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GENERALIZED GOLDBERG FORMULA

ANTONIO DE NICOLA AND IVAN YUDIN

Abstract: In this paper we prove a useful formula for the graded commutator
of the Hodge codifferential with the left wedge multiplication by a fixed p-form
acting on the de Rham algebra of a Riemannian manifold. Our formula generalizes
a formula stated by Samuel I. Goldberg for the case of 1-forms. As first examples
of application we obtain new identities on locally conformal Kähler manifolds and
quasi-Sasakian manifolds.

1. Introduction

Since the early days of Differential Geometry it became apparent the impor-
tance of formulae that relate various differential objects on a manifold. Let
us mention among others Bianchi identities, Weitzenböck formula, Frölicher-
Nijenhuis calculus. It should be noted that all the above results can be
obtained by elementary, although tedious and long, computations. Their
importance lies in the psychological/practical plane, as they permit to work
with the quantities in question without undergoing into error-prone calcula-
tions, thus forming a swiss-knife kit of a differential geometer. In this article
we prove a formula that we hope will deserve its place in the kit.

Let (M, g) be a Riemannian manifold. As usual, Ω∗(M) denotes the de
Rham algebra of differential forms on M and δ : Ω∗(M) → Ω∗−1(M) the
Hodge codifferential. Given a k-form ω, we denote by ǫω the operator on
Ω∗(M) defined by ǫωθ = ω∧ θ, for every θ ∈ Ωl(M). In Theorem 4, we prove
the following expression for the graded commutator of δ with ǫω in terms of
Frölicher-Nijenhuis operators

[δ, ǫω] = ǫδω − Lω# − (−1)p iω♦. (1)

Here, ω# ∈ Ωk−1(M,TM) denotes the vector valued form obtained from
ω ∈ Ωk(M) by metric contraction and ω♦ ∈ Ωk(M,TM) is a vector valued
k-form defined in Section 3.
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2 A. DE NICOLA AND I. YUDIN

Let ξ be a vector field and η its metric dual 1-form. In Corollary 5 we show
that in this case Formula (1) takes the form

{δ, ǫη} + Lξ = ǫδη + i(Lξg)#, (2)

where the curly bracket denotes the anticommutator. Equation (2) was
stated by Goldberg in [9] and on page 109 of [10]. In both cases, Gold-
berg refrained from explicitly proving this result. Nevertheless, he proved a
partial case of (2) on pages 110-111 of [10] under the condition that ξ gener-
ates a flow of conformal transformations. The absence of a published proof
can be one of the causes that Equation (2) is not widely known.

Let us give a simple example of use of (1). Let (M, g, J) be a Kähler
manifold and let Ω(X, Y ) = g(X, JY ) be its fundamental 2-form. Then
Ω# = J is parallel and Ω is closed and coclosed. One gets easily that the
associated vector valued 2-form Ω♦ vanishes (see equation (21)). Thus (1)
becomes

[δ, ǫΩ] + LJ = 0. (3)

This is of course a well-known formula in Kähler geometry, but usually it
takes several pages of local computations to prove it.

In Theorem 6 we show the importance of the condition

[δ, ǫω] + Lω# = 0 (4)

for a p-form ω. Namely, we prove that if (4) holds for all ω ∈ S, where S is
subset of Ω∗(M), then the subalgebra

Ω∗
L

S#
(M) := { β | Lω#β = 0, ω ∈ S}

of Ω∗(M) is quasi-isomorphic to Ω∗(M) as CDGA, with the quasi-isomorphism
given by the embedding. Note that in the case M is Kähler manifold, this
quasi-isomorphism is the first step in the proof of formality of Kähler mani-
folds given in [4]. Employing Formula (1), in Theorem 7 we give a complete
characterization of all forms ω that satisfy (4).

In Section 4 we consider the case of locally conformal Kähler manifolds. By
applying Formula (1), we get the following result which in a sense generalizes
Equation (3). Let (M,J, g) be a locally conformal Kähler manifolds with
fundamental 2-form Ω, Lee 1-form θ, and anti-Lee 1-form η. Then, for any
p-form β we have

[δ, ǫΩ]β = (p− n)η ∧ β −LJβ + Ω ∧ iθ#β. (5)
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Finally, in Section 5 we show how our formula works in the context of
quasi-Sasakian manifolds. In Theorem 9 we prove the following result. Let
(M,φ, ξ, η, g) be a quasi-Sasakian manifold and let A := −φ ◦ ∇ξ. Then

[δ, ǫΦ] = − tr(A)ǫη − Lφ + 2ǫηiA. (6)

The special case of Formula (6) for Sasakian manifolds was first proved by
Fujitani in [8] by complicated computation in local coordinates. This formula
was crucial for the proof of the main result in our recent article [3] on Hard
Lefschetz Theorem for Sasakian manifolds. We hope that (6) will allow us
to obtain a suitable generalization of Hard Lefschetz Theorem for quasi-
Sasakian manifold.

2. Preliminaries

In this section we remind some notions and results of Frölicher-Nijenhuis
calculus [6, 7] which will be used later. Let M be a smooth manifold of
dimension n. The direct sum Ω∗(M) :=

⊕n
k=1 Ωk(M) has a structure of a

commutative differential graded algebra (CDGA) with respect to the wedge
product ∧ and the exterior derivative d : Ωk(M) → Ωk+1(M). We write
Ωk(M,TM) for the space of skew-symmetric TM -valued k-forms on M .

Denote by Σm the permutation group on {1, . . . , m}. For k and s such that
k+ s = m, let Shk,s be the subset of (k, s)-shuffles in Σm. Thus for σ ∈ Shk,s,
we have

σ(1) < σ(2) < · · · < σ(k), σ(k + 1) < · · · < σ(k + s).

Let φ ∈ Ωp(M,TM). We define the operator iφ of degree p− 1 on Ω∗(M)
by

(iφω) (Y1, . . . , Yp+k−1) =
∑

σ∈Shp,k−1

(−1)σω
(
φ(Yσ(1), . . . , Yσ(p)), Yσ(p+1), . . . , Yσ(p+k−1)

)

where ω ∈ Ωk(M). The Lie derivative Lφ is an operator of degree p on Ω∗(M)
defined as the graded commutator [iφ, d].

We recall now the fundamental theorem of Frölicher-Nijenhuis calculus.

Theorem 1 ([7]). Let ∂ : Ω∗(M) → Ω∗(M) be a derivation of degree p.

Then there are unique φ ∈ Ωp(M,TM) and ψ ∈ Ωp+1(M,TM), such that

∂ = Lφ + iψ.

As a consequence of the above theorem, we get:

(i) If a TM -valued p-form φ is different from 0, then iφ 6= 0.
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(ii) If ∂ : Ω∗(M) → Ω∗(M) is a derivation such that [∂, d] = 0, then there is
a unique φ ∈ Ωp(M,TM), such that ∂ = Lφ.

For a k-form ω ∈ Ωk(M) and TM -valued p-form φ , we define the TM -
valued (p+ k)-form ω∧φ by

(ω∧φ) (Y1, . . . , Yp+k) =
∑

σ∈Shk,p

(−1)σω
(
Yσ(1), . . . , Yσ(k)

)
φ(Yσ(k+1), . . . , Yσ(k+p)).

Following [6], we will define the contraction (sometimes called trace) operator
C: Ωp(M,TM) → Ωp−1(M) as follows. Every φ ∈ Ωp(M,TM) can be written
locally as a finite sum

∑
i∈I ωi∧Xi, whereXi are vector fields and ωi ∈ Ωp(M).

Then

C(φ) :=
∑

i∈I

iXi
ωi.

One can check that C(φ) does not depend on the choice of the local presen-
tation for φ. We will use the following property [6, eq. (2.12)]

C(ω ∧ φ) = (−1)kω∧C(φ) + (−1)(k+1)piφω, (7)

for any ω ∈ Ωk(M) and φ ∈ Ωp(M,TM). Given ω ∈ Ωk(M), we define

ǫω : Ωp(M,TM) → Ωp+k(M,TM)

φ 7→ ω∧φ.

For an operator A : Ω∗(M) → Ω∗(M) and ω ∈ Ω∗(M) we abbreviate the
composition ǫω ◦ A by ω ∧A. It is easy to check that

ω ∧ iφ = iω∧φ. (8)

We will need the following fact.

Proposition 2. Let M be a smooth manifold, ω ∈ Ωk(M), and φ ∈ Ωp(M,TM).
Then,

ω ∧ Lφ = Lω∧φ − (−1)p+ki(dω)∧φ. (9)

Proof : The computation

Lω∧φ = [iω∧φ, d] = [ω ∧ iφ, d] = (−1)k+p(dω) ∧ iφ + ω ∧ Lφ.

proves the claim.
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3. Generalized Goldberg Formula

In this section we prove the main result of the article. Let M be a
smooth manifold equipped with a Riemannian metric g and let ∇ denote
the corresponding Levi-Civita connection. Using ∇, we can define the map
d∇ : Ωp(M,TM) → Ωp+1(M,TM) similarly to the standard exterior deriva-
tive, as follows

d∇φ (Y1, . . . , Yp+1) =

p+1∑

s=1

(−1)s−1∇Ys

(
φ(Y1, . . . , Ŷs, . . . , Yp+1)

)

+
∑

s<t

(−1)s+tφ
(
[Ys, Yt] , Y1, . . . , Ŷs, . . . , Ŷt, . . . , Yp+1

)
.

Since for the Levi-Civita connection we have [Y, Z] = ∇YZ −∇ZY, one can
easily check that

(d∇φ)(Y1, . . . , Yp+1) =

p+1∑

s=1

(−1)s+1(∇Ys
φ)(Y1, . . . , Ŷs, . . . , Yp+1). (10)

Moreover, note that d∇ is related to the Riemann curvature by the formula

(d∇)2φ(Y1, . . . , Yp+2) =
∑

σ∈Sh2,p

(−1)σR(Yσ(1), Yσ(2))
(
φ(Yσ(3), . . . , Yσ(p+2))

)
.

For ω ∈ Ωk(M) and φ ∈ Ωp(M,TM), we have

d∇ (ω∧φ) = (dω)∧φ+ (−1)kω∧
(
d∇φ

)
.

Note that for any vector field X ∈ Ω0(M,TM), we get

d∇X (Y ) = ∇YX.

Hence, d∇X = ∇X. Thus we can think about ∇-parallel vector fields as a
generalization of harmonic functions. For any k-form ω and any vector field
X, we get

LXω = ∇Xω + i∇Xω.

In other words

∇X = LX − id∇X . (11)

This equation suggests the following generalization of the covariant deriva-
tive. Namely, for φ ∈ Ωp(M,TM) we define

∇φ := Lφ − (−1)pid∇φ. (12)
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We get

ω ∧∇φ = ω ∧ Lφ − ω ∧ id∇φ = Lω∧φ − (−1)p+ki(dω)∧φ − (−1)piω∧d∇φ

= Lω∧φ − (−1)p+kidω∧φ+(−1)kω∧d∇φ = Lω∧φ − (−1)p+kid∇(ω∧φ)

that is,

ω ∧∇φ = ∇ω∧φ. (13)

This equation is a generalization of the property

f∇X = ∇fX

for the usual covariant derivative, where f ∈ C∞(M) and X ∈ Ω0(M,TM).
The Hodge codifferential is abstractly defined as the Hodge dual of the

operator d on Ω. It is well known that given a local orthonormal frame X1,
. . . , Xn on U ⊂M , the following local expression for the codifferential holds

δ = −
n∑

t=1

iXt
◦ ∇Xt

.

Since both iXt
and ∇Xt

are derivations of Ω∗(U), we see that δ is a differential
operator of order 2 on Ω∗(U), and thus also on Ω∗(M).

Let ω ∈ Ωp(M). Then [δ, ǫω] is a differential operator of order 1 and of
degree p− 1 on Ω∗(M). Thus it can be expressed in a unique way as a sum

ǫα + ∇φ + iψ

for suitable (p−1)-form α, TM -valued (p−1)-form φ, and TM -valued (p+1)-
form ψ. Our aim is to identify α, φ and ψ for a given ω.

For ω ∈ Ωp(M), we define ω# ∈ Ωp−1(M,TM) and ω∇ ∈ Ωp(M,TM) by

ω# =
n∑

t=1

(iXt
ω)∧Xt ω∇ =

n∑

t=1

(∇Xt
ω)∧Xt. (14)

It is easy to see that ω# and ω∇ do not depend on the choice of the orthonor-
mal frame X1, . . . , Xn. Therefore ω# and ω∇ are well-defined. By applying
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the contraction operator C to (14), we get

C(ω#) =
n∑

t=1

i2Xt
ω = 0 (15)

C(ω∇) =
n∑

t=1

iXt
∇Xt

ω = −δω. (16)

Proposition 3. For any ω ∈ Ωp (M) , we have d∇
(
ω#

)
+ (dω)# = ω∇.

Proof : Let X1, . . . , Xn be an orthonormal frame on an open set U in M . By
definition of ω∇ and the Leibniz rule for d∇, we get

d∇
(
ω#

)
=

n∑

t=1

d (iXt
ω)∧Xt + (−1)p−1

n∑

t=1

iXt
ω∧∇Xt. (17)

Further,

(dω)# =
n∑

t=1

iXt
(dω)∧Xt. (18)

Note that for every 1 ≤ t ≤ n, we have

d (iXt
ω) + iXt

(dω) = LXt
ω = ∇Xt

ω + i∇Xt
ω.

Therefore, summing (17) with (18) we get

d∇
(
ω#

)
+ (dω)# =

n∑

t=1

∇Xt
ω∧Xt +

n∑

t=1

i∇Xt
ω∧Xt + (−1)p−1

n∑

t=1

iXt
ω∧∇Xt

= ω∇ +
n∑

t=1

i∇Xt
ω∧Xt + (−1)p−1

n∑

t=1

iXt
ω∧∇Xt.

Let us denote the expression
n∑

t=1

i∇Xt
ω∧Xt + (−1)p−1

n∑

t=1

iXt
ω∧∇Xt

by T . Since T = d∇
(
ω#

)
+ (dω)# − ω∇, we see that T does not depend

on the choice of the orthonormal basis X1, . . . , Xn and that T is a tensor
on M . Let x ∈ M . Then there is an local orthonormal frame X1, . . . , Xn

on an open neighbourhood of x such that (∇Xt)x = 0 for every 1 ≤ t ≤ n.
Computing Tx with respect to this basis, we see that Tx = 0. Since x is an
arbitrary point of M , we see that T ≡ 0.
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Let us define for every ω ∈ Ωp(M) the TM -valued form

ω♦ = d∇
(
ω#

)
+ ω∇. (19)

Note that by Proposition 3 we can write it in two other ways

ω♦ = 2d∇
(
ω#

)
+ (dω)#

, (20)

ω♦ = 2ω∇ − (dω)#
. (21)

Now (15) and (16) give the following expression for δω in terms of ω♦

δω = −
1

2
C(ω♦). (22)

We can now prove a formula for the commutator of the codifferential with
the left wedge multiplication by a k-form.

Theorem 4. Let ω ∈ Ωp(M). Then

[δ, ǫω] = ǫδω −∇ω# − (−1)piω∇. (23)

Or, using the Lie derivative instead of the covariant derivative,

[δ, ǫω] = ǫδω − Lω# − (−1)p iω♦. (24)

Proof : Let X be a vector field and ω ∈ Ωp (M). Then

[iX ◦ ∇X , ǫω] = [iX , ǫω] ◦ ∇X + iX ◦ [∇X , ǫω]

= ǫiXω∇X + iXǫ∇Xω

= ǫiXω∇X + [iX , ǫ∇Xω] + (−1)pǫ∇XωiX

= ∇iXω∧X + ǫiX∇Xω + (−1)pǫ∇XωiX

= ǫiX∇Xω + ∇iXω∧X + (−1)pi∇Xω∧X .

Now (23) follows by substituting Xt instead of X and summing up over t.
Since ω# ∈ Ωp−1 (M,TM), from (12) we get

∇ω# = Lω# − (−1)p−1
id∇(ω#) = Lω# + (−1)p id∇(ω#).

Therefore

[δ, ǫω] = ǫδω − Lω# − (−1)p
(
id∇(ω#) + iω∇

)
.

As a corollary we can get Formula (4) in Goldberg’s article [9].
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Corollary 5. Let ξ be a vector field on a Riemannian manifold M , and η

its metric dual 1-form. Then η♦ = (Lξg)
#, that is

{δ, ǫη} + Lξ = ǫδη + i(Lξg)#, (25)

where {−,−} denotes the anti-commutator of operators and (Lξg)
# is the

metric contraction of the (0, 2)-tensor Lξg.

Proof : We have to check that d∇η# + η∇ = (Lξg)
#. Since η# = ξ, we have

for any vector field Y

(d∇η#)(Y ) = (d∇ξ)(Y ) = ∇Y ξ =
n∑

t=1

g(Xt,∇Y ξ)Xt, (26)

where X1, . . . , Xn is a local orthonormal frame on M . Further,

η∇(Y ) =

n∑

t=1

(∇Xt
η)(Y )Xt =

n∑

t=1

g(∇Xt
ξ, Y )Xt. (27)

It is well known that

(Lξg)(Y, Z) = g(∇Y ξ, Z) + g(ξ,∇Zξ), (28)

for any vector fields ξ, Y and Z. Therefore, adding (26) and (27), we get

(d∇ξ + η∇)(Y ) =

n∑

t=1

(Lξg)(Xt, Y )Xt = (Lξg)
#(Y ).

Let S be a set of differential forms on M . We will denote by S# the set
of vector valued forms ω#, where ω ∈ S. Further we write Ω∗

L
S#

(M) for the

intersection of the kernels of operators Lω#, ω ∈ S. We have the following
theorem that generalizes several known facts.

Theorem 6. Let (M, g) be a compact Riemannian manifold. Suppose S ⊂
Ω∗(M) is such that [δ, ǫω] + Lω# = 0 for all ω ∈ S. Then the inclusion

j : Ω∗
L

S#
(M) →֒ Ω∗(M) is a quasi-isomorphism of CDGAs.

Proof : Let ω ∈ S. Since [δ, ǫω] + Lω# = 0 and δ2 = 0, we get that

[δ,Lω#] = −[δ, [δ, ǫω]] = 0.

Since the Hodge Laplacian ∆ is the graded commutator of d and δ, we have
also that [∆,Lω#] = 0.
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Let β be a harmonic p-form. We are going to show that β ∈ Ωp
L

S#
(M).

This will imply by Hodge theory that j induces a surjection in cohomology.
Since [∆,Lω#] = 0 for all ω ∈ S, we get immediately, that ∆(Lω#β) = 0, i.e.
Lω#β is harmonic. But, since β is closed, we have Lω#β = diω#β is an exact
form. Thus by Hodge theory, Lω#β = 0.

It is left to show that j induces an injection in cohomology. Let β ∈
Ωp

L
S#

(M) such that [β] = 0 in Hp(M). Then β = dGδβ, where G is the

Green operator for ∆. We are going to show that Gδβ ∈ Ωp
L

S#
(M). For this,

it is enough to prove that Lω#G = GLω# for every ω ∈ S. In fact, then

Lω#Gδβ = GδLω#β = 0, ∀ω ∈ S.

We have

I −G∆ = Π∆, I − ∆G = Π∆, (29)

where Π∆ is the orthogonal projection on the set of harmonic forms. Now we
multiply the equation Lω#∆ = ∆Lω# by G on the left and right hand sides.
We get

GLω#∆G = G∆Lω#G.

Applying (29) we obtain

GLω# −GLω#Π∆ = Lω#G− Π∆Lω#G. (30)

As we saw above, Lω# annihilates harmonic forms, hence Lω#Π∆ = 0. To
finish the proof it is enough to check that Π∆Lω# = 0. Let α ∈ Ωk(M). By
Hodge theory, we can write α as αδ +α∆ +αd, where αδ is in the image of δ,
αd is in the image of d, and α∆ is harmonic. Note that Lω#α∆ = 0. Further,
Lω#αd = ±diω#αd, where the sign depends on the degree of ω. In particular,
Lω#αd is exact, and therefore Π∆Lω#αd = 0. Finally, since [δ, ǫω] + Lω# = 0,
we get

Lω#αδ = −[δ, ǫω]αδ = −δ(ω ∧ αδ).

Hence, Lω#αδ is a coexact form and thus Π∆Lω#αδ = 0.

The previous theorem shows the importance of the property [δ, ω]+Lω# = 0
for a differential form ω. In the following theorem we characterize all the
forms with this property.

Theorem 7. Let (M, g) be a Riemannian manifold and ω a p-form on M ,

with p ≥ 1. Then

[δ, ǫω] + Lω# = 0
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if and only if one of the following conditions holds

(i) p = 1 and ω# is a Killing vector field;

(ii) p ≥ 2 and ω is parallel.

Proof : Let us consider first the case p = 1. Suppose ξ = ω# is Killing. Then
Lξg = 0. By Corollary 5, we have

ω♦ = (Lξg)
# = 0.

Applying (22), we get δω = −1
2 C(ω♦) = 0. By (25), we obtain that {δ, ǫω}+

Lξ = 0.
Now, suppose that {δ, ǫω} + Lξ = 0. Then from (25)

ǫδω + i(Lξg)# = 0. (31)

Applying (31) to the constant function with the value 1, we get δω = 0. Thus
i(Lξg)# = 0. By Theorem 1, we have Lξg = 0, and thus ξ is a Killing vector
field.

Now suppose p ≥ 2 and ∇ω = 0. Then, by looking at defining formulae
one readily sees that δω = 0, dω = 0, and ω∇ = 0. Thus, by (24) we get that
[δ, ǫω] + Lω# = 0.

Finally, suppose that [δ, ǫω] + Lω# = 0. Then, by (24) we have

ǫδω − (−1)piω♦ = 0. (32)

Applying (32) to the constant function 1, we get that δω = 0. Therefore
iω♦ = 0 and, by Theorem 1, we have ω♦ = 0. Using (21) and (14), we obtain

0 = ω♦ =

n∑

t=1

2∇Xt
ω∧Xt −

n∑

t=1

iXt
ω∧Xt =

n∑

t=1

(2∇Xt
ω − iXt

dω)∧Xt,

where X1, . . . , Xn is a local orthonormal frame on M . Since X1, . . . , Xn are
linearly independent at every point, we obtain that

2∇Xt
ω = iXt

dω

for all t. But this implies

2∇Zω = iZdω (33)

for every vector field Z.
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Let Y0, . . . , Yp be vector fields. Then, by using (33) we get

2(dω)(Y0, . . . , Yp) =

p∑

s=0

(−1)s(2∇Ys
ω)(Y0, . . . , Ŷs, . . . , Yp)

=

p∑

s=0

(−1)s(iYs
dω)(Y0, . . . , Ŷs, . . . , Yp)

=

p∑

s=0

(dω)(Y0, . . . , Yp) = (p+ 1)dω(Y0, . . . , Yp).

Since p 6= 1, we obtain dω = 0. Now (33) implies ∇ω = 0.

4. Locally conformal Kähler manifolds

In this section, we show how Theorem 4 works in the context of locally
conformal Kähler manifolds.

Let (M2n+2, g) be a Riemannian manifold and J a complex structure on M .
Then (M,J, g) is called Hermitian if g(JX, JY ) = g(X, Y ) for all vector fields
X, Y on M . For an Hermitian manifold (M,J, g), we define its fundamental

2-form Ω by Ω(X, Y ) = g(X, JY ). Thus Ω# = J . An Hermitian manifold
(M,J, g) is called locally conformal Kähler (l.c.K.) if there exists a 1-form θ

(called the Lee form) such that

dΩ = θ ∧ Ω.

We are going to apply Theorem 4 to ω = Ω. For this we have to compute
Ω♦ and δΩ. We define η = iJθ. It is proved in [5, Corollary 1.1] that

(∇XJ)Y =
1

2

(
η(Y )X − θ(Y )JX − g(X, Y )η# − Ω(X, Y )θ#

)
.

Thus

d∇J(X, Y ) = (∇XJ)Y − (∇Y J)X

=
1

2

(
η(Y )X − θ(Y )JX − η(X)Y + θ(X)JY − 2Ω(X, Y )θ#

)

=
1

2
(−(η∧Id)(X, Y ) + (θ∧J)(X, Y )) − (Ω∧θ#)(X, Y ).

Hence, we get

d∇J =
1

2
(θ∧J − η∧Id) − Ω∧θ#.
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Using the definition of #, it is easy to check that

(dΩ)# = (θ ∧ Ω)# = Ω∧θ# − θ∧Ω# = Ω∧θ# − θ∧J. (34)

Thus by (20)

Ω♦ = 2d∇J + (dΩ)# = −η∧Id − Ω∧θ#. (35)

Moreover, due to (15), by contracting (34) we get

C(Ω∧θ#) = C(θ∧J)

Hence by (22), we obtain from (35)

δΩ = −
1

2
C(Ω♦) =

1

2
(C(η∧Id) + C(Ω∧θ#)) =

1

2
(C(η∧Id) + C(θ∧J)).

Using (7), we have

C(η∧Id) = −C(Id)η + iIdη = −(2n+ 2)η + η = −(2n+ 1)η,

C(θ∧J) = −C(J)θ + iJθ = η.

Therefore

δΩ =
1

2
(η − (2n+ 1)η) = −nη.

Applying Theorem 4, we get the following formula that in a sense generalizes
Equation (3) which holds for Kähler manifolds.

Theorem 8. Let (M,J, g) be a locally conformal Kähler manifold. Let Ω
be the fundamental 2-form, θ the Lee 1-form, and η = iJθ. Then, for any

p-form β we have

[δ, ǫΩ]β = (p− n)η ∧ β −LJβ + Ω ∧ iθ#β. (36)

5. Quasi-Sasakian manifolds

In this section we will show how Theorem 4 can be used to get useful
formulae for commutators on quasi-Sasakian manifolds.

An almost contact metric structure on a manifold M2n+1 is a quadruple
(φ, ξ, η, g), where φ is an endomorphism of TM , ξ is a vector field, η is a
1-form, and g is a Riemannian metric such that

φ2 = −Id + η ⊗ ξ, η(ξ) = 1,

g(φX, Y ) = −g(X, φY ), η(X) = g(X, ξ),
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for any vector fieldsX and Y . As a consequence, one easily gets that φ(ξ) = 0
and η ◦ φ = 0. We define an almost complex structure J on M × R by

J
(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where f is a smooth function on M×R. If J is integrable, the almost contact
metric structure (φ, ξ, η, g) on M is called normal. We define a 2-form Φ by

Φ(X, Y ) = g(X, φY ), for any X, Y ∈ X(M).

A normal almost contact metric structure (φ, ξ, η, g) on M is called quasi-

Sasakian if Φ is closed.
Let (M2n+1, φ, ξ, η, g) be a quasi-Sasakian manifold. We define

A := −φ ◦ ∇ξ.

We are going to apply Theorem 4 to ω = Φ. For this we have to compute
Φ#, Φ♦, and δΦ. From the definition of Φ, we have that Φ# = φ. Since Φ is
closed, from (20), we get

Φ♦ = 2d∇φ.

In [11] it was shown that

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, g(AX, Y ) = g(X,AY ).

Thus by (10), we have

(d∇φ)(X, Y ) = (∇Xφ)(Y ) − (∇Yφ)(X)

= η(Y )AX − g(AX, Y )ξ − η(X)AY + g(X,AY )ξ

= −(η∧A)(X, Y ).

Therefore

Φ♦ = −2η∧A. (37)

Further by (22)

δΦ = −
1

2
C(Φ♦) = C(η∧A). (38)

By (7), we have

C(η∧A) = −η∧C(A) + iAη = −C(A)η + iAη. (39)

Since A = −φ ◦ ∇ξ and η ◦ φ = 0, combining (38) and (39), we finally get

δΦ = −C(A)η.
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Thus by Theorem 4 and (37), we have

[δ, ǫΦ] = −ǫC(A)η −Lφ + i2η∧A.

Since A is an endomorphism of TM , we actually have C(A) = tr(A). Hence
we have proved the following result.

Theorem 9. Let (M,φ, ξ, η, g) be a quasi-Sasakian manifold. Then

[δ, ǫΦ] = − tr(A)ǫη − Lφ + 2ǫηiA. (40)

The most important examples of quasi-Sasakian manifolds are co-Kähler
manifolds (see [2]) and Sasakian manifolds (see [1]). For every co-Kähler
manifold, one has ∇ξ = 0 and thus A = 0. Therefore in co-Kähler case, we
get

[δ, ǫΦ] = −Lφ,

which could also have been achieved by using the fact that φ is parallel on a
co-Kähler manifold and Theorem 7.

For Sasakian manifold, one has ∇ξ = −φ, and thus A = φ2 = −Id + η∧ξ.
Therefore trA = −2n in this case. Applying Theorem 9, we get

[δ, ǫφ] = 2nǫη − LΦ + 2ǫη(−iId + ǫηiξ)

= 2nǫη − Lφ − 2ǫηiId.
(41)

The formula (41) was first proved by Fujitani in [8] by complicated compu-
tation in local coordinates. This formula was crucial for some proofs in our
recent article [3] on Hard Lefschetz Theorem for Sasakian manifolds. We
hope that Theorem 9 will permit us to find a suitable generalization of Hard
Lefschetz Theorem for quasi-Sasakian manifold.
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