Then from (25)

€50 + i(ﬁgg)# = 0. (31)

Applying (31) to the constant function with the value 1, we get dw = 0. Thus
i(cegp# = 0. By Theorem 1, we have L¢g = 0, and thus ¢ is a Killing vector
field.

Now suppose p > 2 and Vw = 0. Then, by looking at defining formulae
one readily sees that dw = 0, dw = 0, and w¥ = 0. Thus, by (24) we get that
[5, Ew] + L+ =0.

Finally, suppose that [0, €,] + L, # = 0. Then, by (24) we have

€50 — (—1)Pi o = 0. (32)

Applying (32) to the constant function 1, we get that dw = 0. Therefore
i,o = 0 and, by Theorem 1, we have w® = 0. Using (21) and (14), we obtain

n n

0=w’= Z 2Vx,wAX; — Zixtw/\Xt = Z(vatw —ix,dw) N Xy,

t=1 t=1 t=1

where X1, ..., X,, is a local orthonormal frame on M. Since Xy, ..., X, are
linearly independent at every point, we obtain that

2Vx,w = ix,dw

for all . But this implies
2V w = izdw (33)

for every vector field Z.
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Let Yp, ..., Y, be vector fields. Then, by using (33) we get

A~

(—1)*(2Vyw) (Yo, ..., V..., V)

I
NE

2(dw)(Yo, ..., Y,)

»
I
jen)}

(—1)*(iy,dw) (Yo, . .., Vs, ..., Y))

I
NE

i
e

I
NE

(dw) (Yo, ..., Y,) = (p+ Ddw(Yy, ..., Y)).

|
=

S

Since p # 1, we obtain dw = 0. Now (33) implies Vw = 0. |

4. Locally conformal Kahler manifolds

In this section, we show how Theorem 4 works in the context of locally
conformal Kéhler manifolds.

Let (M*"*2 g) be a Riemannian manifold and J a complex structure on M.
Then (M, J, g) is called Hermitian if g(J X, JY) = g(X,Y) for all vector fields
X, Y on M. For an Hermitian manifold (M, J, g), we define its fundamental
2-form Q by Q(X,Y) = g(X,JY). Thus Q¥ = J. An Hermitian manifold
(M, J, g) is called locally conformal Kdhler (l.c.K.) if there exists a 1-form 6
(called the Lee form) such that

dSl =60 N Q.

We are going to apply Theorem 4 to w = €2. For this we have to compute
Q¢ and 6. We define = i;6. It is proved in [5, Corollary 1.1] that
1
(VxJ)Y =3 (n(Y)X —0(Y)JX — g(X,Y)n" —Q(X,Y)07).
Thus

dVIJ(X,)Y)=(VxJ)Y — (VyJ)X
_ % (V)X = 0(Y)JX — n(X)Y +0(X)JY — 20(X,Y)0%)

1
T2

(—(nAId)(X,Y) + (OAT)(X,Y)) — (QAOF) (X, Y).

Hence, we get

1
dvVJ = 5(0AT —nAld) — QAOT.
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Using the definition of #, it is easy to check that
(d)* = (0 AQ)F = QAT — ONQT = QAIT — OAJ. (34)
Thus by (20)
OV =2aVJ + (dQ)" = —nAld — QNG (35)
Moreover, due to (15), by contracting (34) we get
C(QAGT) = C(ONT)

Hence by (22), we obtain from (35)
1 1 1
00 = -2 C(Q0) = S (CyAId) + C(QAGT)) = 5 (CALd) + C(OAT)).
Using (7), we have

CnpAld) = = C(Id)n +ian = —(2n+ 2)n+n = —(2n + 1)n,
CONT) =—=C(J)0+ 1,0 =n.
Therefore
1
o) = 5(77 — (2n+1)n) = —nn.

Applying Theorem 4, we get the following formula that in a sense generalizes
Equation (3) which holds for Kéahler manifolds.

Theorem 8. Let (M, J,g) be a locally conformal Kdhler manifold. Let €
be the fundamental 2-form, 6 the Lee 1-form, and n = 1;0. Then, for any
p-form (3 we have

0, €] 8= (p—n)n A\ B— LB+ QNigf. (36)

5. Quasi-Sasakian manifolds

In this section we will show how Theorem 4 can be used to get useful
formulae for commutators on quasi-Sasakian manifolds.

An almost contact metric structure on a manifold M?**! is a quadruple
(¢,&,m,9), where ¢ is an endomorphism of T'M, £ is a vector field, n is a
1-form, and ¢ is a Riemannian metric such that

¢* = -ld+n®¢, n(§) =1,
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for any vector fields X and Y. As a consequence, one easily gets that ¢(£) = 0
and n o ¢ = 0. We define an almost complex structure J on M x R by

7(x.75) = (ox — sen(x) %),

where f is a smooth function on M x R. If J is integrable, the almost contact
metric structure (¢, &,n, g) on M is called normal. We define a 2-form & by

O(X,Y) =g(X,0Y), for any X, Y € X(M).

A normal almost contact metric structure (¢,&,n,¢9) on M is called quasi-
Sasakian if ® is closed.

Let (M1 ¢,£,n, g) be a quasi-Sasakian manifold. We define
A:=—¢oVE.

We are going to apply Theorem 4 to w = ®. For this we have to compute
®#, ®°. and 6®. From the definition of ®, we have that ®# = ¢. Since ® is
closed, from (20), we get

d¥ =24V .
In [11] it was shown that
(Vx9)Y =n(Y)AX — g(AX,Y)E, g(AX,Y) = g(X, AY).
Thus by (10), we have

(dVe)(X,Y) = (Vxo)(Y) — (Vyo)(X)
=n(Y)AX — g(AX,Y)§ —n(X)AY + g(X, AY)§

= —(nAA)(X,Y).
Therefore
OO = —2AA. (37)
Further by (22)
5 — —% C(00) = C(nAA). (38)

By (7), we have
C(nAA) = —nAC(A) +ian = — C(A)n + ian. (39)
Since A = —¢ o V& and n o ¢ = 0, combining (38) and (39), we finally get
I = —C(A)n.
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Thus by Theorem 4 and (37), we have

[5, €<I>] = —€c(A)n — /ng) + 204

Since A is an endomorphism of T'M, we actually have C(A) = tr(A). Hence
we have proved the following result.

Theorem 9. Let (M, ¢,€,n,9) be a quasi-Sasakian manifold. Then
0, €] = —tr(A)e, — Ly + 26,0 4. (40)

The most important examples of quasi-Sasakian manifolds are co-Kahler
manifolds (see [2]) and Sasakian manifolds (see [1]). For every co-Kéhler
manifold, one has V& = 0 and thus A = 0. Therefore in co-Kéhler case, we
get

9, €a] = — Ly,
which could also have been achieved by using the fact that ¢ is parallel on a
co-Kahler manifold and Theorem 7.

For Sasakian manifold, one has V& = —¢, and thus A = ¢? = —Id + nAE.

Therefore tr A = —2n in this case. Applying Theorem 9, we get

[5, €¢] = 27”&677 — Lo + 2677(—i1d + Enif)

41
= 27”&677 - ,C¢ — 2677i1d. ( )

The formula (41) was first proved by Fujitani in [8] by complicated compu-
tation in local coordinates. This formula was crucial for some proofs in our
recent article [3] on Hard Lefschetz Theorem for Sasakian manifolds. We
hope that Theorem 9 will permit us to find a suitable generalization of Hard
Lefschetz Theorem for quasi-Sasakian manifold.
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