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Keywords: Orthogonal polynomials; Semi-classical class; Freud weights; Laguerre-
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1.Motivation and preliminary results

Symmetric orthogonal polynomials on the real line, {Pn(x) = xn+ . . . }n≥0,
are characterized in terms of the three term recurrence relation

Pn+1(x) = xPn(x)− γnPn−1(x) , n = 0, 1, . . . , (1)

with P−1(x) = 0, P0(x) = 1. The parameters γn, known as recurrence
relation coefficients, satisfy γn 6= 0, n ≥ 1. Integrating with respect to the
orthogonality measure, µ, gives us the representation

γn =
1

hn

∫

I

xPnPn−1(x)dµ(x) , hn =

∫

I

P 2
n−1(x)dµ(x) , n ≥ 1 .

Here, I is the support of µ.
A very well-known class of symmetric orthogonal polynomials is the one

related to semi-classical weights, characterized through a differential equation
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known as Pearson equation [19],

1

w(x)

d

dx
w(x) =

C(x)

A(x)
,

with the property of symmetry in w. A systematic study of symmetric semi-
classical weights and the corresponding orthogonal polynomials, began with
G. Freud in the 1970’s (see [18]). Weights of the form

w(x) = exp(−Q(x)) ,

with Q an even, non-negative and continuous real valued function defined
on the real line (satisfying certain conditions involving its first and second
derivatives), are nowadays commonly known as Freud-type weights. The
cases Q(x) = |x|m, m ∈ N, have been extensively studied, main references
and results can be found in the introduction section of [11]. A common
topic of research concerns the derivation and study of the systems of non-
linear difference equations satisfied by the recurrence relation coefficients of
the corresponding orthogonal polynomials. These systems of recurrences are
known, at least since the works of A.P. Magnus [22, 23] as the Laguerre-Freud
equations (see also [5, 20]).
The Laguerre-Freud equations for orthogonal polynomials related to semi-

classical weights are often identified with discrete forms of Painlevé equations
[31]. Early examples of such identification concern the weight studied by G.
Freud [18],

w(x, t) = exp(−x4 + tx2) , x ∈ R , (2)

where t is a parameter, and the case t = 0 in (2), studied by J. Shohat in
[29]. Here, the Laguerre Freud equations are 4γn(γn−1 + γn + γn+1 −

t
2
) =

n, n = 1, 2, . . . , which are a form of dPI (see [2, 17]). Many other exam-
ples of discrete Painlevé equations for the recurrence relation coefficients of
orthogonal polynomials have been studied (see [6, 14, 16, 24]). Applications
of Laguerre-Freud equations to the study of asymptotics for the orthogonal
polynomials, properties of zeroes, estimates for derivatives, inequalities, etc,
can be found in a vast list of references (see, amongst many others, [2, 11, 32]
and its lists of references).
In this paper we shall consider extensions of semi-classical orthogonal poly-

nomials. We will take the family of Laguerre-Hahn orthogonal polynomials
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[13, 21, 26, 33], that is, the sequences of orthogonal polynomials whose Stielt-
jes function satisfies a Riccati type differential equation with polynomial co-
efficients,

AS ′ = BS2 + CS +D , A 6= 0 , (3)

where A,B, C,D are co-prime. On a general setting, S is the formal moment
generating function, defined through the asymptotic expansion

S(x) =

+∞
∑

n=0

unx
−n−1 , (4)

given the moments (un)n≥0 of the orthogonalitymeasure. Here, we take, with-
out loss of generality, the normalized sequence of moments, that is, u0 = 1
[33]. The Laguerre-Hahn families of orthogonal polynomials include, as spe-
cial cases, the semi-classical orthogonal polynomials as well as their standard
modifications [12, 33]. The semi-classical case appears whenever B ≡ 0 in
(3).
The study of Laguerre-Freud equations for Laguerre-Hahn orthogonal poly-

nomials has been done for several instances of the polynomials A,B, C,D in
(3) (see [1, 7, 14, 15, 28]). In this paper we focus on the symmetric class two,
that is, we take s = 2 in [1, Prop. 3.1], thus, we consider the symmetric case
under the bounds

max {deg(C)− 1,max{deg(A), deg(B)} − 2} = 2 (5)

in equation (3). In the symmetric case, the moments in (4) satisfy u2n−1 =
0, n ≥ 1. We shall take sequences of monic orthogonal polynomials, Pn(x) =
xn+ lower degree terms, n ≥ 0, satisfying (1), and we denote them by SMOP.
We also consider the sequence of associated polynomials of the first kind,

{P
(1)
n }n≥0, satisfying a three-term recurrence relation

P (1)
n (x) = xP

(1)
n−1(x)− γnP

(1)
n−2(x) , n = 1, 2, ... (6)

with P
(1)
−1 (x) = 0, P

(1)
0 (x) = 1. Combining the recurrence relations (1) and

(6) in the matrix form, yields

Yn = AnYn−1 , Yn =

[

Pn+1 P
(1)
n

Pn P
(1)
n−1

]

, An =

[

x −γn
1 0

]

, n ≥ 1 ,

with initial conditions

Y0 =

[

x 1
1 0

]

. (7)



4 G. FILIPUK AND M.N. REBOCHO

With the matrices Yn defined above, the SMOP related to the Riccati equa-
tion (3), AS ′ = BS2 + CS +D, satisfy differential systems that can be put
into the matrix form as the matrix Sylvester equation [8],

AY ′
n = BnYn − YnC , n ≥ 0 , (8)

where C =

[

C/2 −D
B −C/2

]

and the matrices Bn are defined in terms of poly-

nomials ln,Θn of uniformly bounded degrees,

Bn =

[

ln Θn

−Θn−1/γn ln−1 + xΘn−1/γn

]

, n ≥ 1 , B0 =

[

l0 Θ0

−Θ−1 l−1 + xΘ−1

]

,

(9)
where, in the account of (7), the following initial conditions hold:

Θ−1 = D , Θ0 = A+ x(C/2− l0) +B , (10)

l−1 = C/2 , l0 = −C/2− xD . (11)

Furthermore, combining the recurrence relation (1) with the differential sys-
tem (8) yields the Lax pair

{

Yn = AnYn−1 ,

AY ′
n = BnYn − YnC ,

and, consequently, we get the compatibility conditions for the matrices An,

AA′
n = BnAn −AnBn−1 , n ≥ 1 . (12)

In turn, equations (12) yield the following identities:

trBn = 0 , n ≥ 0 , (13)

detBn = detB0 + A
n

∑

k=1

Θk−1

γk
, n ≥ 1 , (14)

where detB0 = D(A+ B)− (C/2)2.
Let us emphasize that the Sylvester equations (8) can be regarded as an

extension of the differential systems for semi-classical orthogonal polynomials
in [24, Eq. 17]. Equation (14) is the analogue of A.P. Magnus’ summation
formula [24, Eq. 20].
The differential systems enclosed by (12), together with the identities (13)

and (14), will be our main tools to deduce difference equations for the recur-
rence coefficients γn as well as for other relevant coefficients of the orthogonal
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polynomials related to the Riccati equation (3). Let us also emphasize that,
in the semi-classical case (B ≡ 0 in (3)), other methods to get the differ-
ence equations for the recurrence coefficients are available, for instance, the
Ladder Operator technique [4, Section 4], and the Riemann-Hilbert method
[6, 32].
The reminder of the paper is organized as follows. In Section 2 we deduce

recurrences involving the coefficients γn. We stress the results in Theorems
4 and 5, where we deduce discrete Painlevé equations when deg(A) = 0
and deg(A) = 2; it is deduced a d-PI and d-PII, respectively. In section
3 we give applications of the previous results, we show examples related to
semi-classical as well as to non semi-classical orthogonal polynomials.

2. The symmetric Laguerre-Hahn class two

2.1. Fundamental quantities. In this section we derive fundamental quan-
tities to be used throughout the paper.
Henceforth we will use the following convention: if i > j, then

∑j
i · = 0.

Taking into account the recurrence relations (1) and (6), we obtain the
expansions given in the following lemma.

Lemma 1. Let {Pn}n≥0 be a symmetric SMOP. The following expansions
hold, for all n ≥ 1:

Pn+1(x) = xn+1 + p1(n+ 1)xn−1 + pn+1,n−3x
n−3 + . . . , (15)

P (1)
n (x) = xn + νnx

n−2 + p
(1)
n,n−4x

n−4 + . . . , (16)

with

p1(n+ 1) = −
n

∑

k=1

γk , p1(1) = 0 , νn = −
n

∑

k=2

γk , (17)

and

pn+1,n−3 = γ1γ3 +
n

∑

k=4

γk(γ1 + · · ·+ γk−2) , n ≥ 3 , (18)

p
(1)
n,n−4 = γ2γ4 +

n
∑

k=5

γk(γ2 + · · ·+ γk−2) , n ≥ 4 . (19)

Also, the following relation holds:

pn+1,n−3 = −γ1(γ1 + γ2)− γ1p1(n+ 1) + p
(1)
n,n−4 . (20)
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Recall that throughout the paper we are considering the Riccati equation
AS ′ = BS2+CS+D in the symmetric setting with the sequence of moments
(un) normalized, that is, u2n−1 = 0, ≥ 1, u0 = 1. Let the bounds (5) hold.
According to [1, Prop. 3.1], A,B must be even, and C odd. Let us write

A(x) = a4x
4 + a2x

2 + a0 , B(x) = b4x
4 + b2x

2 + b0 , (21)

C(x) = c3x
3 + c1x , D(x) = d2x

2 + d0 . (22)

The polynomial D is defined in terms of A,B, C as follows:

d2 = −a4 − b4 − c3 , d0 = −a2 − b2 − c1 − γ1(3a4 + 2b4 + c3) . (23)

The data from (23) is obtained by equating coefficients of xn+3 and xn+1,
respectively, from the equation enclosed in position (1, 2) from (8),

A
(

P (1)
n

)′

= (ln + C/2)P (1)
n +ΘnP

(1)
n−1 +DPn+1 . (24)

Indeed, d2 is determined once we use ln,3 given by (25) and d0 is determined
once we use ln,1 given by (26).
Furthermore, the parameter γ1 is related to the moment of order two.

Indeed, the coefficient of x0 in (3) gives us, in the account of the asymptotic
expansion (4) with u0 = 1, d0 = −a2 − b2 − c1 − (3a4 + 2b4 + c3)u2. This,
combined with d0 given in (23), yields γ1 = u2.

Lemma 2. Let S be a Stieltjes function satisfying AS ′ = BS2+CS+D with
A,B, C,D given as in (21)–(22), with D given through (23). Let {Pn}n≥0

be the symmetric SMOP associated with S, satisfying the recurrence relation
Pn+1(x) = xPn(x) − γnPn−1(x) , n = 0, 1, 2, . . . . The polynomials ln,Θn in
(9) are defined by

ln(x) = ln,3x
3 + ln,1x , Θn(x) = Θn,2x

2 +Θn,0 .

where, for all n ≥ 1,

ln,3 = (n+ 1)a4 + b4 + c3/2 , (25)

ln,1 = −2a4p1(n+ 1) + (n+ 1)a2 + λ−Θn,2 , (26)

Θn,2

γn+1
= −((2n+ 3)a4 + µ) , (27)

Θn,0 = −γnΘn,2 − 2a2p1(n+ 1) + 2a4p
2
1(n+ 1)− 4a4pn+1,n−3

+(n+ 1)a0 + τ , (28)
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where

λ = γ1b4 + b2 + c1/2 , µ = 2b4 + c3 , τ = b4(γ1 + γ2)γ1 + b2γ1 + b0 . (29)

Alternatively, Θn,0 is given, for all n ≥ 1, by

Θn,0

γn+1
= 4a4p1(n+1)− (2n+3)a2−2λ− ((2n+5)a4+µ)(γn+2+γn+1) . (30)

Also, we have the initial conditions

l0,3 = a4 + b4 +
c3
2
, l0,1 = a2 + b2 +

c1
2
+ (3a4 + 2b4 + c3)γ1 , (31)

Θ0,2

γ1
= −3a4 − 2b4 − c3 , (32)

Θ0,0

γ1
= −3a2 − 2b2 − c1 − (5a4 + c3 + 3b4)γ1 − (5a4 + µ)γ2 . (33)

Proof : Take the condition enclosed by position (1, 1) in (8),

AP ′
n+1 = (ln − C/2)Pn+1 +ΘnPn −BP (1)

n . (34)

For all n ≥ 1, the coefficient of xn+4 gives us (25). The coefficient of xn+3

gives us
ln,2 = 0 , n ≥ 0 . (35)

For all n ≥ 1, the coefficient of xn+2 gives us (26). The coefficient of xn+1

gives us
ln,0 = −Θn,1 , n ≥ 0 . (36)

For all n ≥ 1, the coefficient of xn gives us (28).
On the other hand, let us take (13) for n ≥ 1. It reads

ln(x) + ln−1(x) + x
Θn−1(x)

γn
= 0 , n ≥ 1 . (37)

The coefficient of x2 in (37) gives us, in the account of (35),

Θn−1,1

γn
= 0, n ≥ 1 .

Therefore, from (36), we obtain

ln,0 = 0 , n ≥ 0 .

The coefficient of x3 in (37) yields ln,3+ ln−1,3+
Θn−1,2

γn
= 0, from which we

get (27).
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The alternative form for Θn,0 is obtained from the coefficient of x in (37),

ln,1 + ln−1,1 +
Θn−1,0

γn
= 0, from which we get (30).

To obtain (31), we use l0 = −C/2− xD (cf. (11)), thus we get

l0,3 = −
c3
2
− d2 , l0,1 = −

c1
2
− d0 , (38)

which gives the required identities.
To get (32) and (33) we use (37) with n = 1, hence,

Θ0,2

γ1
= −l1,3 − l0,3 ,

Θ0,0

γ1
= −l1,1 − l0,1 , (39)

which gives the required identities.

Lemma 3. Let the previous notations hold. The coefficients γ2 and γ3 are
defined in terms of γ1 through the following equations:

a0 + b0
γ1

= −3a2 − 2b2 − c1 − (5a4 + c3 + 3b4)γ1 − (5a4 + µ)γ2 , (40)

((−4a4 − 2b4)γ1 − 5a2 − 2b2 − c1 − (7a4 + µ)(γ3 + γ2))γ2 = a0 + γ1d0.

(41)

Proof : From (10) we get Θ0,0 = a0 + b0, which we combine with (33), thus
getting (40).
Taking n = 1 in equation (24) and equating the independent term, we get

a0 = Θ1,0 − d0γ1. Thus, we get (41).

Remark . Alternatively, (40) can be obtained as follows: the coefficient of
xn in (34) and the coefficient of xn−1 in (24) give us, respectively, after
computations where we use (20),

γnΘn,2 +Θn,0 = −2a2p1(n+ 1) + 2a4p
2
1(n+ 1)

−4a4pn+1,n−3 + (n+ 1)a0 + τ ,(42)

γnΘn,2 +Θn,0 = −2a2p1(n+ 1) + 2a4p
2
1(n+ 1)

−4a4pn+1,n−3 + na0 + τ̃ , (43)

with

τ = b4(γ1 + γ2)γ1 + b2γ1 + b0,

τ̃ = −(3a2 + b2 + c1 + (5a4 + c3 + 2b4)γ1 + (5a4 + c3 + b4)γ2)γ1 .

Equating (42) with (43), we get a0 + τ = τ̃ , thus obtaining (40).
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2.2. Difference equations for γn and p1(n).

Theorem 1. Let S be a Stieltjes function satisfying AS ′ = BS2+CS+D with
A,B, C,D given as in (21)–(22), with D given through (23). Let {Pn}n≥0 be
the symmetric SMOP associated with S, satisfying the recurrence relation (1),
Pn+1(x) = xPn(x) − γnPn−1(x) , n = 0, 1, 2, . . . . Let the previous notations
hold. The recurrence coefficients γn satisfy the following equation:

γn+1Tn+1 = γnTn−1 + a0 , n ≥ 2 , (44)

with

Tn = 4a4p1(n)− (2n+ 1)a2 − 2λ− ((2n+ 3)a4 + µ)(γn+1 + γn) , n ≥ 2 ,

and the initial condition T1 =
Θ0,0

γ1
. The quantities λ, µ are given in (29).

Proof : The independent term of the equation enclosed in position (1, 1) of
(12), that is,

A = x(ln − ln−1) + Θn − γn
Θn−2

γn−1
, (45)

gives us

a0 = Θn,0 − γn
Θn−2,0

γn−1
. (46)

Hence, we have

a0 = γn+1Tn+1 − γnTn−1 ,

with the identification Tn =
Θn−1,0

γn
, with

Θn−1,0

γn
given by (30).

Corollary 1. Take a0 = 0 in Theorem 1. The quantities Tn satisfy

Tn+1Tn =
γ2T2T1

γn+1
, n ≥ 2 . (47)

Proof : If a0 = 0, then from (44) we get

γn+1Tn+1Tn = γnTnTn−1 , n ≥ 2 .

Iteration gives us

γn+1Tn+1Tn = γ2T2T1 .

Thus, we get (47).
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Corollary 2. The recurrence coefficients γn may be determined recursively
through the following equation:

γn+2 =
−a0 + Enγn+1 − Fnγn
((2n+ 5)a4 + µ)γn+1

, n ≥ 2 , (48)

γ3 = −γ2 −
(a0 + γ1d0)/γ2 + (4a4 + 2b4)γ1 + 5a2 + 2b2 + c1

7a4 + µ
,

γ2 = −
(a0 + b0)/γ1 + (5a4 + c3 + 3b4)γ1 + 3a2 + 2b2 + c1

5a4 + µ
,

with

En = 4a4p1(n+ 1)− (2n+ 3)a2 − 2λ− ((2n+ 5)a4 + µ)γn+1 , (49)

Fn = 4a4p1(n− 1)− (2n− 1)a2 − 2λ− ((2n+ 1)a4 + µ)(γn + γn−1) . (50)

Proof : Solving (44) for γn+2 gives us (48). The coefficients γ2 and γ3 are
given from (40) and (41).

Corollary 3. If a4 6= 0, the coefficient p1(n) is determined in terms of
γn+2, γn+1, γn, γn−1 through the following equation:

p1(n) =
a0 +Gnγn+1 −Hnγn

4a4(γn+1 − γn)
, n ≥ 2 , (51)

with

Gn = 4a4γn + (2n+ 3)a2 + 2λ+ ((2n+ 5)a4 + µ)(γn+2 + γn+1) , (52)

Hn = −4a4γn−1 + (2n− 1)a2 + 2λ+ ((2n+ 1)a4 + µ)(γn + γn−1). (53)

Furthermore, we have:

p1(n− 1) =
a0 + G̃nγn+1 − H̃nγn

4a4(γn+1 − γn)
, n ≥ 2 , (54)

with
G̃n = Gn + 4a4γn−1 , H̃n = Hn + 4a4γn−1. (55)

Proof : Using p1(n + 1) = p1(n) − γn and p1(n − 1) = p1(n) + γn−1 in (44)
and solving for p1(n) we get (51).
Using p1(n+ 1) = p1(n− 1)− γn−1 − γn in (44) and solving for p1(n− 1)

we get (54).

Doing the shift n → n − 1 in (51) and equating to (54) we get a fourth
order difference equation for γn, as stated in the following corollary.
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Corollary 4. The recurrence coefficients γn satisfy the fourth order difference
equation

γn+2 =
F(γn+1, γn, γn−1, γn−2)

((2n+ 5)a4 + µ)γn+1(γn−1 − γn)
, n ≥ 2 ,

with

F(γn+1, γn, γn−1, γn−2) = −a0(γn+1 − 2γn + γn−1)

+ γn+1γn [2a4γn+1 − ((2n− 1)a4 + µ)γn + 2a2]

+γn+1γn−1 [−((2n+ 5)a4 + µ)γn+1 − 4a4γn + ((2n− 5)a4 + µ)(γn−1 + γn−2)− 6a2]

+ γ2
n [((2n+ 3)a4 + µ)γn+1 + 2a4γn − ((2n− 3)a4 + µ)γn−1 + 2a2]

+ γnγn−1 [((2n+ 1)a4 + µ)γn + 2a4γn−1 − ((2n− 5)a4 + µ)γn−2 + 2a2] .

Theorem 2. Let S be a Stieltjes function satisfying AS ′ = BS2+CS+D with
A,B, C,D given as in (21)–(22), with D given through (23). Let {Pn}n≥0 be
the symmetric SMOP associated with S, satisfying the recurrence relation (1),
Pn+1(x) = xPn(x) − γnPn−1(x) , n = 0, 1, 2, . . . . Let the previous notations
hold, as well as

µn = (2n+ 1)a4 + µ , λn = (2n+ 1)a2 + 2λ ,

where λ and µ are given in (29). The coefficients p1(n) given in (17) satisfy
the following quadratic equations:

4a34 p
2
1(n+ 1) + Bn+1p1(n+ 1) + Cn+1 = 0 , (56)

16a34γn+1 p
2
1(n+ 1) + B̃n+1p1(n+ 1) + C̃n+1 = 0 , (57)

where

Bn+1 = 4a4

[

a2

(c3
2
+ b4

)

− a4λ+ a4µnγn+1

]

, (58)

Cn+1 = −a4 [µnµn+2γn+2 + µnµn+2γn+1 + µn+1µn−1γn

+µnλn+1] γn+1 + τn , (59)

B̃n+1 = 4a4
[

−a4µn+2γn+2γn+1 − a4(µn+1 + µn+2)γ
2
n+1

+a4(4a4 − µn+1)γn+1γn − a4(λn + λn+1)γn+1 − a0ln,3] , (60)

C̃n+1 = γn+1 [a4(λn+1 + µn+2(γn+2 + γn+1))(λn + µn+1γn+1 + µn−1γn)

+µn+1(2a0ln,3 + a0µn)] + τ̃n , (61)
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where

τn = (a4ξ0,2 − a2ξ0,4) + (a0a4 − a22)

(

Θ0,2

γ1
− (n− 1)((n+ 3)a4 + µ)

)

− ((n+ 1)a2 + λ) (a4((n+ 1)a2 − λ) + a2µ) ,

τ̃n = 2a0ln,3((n+1)a2+λ)+a0ξ0,4−a4ξ0,0+a0a2

(

Θ0,2

γ1
− (n− 1)((n+ 3)a4 + µ)

)

.

Here, ξ0,j denotes the coefficient of xj in detB0.

Proof : Take the coefficients of x4, x2 and x0 in (14), i.e., in equation

−l2n(x) + Θn(x)
Θn−1(x)

γn
= detB0 +A

n
∑

k=1

Θk−1

γk
, n ≥ 1 . (62)

We get, respectively,

−2ln,1ln,3 +Θn,2
Θn−1,2

γn
= ξ0,4 + a4

n
∑

k=1

Θk−1,0

γk
+ a2

n
∑

k=1

Θk−1,2

γk
, (63)

−l2n,1 +Θn,2
Θn−1,0

γn
+Θn,0

Θn−1,2

γn
= ξ0,2 + a2

n
∑

k=1

Θk−1,0

γk
+ a0

n
∑

k=1

Θk−1,2

γk
,(64)

Θn,0
Θn−1,0

γn
= ξ0,0 + a0

n
∑

k=1

Θk−1,0

γk
. (65)

Eliminating
∑n

k=1
Θk−1,0

γk
between (63) and (64), and using the data from

Lemma 2, we get, after simplifications, (56). Eliminating
∑n

k=1
Θk−1,0

γk
between

(63) and (65), and using the data from Lemma 2, we get, after simplifications,
(57).

Theorem 3. Let the notations and conditions of Theorem 2 hold. The re-
currence coefficients γn satisfy the following second order difference equation:

3
∑

p=0

6
∑

q=0

3
∑

r=0

cp,q,rγ
p
nγ

q
n+1γ

r
n+2 = 0 . (66)

Proof : Eliminating the quadratic term between (56) and (57), we get

p1(n+ 1) =
C̃n+1 − 4γn+1Cn+1

4γn+1Bn+1 − B̃n+1

,
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from which we obtain, by substitution into (56), the equation

4a34(C̃n+1 − 4γn+1Cn+1)
2 +Bn+1

(

C̃n+1 − 4γn+1Cn+1

)(

4γn+1Bn+1 − B̃n+1

)

+ Cn+1(4γn+1Bn+1 − B̃n+1)
2 = 0 .

Therefore, we obtain (66) with coefficients cp,q,r defined in terms of λn, µn, τn,
and τ̃n.

2.3. Difference equations of the Painlevé type. In this subsection we
derive difference equations of the Painlevé type for symmetric Laguerre-Hahn
orthogonal polynomials of class two. The fundamental tools are the identities
for the trace and determinant given by (13) and (14). Recall these identities
reading as (37) and (62), respectively:

ln(x) + ln−1(x) + x
Θn−1(x)

γn
= 0 , n ≥ 0 ,

−l2n(x) + Θn(x)
Θn−1(x)

γn
= detB0 +A

n
∑

k=1

Θk−1

γk
, n ≥ 1 .

In what follows we consider the cases deg(A) = 0 and deg(A) = 2 in the
Riccati equation AS ′ = BS2 + CS + D. Without loss of generality, the
polynomial A will be taken as monic.

Theorem 4. Let S be a Stieltjes function satisfying AS ′ = BS2 + CS +D
with

A(x) = 1 , B(x) = b4x
4+b2x

2+b0 , C(x) = c3x
3+c1x , D(x) = d2x

2+d0 ,
(67)

with d2, d0 given in (23). Let {Pn}n≥0 be the symmetric SMOP associated
with S, satisfying the recurrence relation Pn+1(x) = xPn(x)−γnPn−1(x), n =
0, 1, 2, . . . . The coefficients γn satisfy the discrete Painlevé I equation

γn (µ(γn−1 + γn + γn+1) + 2λ) = −n− τ , n ≥ 1 , (68)

with λ, µ, τ given in (29),

λ = γ1b4 + b2 + c1/2 , µ = 2b4 + c3 , τ = b4(γ1 + γ2)γ1 + b2γ1 + b0 .

Proof : From Lemma 2, we have

ln,1 = λ−Θn,2 , Θn,0 = −γnΘn,2 + n+ 1 + τ , Θn,2 = −µγn+1 ,
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with λ, µ, τ given in (29). Using these equalities into the relation that follows
from the linear term in the equation for the trace (37),

ln,1 + ln−1,1 +
Θn−1,0

γn
= 0 , (69)

we obtain (68).

Theorem 5. Let S be a Stieltjes function satisfying AS ′ = BS2 + CS +D
with

A(x) = x2+a0 , B(x) = b4x
4+b2x

2+b0 , C(x) = c3x
3+c1x , D(x) = d2x

2+d0 ,
(70)

with d2, d0 given in (23). Let {Pn}n≥0 be the symmetric SMOP associated
with S, satisfying the recurrence relation Pn+1(x) = xPn(x)−γnPn−1(x), n =
0, 1, 2, . . . .
If

4(a0b2 − b0)d0 = a30µ
2 − 4a20µ(1 + λ)− 4a0(d2(a0 + b0)− c21/4) , (71)

where λ = γ1b4 + b2 + c1/2, µ = 2b4 + c3, then the expression xn = n + 1 +
λ+ µγn+1 −

µa0
2 satisfies the discrete Painlevé II equation

(xn−1 + xn)(xn + xn+1) =
−4x2

n

(λ̂xn + zn)
, n ≥ 1 , (72)

with λ̂ = 4
µa0

, zn = 2− 4(n+1+λ)
µa0

.

Proof : The independent term in the equation for the determinant (62) gives
us

n
∑

k=1

Θk−1,0

γk
=

1

a0

(

γn+1
Θn,0

γn+1

Θn−1,0

γn
− ξ0,0

)

.

Using the equation above as well as Θn,2 = −µγn+1, n ≥ 0, into the coefficient
of the quadratic term of (62),

−l2n,1 +Θn,2
Θn−1,0

γn
+Θn,0

Θn−1,2

γn
= ξ0,2 + a2

n
∑

k=1

Θk−1,0

γk
+ a0

n
∑

k=1

Θk−1,2

γk
,

we obtain, after some computations,

−a0l
2
n,1 − κn = µa0γn+1

(

Θn−1,0

γn
+

Θn,0

γn+1

)

+ γn+1
Θn,0

γn+1

Θn−1,0

γn
,
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with κn = a0ξ0,2 − µa20n− ξ0,0. Thus, we have

γn+1(µa0)
2 − a0l

2
n,1 − κn = γn+1

(

Θn−1,0

γn
+ µa0

)(

Θn,0

γn+1
+ µa0

)

. (73)

Taking into account that

ln,1 = n+ 1 + λ+ µγn+1 , (74)

the left hand side of (73) is quadratic in γn+1. Due to condition (71), the left
hand side of (73) factorizes as

−a0µ
2(γn+1 + εn)

2 ,

with εn =
2(n+ 1 + λ)− µa0

2µ
.

Hence, we have

−a0µ
2(γn+1 + εn)

2 = γn+1

(

Θn−1,0

γn
+ µa0

)(

Θn,0

γn+1
+ µa0

)

. (75)

Now we use the identities

γn+1 =
ln,1 − (n+ 1 + λ)

µ
, −(ln,1 + ln−1,1) =

Θn−1,0

γn

(cf.(74) and (69)) into (75), thus obtaining

(

ln,1 −
µa0
2

)2

=
(ln,1 − (n+ 1 + λ))

−µa0

((

ln+1,1 −
µa0
2

)

+
(

ln,1 −
µa0
2

))

×
((

ln,1 −
µa0
2

)

+
(

ln−1,1 −
µa0
2

))

.

With the identification xn = ln,1 −
µa0
2

, the previous equation is written as

(xn+1 + xn)(xn + xn−1)(λ̃xn + z̃n) = x2
n ,

with λ̃ = − 1
µa0

, z̃n = n+1+λ−(µa0)/2
µa0

. Hence, we get the discrete Painlevé II

(xn+1 + xn)(xn + xn−1) =
−4x2

n

(λ̂xn + zn)
,

with λ̂ = 4
µa0

, zn = 2− 4(n+1+λ)
µa0

.

Remark . If no cancellations occur, condition (71) yields conditions on γ1
(i.e, on the normalized moment of order two) for the Painlevé equation to
hold.
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3. Examples

A way of generating orthogonal polynomials with respect to a symmetric
measure is doing a quadratic transformation from the weights related to
the classical orthogonal polynomials (see [9]). Some of such transformations
falling into the class two are given in the following examples.

3.1. Example 1. Let us take the modified Freud weight [18, 29],

w(x, t) = exp(−x4 + tx2) , x ∈ R . (76)

Here, t is a parameter, which, in some contexts, is interpreted as the time
variable (see [24]).

w satisfies the Pearson equation
1

w

d

dx
w =

C

A
, where A(x) = 1, C(x) =

−4x3 + 2tx. Thus, in our previous notations,

a4 = a2 = 0 , a0 = 1 , c3 = −4 , c1 = 2t . (77)

We take the Stieltjes function related to w, satisfying AS ′ = CS +D, where
D(x) = d2x

2 + d0, with d2 = −a4 − c3, d0 = −a2 − c1 − (3a4 + c3)γ1. Thus,
we have

d2 = 4 , d0 = −2t+ 4γ1 ,

where γ1 is the normalized moment of order two,

γ1 =

∫

R
x2 exp(−x4 + tx2)dx

∫

R
exp(−x4 + tx2)dx

. (78)

In the account of the above data we have, from Lemma 2, λ = t, µ =
−4, τ = 0 . From Theorem 4, we have the following d-PI (see [17, 24]),

4γn

(

γn−1 + γn + γn+1 −
t

2

)

= n , n ≥ 1 , (79)

with initial conditions γ0 = 0 and γ1 given by (78).
Let us note that n = 1 in (79) is compatible with (40) provided γ0 = 0,

and n = 2 in (79) agrees with (41).

3.2. Example 2. Let us take the modified Hermite weight [3, 25],

w(x, a) = exp(−x2) , x ∈ I(a) =]−∞,−a] ∪ [a,+∞[ , (80)

where a is some positive real number.
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w satisfies the Pearson equation
1

w

d

dx
w =

C

A
, whereA(x) = x2−a2, C(x) =

−2x3 + 2a2x (see [3]). Thus, in our previous notations,

a4 = 0 , a2 = 1, a0 = −a2 , c3 = −2 , c1 = 2a2 . (81)

We take the Stieltjes function related to w, satisfying AS ′ = CS +D, where
D(x) = d2x

2 + d0, with d2 = −a4 − c3, d0 = −a2 − c1 − (3a4 + c3)γ1. Thus,
we have

d2 = 2 , d0 = −1− 2a2 + 2γ1 ,

where γ1 is the normalized moment of order two,

γ1 =

∫

I(a) x
2 exp(−x2)dx

∫

I(a) exp(−x2)dx
. (82)

The constants λ and µ in Theorem 5 are given by λ = a2, µ = −2. Note
that condition (71) holds. Therefore, the expression xn = n + 1 − 2γn+1

satisfies the following d-PII,

(xn−1 + xn)(xn + xn+1) =
−4x2

n

(λ̂xn + zn)
, n ≥ 1 , (83)

with λ̂ = 2
a2 , zn = −2(n+1)

a2 . Indeed, the formula (83) holds for n = 0, under
the initial conditions x−1 = 0, x0 = 1− 2γ1, where γ1 is given by (82).

3.3. Example 3. Let us take the modified Jacobi weight [4],

w(x, k) = (1− x2)α(1− k2x2)β , x ∈ [−1, 1], α > −1 , β ∈ R , k2 ∈]0, 1[ .
(84)

w satisfies the Pearson equation
1

w

d

dx
w =

C

A
, where A(x) = (x2 − 1)(x2 −

1/k2), C(x) = (2α+2β)x3+(−2α/k2−2β)x. Thus, in our previous notations,

a4 = 1 , a2 = −(1 + 1/k2) , a0 = 1/k2 , c3 = 2α+ 2β , c1 = −2α/k2 − 2β .

We take the Stieltjes function related to w, satisfying AS ′ = CS +D, where
D(x) = d2x

2 + d0, with d2 = −a4 − c3, d0 = −a2 − c1 − (3a4 + c3)γ1. Thus,
we have

d2 = −1− 2α− 2β , d0 = (1 + 1/k2) + 2α/k2 + 2β − (3 + 2α+ 2β)γ1 ,



18 G. FILIPUK AND M.N. REBOCHO

where γ1 is the normalized moment of order two,

γ1 =

∫ 1

−1 x
2(1− x2)α(1− k2x2)βdx

∫ 1

−1(1− x2)α(1− k2x2)βdx
. (85)

The coefficients γn of the SMOP related to (84) are governed by the dif-
ference equations described in Theorems 1 and 3, with b4 = b2 = b0 in all
formulae.

Remark . The difference equations given in Theorems 1 and 3 with B ≡ 0
were also derived in [4], using the ladder operator technique.

3.4. Further examples - non semi-classical orthogonal polynomi-

als. Let us now look at some examples of orthogonal polynomials not semi-
classical whose results from Section 2 apply.
Let us take the Stieltjes function related to the previous examples, satisfy-

ing the differential equation AS ′ = CS + D. We now consider the Stieltjes
function S(1) [33]

γ1S
(1)(x) = −

1

S(x)
+ x . (86)

S(1) is the Stieltjes function related to the associated polynomials of the first

kind, {P
(1)
n }n≥0. As S satisfies the linear differential equation AS ′ = CS+D,

then S(1) satisfies the Riccati equation

A1

(

S(1)
)′

= B1

(

S(1)
)2

+ C1S
(1) +D1 , (87)

with

A1 = A , B1 = γ1D , C1 = −(C+2xD) , D1 = (A+xC+x2D+B)/γ1 , (88)

Note that deg(D1) = 2. The degrees of the polynomials in (88) satisfy (5),

therefore, the sequences of orthogonal polynomials {P
(1)
n }n≥0 are Laguerre-

Hahn sequences of class two. The recurrence coefficients of {P
(1)
n }n≥0, satisfy

the difference equations given in Theorems 1 and 3, as well as in Theorems
4 and 5.
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[20] E. Laguerre, Sur la réduction en fractions continues d’une fraction qui satisfait à une équation
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[31] W. Van Assche, Discrete Painlevé equations for recurrence coefficients of orthogonal polyno-

mials. In: Elaydi S, Cushing J, Lasser R, Ruffing A, Papageorgiou V, Van Assche W, editors.
Difference equations, special functions and orthogonal polynomials. Hackensack, NJ: World
Scientific; 2007. pp. 687-725.

[32] R. Wong, L. Zhang, Global asymptotics of orthogonal polynomials associated with |x|2αeQ(x),
J. Approx. Theory 162 (2010) 723-765.

[33] A. Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl.
Math. 85 (1997), 67-86.

G. Filipuk

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2,

Warsaw, 02-097, Poland.

E-mail address : filipuk@mimuw.edu.pl

M.N. Rebocho
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