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VARIATIONAL MULTI-CHANNEL INPAINTING
AND DENOISING MODEL: EXISTENCE OF SOLUTION

AND NUMERICAL APPROXIMATION

ISABEL N. FIGUEIREDO AND MAHDI DODANGEH

Abstract: In this paper we propose a variational ”total variation like” inpainting
and denoising model, for multi-channel images, prove the existence and uniqueness
of its solution, and define and implement a numerical scheme for its solution. This
variational model includes, besides the data-fidelity term, an extension of the total
variation regularizer, appropriate for vector-valued images, aiming at reconstructing
sharp image edges, and also a smooth regularizer for removing noise. The proposed
numerical algorithm is an instance of the so-called alternating direction method of
multipliers, for fast image recovery, which transforms the discrete version of the
variational model into a constrained optimization problem, by using variable split-
ting. This constrained problem is subsequently solved by an augmented Lagrangian
approach. For assessing the method, tests are performed on real-world and good
quality color images, that are artificially damaged by adding noise and removing
randomly pixel values in the different image channels. In addition an experiment on
ab initio degraded medical image, corrupted with specular highlights, is also carried
out.
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1. Introduction
Image inpainting is a kind of interpolation procedure, which consists in

filling in missing parts of a degraded image, by using the information available
from the parts of the image that are complete and not damaged. Denoising
is an image processing technique, that aims to reduce noise (an imperfection
that degrades images and occurs during the acquisition of images), by means
of a smoothing procedure.

In this paper we propose a variational ”total variation like” model for
recovering incomplete and noisy multi-channel images. It is a minimization
problem, and like the total variation (TV ) inpainting model of [13], it includes
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a data fidelity term, that adjusts the ”searched good image” to the original
one, in the intact parts, plus a regularizing term which is an extension of
TV to vector-valued functions. In addition, in our model there is a second
regularizer for reducing noise (see the definition of the proposed model in
equation (1)).

There are several methods for restoring degraded images, and those based
on TV (see [6, 12] for seminal works on TV ) have proved to lead to superior
image restoration quality, in particular by reducing noise and blur, without
smearing the edges.

Here we use the ”Color TV” regularizer proposed in [3], for vector-valued
images, herein denoted by TV ext (see the definition in (5)). It is an extension
of TV . It reduces to the usual total variation, TV , in the case of a scalar
image, and it keeps the main properties of TV , namely preservation of edges
and rotation invariance. It also acts as a coupling among the channels,
that, and according to [3, formulas (7) and (8)]”takes the form of a global
channel-wise scaling of the diffusion coefficient, such that a channel with
larger TV will be smoothed more than a channel with with smaller TV....
and retains more detail in the weaker channels” (see the last equation in (25)
of this paper, where this statement becomes evident). Moreover, other works
existing on the literature report on the ability of this regularizer to recover
multi-channel images (for example, in remote sensing images cf. [7]).

The numerical method chosen to find the solution of the proposed model
relies on a suitable modification of a fast algorithm, introduced in [1], which
itself is an instance of the so-called alternating method of multipliers [9]. This
fast algorithm is appropriate for a variety of image restoration/reconstruction
problems, which are formulated by unconstrained optimization problems,
where the objective functional includes a data-fidelity term and a non-smooth
regularizer, as for instance the total variation. Basically, this algorithm de-
pends on a variable splitting technique, that transforms the unsconstrained
problem into a constrained one, which is afterwards solved with an augmented
Lagrangian technique.

We remark that in [7] the authors define a multi-channel nonlocal total
variation model for inpainting remote sensing images, which is solved by a
numerical procedure relying on a Split-Bregman type algorithm. However no
proof is provided for the existence and uniqueness of solution of the model,
neither for the convergence of the numerical method. We also refer to [15]
for the description and implementation of a fast algorithm for multi-channel
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image deblurring and denoising, where it is adopted another multi-channel
total variation regularizer, different from the one used in the current paper.

We finish this introduction with an outline of the paper. After this in-
troduction, in Section 2 we describe the model, introduce basic notations
and give the proof of existence and uniqueness of solution, in the continuous
setting. We also prove the existence of solution, for the same model but
without the regularizer for reducing noise, in a broader functional space. A
comparison of the two models, in the last Section, highlights the beneficial
importance of the regularizer for reducing noise. In Section 3 we recall the
background numerical methods, define the approximate problem in a finite
dimensional setting, and describe in detail the proposed numerical method.
Finally, in Section 4 we present the experiments performed on a variety of
color (RGB) images in order to evaluate the quality of the proposed model
and method.

2. Proposed Variational Model
Let f = (f1, . . . , fm) be a given multichannel image with channels fi : Ω→

R, i = 1, . . . ,m, where Ω ⊂ R2, is a square or a rectangle representing the
pixel domain. For an RGB image, m = 3 and f = (f1, f2, f3). The given
image f is in general noisy and incomplete. Let Ωi, for i = 1, . . . ,m, be the
part of the domain Ω where the given channel fi is known.

The proposed variational multi-channel model intends to restore the given
image, by simultaneously performing image denoising (a technique that con-
sists in improving the quality of the image by noise removal) and image
inpainting (a procedure which consists to filling the missing information in
Ω \ Ωi, for each channel i). Its definition is

min
u=(ui)mi=1

E(u), with

E(u) =
β

2

m∑
i=1

∫
Ω

ω2
i γi|ui − fi|2dx︸ ︷︷ ︸

fitting term

+µTV ext(u) +
α

2

m∑
i=1

∫
Ω

|∇ui|2dx︸ ︷︷ ︸
regularizing terms

. (1)

2.1. Basic notations. Before explaining the meaning of each term in (1),
we firstly recall the notations, basic terminology and definition for Sobolev
and BV (bounded variation) spaces. For the complete theory and proofs
associated to these preliminaries we refer for example to the books [2, 14].
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We denote Wm,p(Ω) the Sobolev spaces (1 ≤ p <∞, m = 0, 1, 2, . . .) whose
definition is Wm,p(Ω) = {v ∈ Lp(Ω) : ∂kj v ∈ Lp(Ω), k = 1, . . . ,m}, where

∂kj v means the weak partial derivative of v of order k, with respect to xj,
and x = (x1, x2) an arbitrary point in Ω. The space Lp(Ω) = {v : Ω →
R, v is Lesbegue measurable and‖v‖Lp(Ω) <∞}, with ‖v‖Lp(Ω) = (

∫
Ω v

p dx)
1
p .

We denote by BV (Ω) the space of functions v of bounded variation in Ω, that
is, the functions v ∈ L1(Ω), such that the total variation of v in Ω denoted by
|Dv|(Ω) and defined by |Dv|(Ω) = sup

{∫
Ω v divφ dx : φ ∈ C1

c (Ω;R2), |φ| < 1
}

is finite, where C1
c (Ω;R2) is the space of functions φ with continuous deriva-

tives until the order 1 and with compact support. We remark that v ∈
BV (Ω), if and only if, v ∈ L1(Ω) and Dv is a R2-valued Borel measure,
where Dv is defined by < Dv, φ >=

∫
Ω v divφ dx, that is, the gradient of v

in the distributional sense.
We recall that for a function v : Ω → R of bounded variation belonging

to L1(Ω), and denoting by Dv its gradient in the distributional sense, then
“
∫

Ω |∇v|” is the usual notation for the total mass |Dv|(Ω) =
∫

Ω |Dv| of the
total variation |Dv|, also denoted by “TV (v)”, of the measure Dv. This
notation “

∫
Ω |∇v|” is generally adopted, because whenever the gradient of

∇v = (∂1v, ∂2v) exists, or more precisely, when v ∈ W 1,1(Ω) then, |Dv|(Ω) =∫
Ω |∇v|dx (see [14, Definition 11, pages 26-27] or [2, Definition 10.1.1, pages

371-372]).
Moreover, we also recall that in the numerical approximations, a discrete

form of
∫

Ω |∇v| is always used. It is generally defined by ‖∇v‖1, that is,∫
Ω

|∇v| ≈ ‖∇v‖1 =
∑
j∈Ω

√
(∂1v)2

j + (∂2v)2
j , (2)

in which v ∈ Rn×n is the matrix representing the scalar image v at n×n points
in the pixel domain, the pair

(
∂1v, ∂2v

)
j
∈ R2 represents certain first-order

finite differences of v at pixel j in horizontal ((∂1v)j) and vertical ((∂2v)j)
directions, and the summation is taken over all pixels j = 1, . . . , , n× n.

2.2. Explanation of the Proposed Model. In formula (1),

• the unknown restored image is the vector-valued function u = (u1, . . . , um) :
Ω ⊂ R2 → Rm,
• α, β and µ are positive constants representing weights,
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• γi is the characteristic function of Ωi, a subdomain of Ω,

γi =

{
1, x ∈ Ωi ⊂ Ω,
0, x ∈ Ω \ Ωi,

i = 1, . . . ,m, (3)

• ωi, for i = 1, . . . ,m, is another weighting function, that involves an
edge detector function gi defined by

ω2
i (x) = 1− gi(x) ∈]0, 1] and gi(x) =

1

1 + ε|∇fi(x)|2
< 1, (4)

where ∇ is the gradient operator, and ε > 0 a parameter that adjusts
the strength of the edge,
• and finally TV ext(u) is the extended total variational (TV) norm for

color and other vector-valued images (or equivalently multi-channel
images), defined by

TV ext(u) =

√√√√ m∑
i=1

(
TV (ui)

)2

=

√√√√ m∑
i=1

[∫
Ω

|∇ui|
]2

. (5)

The fitting term in (1) obliges the restored image u = (u1, . . . , um) to be
close to its observation (the data f = (f1, . . . , fm) in the possible different
subdomains Ωi). The weighting function ωi is large near the edges (because
the edge detector g is large) and becomes smaller away from the edges (where
the edge detector is small). Consequently, with this definition for the fitting
term, in regions near the edges details are kept while regions far away from
the edges are smoothed more (see [11], where a similar weighting function
was used for defining a selective image segmentation model).

The two regularizing terms impose constraints to the solution u. Mainly
they play a vital role in reducing noise and in restoring the image in the
missing domains Ω \ Ωi, for i = 1, . . . ,m, by diffusion. The first regularizer,
the extended total variation, proposed in [3, Definition 2], couples the dif-
ferent channels, has the property of not penalizing discontinuities (edges) in
each channel, and is rotationally invariant (it is also a form of anisotropic
diffusion). The second regularizing term ensures also more smoothness of the
minimizer u.

2.3. Existence and Uniqueness of Solution. Notice that if, for each
i, fi ∈ [L2(Ω)]m, the integrand of the fitting term in (1) can be written as
|Aiui − f̄i|2, with f̄i = ω2

i γifi and Ai = ω2
i γiI : L2(Ω) → L2(Ω) a linear
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and bounded operator defined by Ai(v) = ω2
i γiv (I represents the identity

operator). Then, by defining f̄ = (f̄1, . . . , f̄m), A = (A1, . . . ,Am) and
−→
∇u =

(∇u1, . . . ,∇um) for any u ∈ [W 1,2(Ω)]m or u ∈ [BV (Ω)]m (where in this latter

case the notation
−→
∇u should be interpreted as |

−→
Du| = (|Du1|, . . . , |Dum|),

as explained before in section 2.1), there are two equivalent and alternative
forms for defining the energy function E(u) of the variational model (1),
which lead to the following equivalent formulations for model (1) :

min
u=(ui)mi=1

[
β

2

m∑
i=1

∫
Ω

|Aiui − f̄i|2dx+
α

2

m∑
i=1

∫
Ω

|∇ui|2dx+ µTV ext(u)

]

≡ min
u=(ui)mi=1

[
β

2

∫
Ω

‖Au− f̄‖2
Rmdx+

α

2

∫
Ω

‖
−→
∇u‖2

Rmdx+ µTV ext(u)

]
,

(6)

where ‖.‖Rm is the usual Euclidean norm in Rm.
Now, we prove firstly the existence and uniqueness of solution in the space

[W 1,2(Ω)]m. Afterwards, by keeping only the regularizer involving TV ext(u)
in the definition of E(u), we also prove the existence and uniqueness of
solution in the space [BV (Ω)]m

Theorem 2.1 (Minimizer in [W 1,2(Ω)]m). Let Ω be a bounded connected
open subset of R2 with a Lipschitz boundary. Let Ai : L2(Ω) → L2(Ω) be
bounded and linear, and, for each i ∈ {1, . . . ,m}, assume that
i) f̄i ∈ L2(Ω),
ii) inf

x∈ω
ωi(x) > 0 and ωmini ≤ ωi(x) ≤ ωmaxi , with ωmini and ωmaxi two positive

constants,
iii) Kern(Ai) ∩ Kern(∇) = {0}, where Kern(...) denotes the kernel of the
operator between brackets.

Then, the variational model (1) has a unique minimizer u ∈ [W 1,2(Ω)]m.

Proof : The proof relies on arguments of the same type of those used in [5,
Theorem 2.4] (see also [4]).

If the infimum of E is finite because E(u) ≥ 0 on [W 1,2(Ω)]m and by
choosing u = 0, then

0 ≤ inf
u∈[W 1,2(Ω)]m

E(u) ≤ E(0) =
β

2

m∑
i=1

∫
Ω

|f̄i|2dx <∞.

For proving the existence of a minimum of E we just need to show that E(u)
is coercive in [W 1,2(Ω)]m, that is, E(u) → +∞, when ‖u‖[W 1,2(Ω)]m → +∞,
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with

‖u‖[W 1,2(Ω)]m =

[
m∑
i=1

‖ui‖2
L2(Ω)

] 1
2

︸ ︷︷ ︸
‖u‖[L2(Ω)]m

+

[
m∑
i=1

‖∇ui‖2
L2(Ω)

] 1
2

︸ ︷︷ ︸
‖
−→
∇u‖[L2(Ω)]m

(7)

where ‖.‖L2(Ω) is the usual norm in L2(Ω). This statement is consequence of
the fact that [W 1,2(Ω)]m is a reflexive Banach space, and E(u) is convex and
lower semi-continuous (see for instance [10, Proposition 1.2] or [8, Théorème
8.2.-2, Remarques (1), (2)]). Clearly we have

‖
−→
∇u‖[L2(Ω)]m =

[
m∑
i=1

‖∇ui‖2
L2(Ω)

] 1
2

=

[
m∑
i=1

∫
Ω

|∇ui|2dx

] 1
2

≤
[

2

α
E(u)

] 1
2

, (8)

so it remains to show that ‖u‖[L2(Ω)]m is also bounded by [E(u)]
1
2 .

Using the Poincaré inequality on W 1,2(Ω), and (8), we have for each i,

‖ui − uΩ
i ‖L2(Ω) ≤ CΩ

i ‖∇ui‖L2(Ω) ≤ CΩ
i

[
2

α
E(u)

] 1
2

, with

uΩ
i =

1

|Ω|

∫
Ω

ui(x)dx.

(9)

Therefore setting uΩ = (uΩ
1 , . . . , u

Ω
m)

‖u− uΩ‖[L2(Ω)]m ≤ [CE(u)]
1
2 , where C =

2

α
(max

i
CΩ
i )2m. (10)

In addition we have that

‖AiuΩ
i ‖L2(Ω) = ‖ω2

i γiIu
Ω
i ‖L2(Ω) = |uΩ

i |
[∫

Ωi

w4
i dx

] 1
2

≥ |uΩ
i |(ωmini )2|Ωi|

1
2 (11)

and

0 ≤ β

2

∫
Ω

|Aiui − f̄i|2dx ≤ E(u) =⇒ ‖Aiui − f̄i‖L2(Ω) ≤
[

2

β
E(u)

] 1
2

. (12)

So, from (11), (12) and (10)

|uΩ
i |(ωmini )2|Ωi|

1
2 ≤ ‖AiuΩ

i ‖L2(Ω)

≤ ‖Aiui − f̄i‖L2(Ω) + ‖f̄i −Ai(ui − uΩ
i )‖L2(Ω)

≤
[

2
βE(u)

] 1
2

+ ‖f̄i‖L2(Ω) + [CE(u)]
1
2

(13)
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Finally from the triangular inequality

‖u‖[L2(Ω)]m ≤ ‖u− uΩ‖[L2(Ω)]m + ‖uΩ‖[L2(Ω)]m, (14)

noticing that ‖uΩ
i ‖L2(Ω) =

[∫
Ω |u

Ω
i |2dx

]1/2
=
[
|uΩ
i |2
∫

Ω 1dx
]1/2

= |uΩ
i ||Ω|

1
2 , and

using the estimates (10) and (13), we conclude by (14), that ‖u‖[L2(Ω)]m is

also bounded by a constant plus [E(u)]
1
2 times a constant. Therefore the

coercivity of E(u) is proved, as well as the existence of minimizer.
For proving the uniqueness we suppose that u and v are two different

minimizers. Due to the convexity of E we have the equality

E(θu+ (1− θ)v) = θE(u) + (1− θ)E(v), ∀θ ∈ (0, 1). (15)

In addition, because of the strict convexity of the two first terms of E, as
defined in (6), the following two equalities hold

m∑
i=1

β

2

∫
Ω

|Ai(θui + (1− θ)vi)− f̄i|2dx =

m∑
i=1

[
θβ

2

∫
Ω

|Aiui − f̄i|2dx+
(1− θ)β

2

∫
Ω

|Aivi − f̄i|2dx
]

m∑
i=1

α

2

∫
Ω

|∇(θui + (1− θ)vi)|2dx =

m∑
i=1

[
θα

2

∫
Ω

|∇ui|2dx+
(1− θ)α

2

∫
Ω

|∇vi|2dx
]
.

(16)

These two equations impose that Aiui = Aivi and ∇ui = ∇vi, respec-
tively (choosing for example θ = 1

2). Consequently, due to the assumption
Kern(Ai)∩Kern(∇) = {0}, which is obviously verified because Ai = ω2

i γiI,
we conclude that u = v.
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Theorem 2.2 (Minimizer in [BV (Ω)]m). Under the same hypothesis of the
previous Theorem 2.1, the following variational model with only one regular-
izer, the total variation TV ext(u), defined by

min
u∈[BV (Ω)m]

[
β

2

m∑
i=1

∫
Ω

|Aiui − f̄i|2dx+ µTV ext(u)

]

≡ min
u∈[BV (Ω)m]

[
β

2

∫
Ω

‖Au− f̄‖2
Rmdx+ µTV ext(u)

]
,

(17)

has a unique minimizer u ∈ [BV (Ω)]m.

Proof : - The statement follows by remarking that, the assumptions and proof
of existence and uniqueness of minimizer in the space BV (Ω) of [14, Theorem
26, page 54], can be extended to the cartesian space [BV (Ω)]m. In particular,
for our problem the function φ in [14, Theorem 26] is now defined by φ :

Rm → R+, with φ(z) = (|z1|2 + . . .+ |zm|2)
1
2 , and satisfies assumption H1 of

that Theorem 26.

3. Numerical Solutions and Convergence
We firstly recall in Section 3.1 some background methods, afterwards we

present the discrete setting of (6) and (17) in Section 3.2, and then we de-
scribe the numerical method for the approximate solution. We present in
detail all the steps of the proposed algorithm, in Sections 3.3 and Subsec-
tions 3.3.1 and 3.3.2, and finally in the last Subsection 3.3.3 we sum up the
global numerical method for the solution of (6) and (17).

3.1. Background Methods - ADMM and SALSA. The alternating
direction method of multipliers (ADMM) [9], appropriate to address the fol-
lowing abstract problem

min
u∈Rn

f1(u) + f2(Gu)

with G ∈ Rm×n, f1 : Rn → R, f2 : Rm → R.
(18)

Problem (18) is clearly equivalent to the following constrained optimization
reformulation

min
u∈Rn, v∈Rm

f1(u) + f2(v)

subject to Gu = v.
(19)

The ADMM applied to (19) is the following:
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Algorithm ADMM

(1) Set k = 0, choose ρ > 0, v0 and d0.
(2) repeat
(3) uk+1 ∈ argminu

(
f1(u) + ρ

2‖Gu− v
k − dk‖2

2

)
(4) vk+1 ∈ argminv

(
f2(v) + ρ

2‖Gu
k+1 − v − dk‖2

2

)
(5) dk+1 = dk − (Guk+1 − vk+1)
(6) k ← k + 1
(7) until stopping criterion is satisfied.

Above and hereafter, ‖.‖2 denotes the usual Euclidean norm, or 2−norm,
in the Euclidean space Rn.

The convergence of algorithm ADMM to problems of the form (18) is
demonstrated in [9]. We recall here that statement.

Theorem 3.1. [9, Theorem 8] Consider problem (18), where f1 and f2 are
closed, proper convex functions, and G ∈ Rm×n has full column rank. Con-
sider arbitrary ρ > 0 and v0, d0 in Rm. Let {ηk ≥ 0, k = 0, 1, . . .} and
{νk ≥ 0, k = 0, 1, . . .} be two sequences such that

∞∑
k=0

ηk <∞ and
∞∑
k=0

νk <∞.

Consider the sequences {uk ∈ Rn, k = 0, 1, . . .}, {vk ∈ Rm, k = 0, 1, . . .},
and {dk ∈ Rm, k = 0, 1, . . .} that satisfy

ηk ≥
∥∥uk+1 − argminu

(
f1(u) + ρ

2‖Gu− v
k − dk‖2

2

)∥∥
2

νk ≥
∥∥vk+1 − argminv

(
f2(v) + ρ

2‖Gu
k+1 − v − dk‖2

2

)∥∥
2

dk+1 = dk − (Guk+1 − vk+1).

Then, if (18) has a solution, the sequence {uk} converges, uk → u∗, where
u∗ is a solution of (18). If (18) does not have a solution, then at least one
of the sequences {uk} or {dk} diverges.

The split augmented Lagrangian shrinkage algorithm (SALSA) proposed
in [1] is an instance of ADMM, with G = I, where I is the identity map. We
refer to [1] for further properties and analysis of SALSA algorithm.

3.2. Discretization of (6) and (17). The discrete setting of (6) is

min
u
E(u), with E(u) =

β

2
‖Au− f̄‖2

2 +
α

2
‖
−→
∇u‖2

2 + µ ‖
−→
∇u‖1, (20)
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and of (17) is

min
u
E(u), with E(u) =

β

2
‖Au− f̄‖2

2 + µ ‖
−→
∇u‖1, (21)

where,

‖Au− f̄‖2
2 =

m∑
i=1

∑
j∈Ω

(Aiui − f̄i)2
j ,

‖
−→
∇u‖2

2 =
m∑
i=1

‖∇ui‖2
2 =

m∑
i=1

∑
j∈Ω

(
(∂1ui)

2 + (∂2ui)
2
)
j
,

‖
−→
∇u‖1 =

√√√√ m∑
i=1

‖∇ui‖2
1 =

 m∑
i=1

∑
j∈Ω

√
(∂1ui)2

j + (∂2ui)2
j

2


1
2

,

(22)

j is a general grid point in the pixel domain Ω, ∇ = (∂1, ∂2) is the discrete
gradient operator defined by using backward finite differences (with periodic

boundary conditions), and ‖
−→
∇u‖1 is the discrete extended total variational

TV ext(u), that follows the usual discretization of the TV (ui) semi-norm,
denoted by ‖∇ui‖1 (see (2)).

Then rewriting (20) in the form (19), it reads as
f1(u) =

β

2
‖Au− f̄‖2

2 +
α

2
‖
−→
∇u‖2

2

f2(u) = µ ‖
−→
∇u‖1

G = I

[discrete problem (6)], (23)

and doing the same for (21), it reads as
f1(u) =

β

2
‖Au− f̄‖2

2

f2(u) = µ ‖
−→
∇u‖1

G = I

[discrete problem (17)]. (24)

3.3. Algorithm Proposed for the Solutions of (6) and (17). It essen-
tially consists in SALSA algorithm, but with suitable modifications of some
of its steps, which are explained hereafter.
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Algorithm SALSA for problems (23)/ (24) (equivalently, discrete problem
(6)/ (17)):

(1) Set k = 0, choose ρ > 0, v0 and d0.
(2) repeat

(3) uk+1 ∈ argminu
(
β

2
‖Au− f̄‖2

2 +
α

2
‖
−→
∇u‖2

2 +
ρ

2
‖u− vk − dk‖2

2

)
[in the case of model (24), or equivalently (17), α = 0]

(4) vk+1 ∈ argminv
(
µ ‖
−→
∇v‖1 +

ρ

2
‖uk+1 − v − dk‖2

2

)
(5) dk+1 = dk − (uk+1 − vk+1)
(6) k ← k + 1
(7) until stopping criterion is satisfied.

In order to solve point 3 and point 4 in algorithm SALSA, either for problem
(23) or (24), we formally compute the Gâteaux derivative of the associated
functionals.

This leads to the following optimality conditions,

for point 3: (βATA− α
−→
∆ + ρI)uk+1 = βAT f̄ + ρ(vk + dk),

[in the case of model (24), or equivalently (17), α = 0]

for point 4: for i = 1, . . . ,m,

µ

∑m
l=1 ‖∇v

k+1
l ‖1

‖
−→
∇vk+1‖1

∇T

(
∇vk+1

i

‖∇vk+1
i ‖2

)
+ ρ
(
vk+1
i − (uk+1

i − dki )
)

= 0.

(25)

where AT is the transpose of A, I is the identity, ∇T is the transpose of

the discrete gradient ∇ = (∂1, ∂2), and
−→
∆u = (∆u1, . . . ,∆um) represents the

Laplace operator, with ∆ = −(∂T1 ∂1 + ∂T2 ∂2).

3.3.1. Numerical Solution for Point 3 of Algorithm SALSA. Concerning
problem (23), or equivalently (6), in order to determine uk+1 we apply the
Gauss-Seidel iterative method, which is convergent because of the properties

of the matrix (βATA−α
−→
∆ +ρI), that is symmetric and positive definite (cf.

Ostrowski-Reich theorem, for instance in [8, Théorème 5.3-2, page 103]).
Regarding problem (24), or equivalently (17), the same theorem [8, Théorème

5.3-2, page 103] also applies to (βATA+ ρI).
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3.3.2. Numerical Solution for Point 4 of Algorithm SALSA. Point 4 of the
algorithm SALSA is equal for both problems (23) and (24) (that is, for prob-
lems (6) and (17)). To solve it we use a numerical procedure, that consists
firstly in replacing, the unknown vk+1 by the previous iterate vk in the first
term (it then acts as a constant, denoted by θk, in the current iterate k+ 1).
That is, for i = 1, . . . ,m,

θk ∇T

(
∇vk+1

i

‖∇vk+1
i ‖2

)
+ ρ
(
vk+1
i − (uk+1

i − dki )
)

= 0,

with θk = µ

∑m
l=1 ‖∇vkl ‖1

‖
−→
∇vk‖1

a constant.

(26)

Then, by remarking that the above equation, multiplied by 1
θk

, is exactly the
optimality condition of the following minimization problem

min
vi

( ρ

2θk
‖vi − (uk+1

i − dki )‖2
2 + ‖∇vi‖2

)
, for i = 1, . . . ,m, (27)

and by doing a variable splitting, that is by creating a new variable ωi = ∇vi,
we are led to the following equivalent constrained problem

min
vi

( ρ

2θk
‖vi − (uk+1

i − dki )‖2
2 + ‖∇vi‖2

)
, for i = 1, . . . ,m,

subject to ∇vi = ωi.
(28)

Therefore, the determination for each i = 1, . . . ,m, of vk+1
i in (27) can be

done by applying ADMM to (28). It works as follows:

Algorithm ADMM for (28) (equivalently point 4 in SALSA)

(1) Set p = 0, choose ζ > 0, ω0
i and e0

i .
(2) repeat

(3) vp+1
i ∈ argminvi

(
ρ

2θk
‖vi − (uk+1

i − dki )‖2
2 + ζ

2‖∇vi − w
p
i − e

p
i‖2

2

)
(4) ωp+1

i ∈ argminωi

(
‖∇ωi‖2 + ζ

2‖∇v
p+1
i − ωi − epi‖2

2

)
(5) ep+1

i = eki − (∇vp+1
i − ωp+1

i )
(6) p← p+ 1
(7) until stopping criterion is satisfied.
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Both points 3 and 4, above, admit explicit solutions. The solution vp+1
i in

point 3 is defined by

ρ

θk
(vp+1
i − (uk+1

i − dki )) + ζ∇T (∇vp+1
i − wp

i − e
p
i ) = 0 (29)

where ∇T is again the transpose of the discrete gradient ∇ = (∂1, ∂2), and
consequently

vp+1
i = (

ρ

θk
I + ζ∇T∇)−1

( ρ
θk

(uk+1
i − dki ) + ζ∇T (wp

i + epi )
)
. (30)

The solution ωp+1
i in point 4 is defined by

wp+1
i =

∇vp+1
i − epi

‖∇vp+1
i − epi‖2

max

{
(‖∇vp+1

i − epi‖2 −
1

ζ
, 0

}
, (31)

as a direct consequence of a generalized shrinkage formula, see for instance
[15], whose result we recall here.

Lemma 3.2. [15, Lemma 3.3] For any α, β > 0 and t ∈ Rq, the minimizer
of

min
s∈Rq

{
α‖s‖2 +

β

2
‖s− t‖2

2

}
(32)

is given by

s(t) = max

{
‖t‖2 −

α

β
, 0

}
t

‖t‖2
(33)

where we follow the convention 0.(0/0) = 0.

3.3.3. Pesudocode for the solution of models (6) and (17). We can now
summarize the proposed numerical method, whose steps are the following :

(1) Set k = 0, choose ρ > 0, v0 and d0.
(2) repeat

(3) uk+1 ∈ argminu
(
β

2
‖Au− f̄‖2

2 +
α

2
‖
−→
∇u‖2

2 +
ρ

2
‖u− vk − dk‖2

2

)
[α = 0, in the case of model (17)]

(4) vk+1 ∈ argminu
(
µ ‖
−→
∇v‖1 +

ρ

2
‖uk+1 − v − dk‖2

2

)
(a) Set p = 0, choose ζ > 0, ω0

i and e0
i .

(b) repeat



VARIATIONAL MULTI-CHANNEL MODEL 15

(c) θk = µ

∑m
l=1 ‖∇vkl ‖1

‖
−→
∇vk‖1

vp+1
i ∈ argminvi

(
ρ

2θk
‖vi − (uk+1

i − dki )‖2
2 +

ζ

2
‖∇vi − wp

i − e
p
i‖

2
2

)
= (

ρ

θk
I + ζ∇T∇)−1

( ρ
θk

(uk+1
i − dki ) + ζ∇T (wp

i + epi )
)
.

(d)

ωp+1
i ∈ argminωi

(
‖∇ωi‖2 + ζ

2‖∇v
p+1
i − ωi − epi‖2

2

)
=
∇vp+1

i − epi
‖∇vp+1

i − epi‖2

max

{
(‖∇vp+1

i − epi‖2 −
1

ζ
, 0

}
(e) ep+1

i = eki − (∇vp+1
i − ωp+1

i )
(f) p← p+ 1
(g) until stopping criterion is satisfied.

(5) dk+1 = dk − (uk+1 − vk+1)
(6) k ← k + 1
(7) until stopping criterion is satisfied.

4. Experimental results
In this section we describe the results obtained with the proposed algo-

rithm, defined in subsection 3.3.3, for the model (6). Some tests are also
performed with the model (17), which does not contain the smooth regular-
izer, for comparison purposes.

We present the results firstly for four RGB color images : three real world
images - an image of Coimbra city, a mandrill image, and a parrot image,
and one synthesis image - all shown in the first column of Figure 1. Then, the
results for a damaged in vivo medical image exhibiting specular highlights
(see Figure 5-a) are also shown.

The different parameters included in these two models were chosen by trial
and error until finding the most successful results for each model.

In the first experiments the four good quality original images (Coimbra city,
mandrill, parrot and synthesis images) are artificially corrupted with added
Gaussian noise and information loss. In each channel, the added Gaussian
noise is of mean 0 and variance 1 (we adopt the notation G(0, 1)), multiplied
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(a) Original (b) Degraded (c) Restored

(d) Original (e) Degraded (f) Restored

(g) Original (h) Degraded (i) Restored

(j) Original (k) Degraded (l) Restored

Figure 1. Original, degraded and restored images obtained
with model (6).

by 1% of the standard deviation of the channel (denoted by ”stdev”), that is

Noise = 0.01 stdev×G(0, 1). (34)
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For information loss a total of 30% of pixel values are modified randomly, by
changing to zero, indiscriminately, 10% of the pixel values, per channel.

To assess (and compare) the quality of the restored images with the two
models, the signal-to-noise-ratio (SNR) is used. For a scalar image ū its
definition is

SNR(ū, u) = 10× log10

‖ū− E(ū)‖L2

‖ū− u‖L2

,

with E(ū) the average intensity of the original image ū, and u the restored
image.

Figure 1 shows the recovered images with the proposed model (6) and
Table 1 gives the performance comparison among the two models (6) and
(17), in terms of the SNR measure. From this Table 1, we see that model
(6) outperforms clearly model (17).

Model Coimbra Parrot Mandrill Synthesis
(6) 27.38 34.98 29.76 36.18
(17) 21.48 27.65 24.47 29.35

Table 1. SNR of the restored images with models (6) and (17)

To better analyse the effect of the added Gaussian noise and information
loss on the performance of the proposed algorithm for model (6), we vary
the magnitude of these two variables and computed SNR, in each iteration
during the execution of the algorithm. Therefore, instead of only one noise
level, we take four levels, by considering stdev in (34) multiplied by

n1 = 0.01 = 1%, n2 = 0.02 = 2%, n3 = 0.04 = 4%, and n4 = 0.08 = 8%.
(35)

Similarly, we also consider four levels of information loss, by changing to zeo,
randomly

l1 = 5%, l2 = 10%, l3 = 15%, and l4 = 20%, (36)

pixel values, from each image-channel.
For each value of the pair (ni, lj), with i, j = 1, 2, 3, 4, the algorithm was ex-

ecuted and the SNR measure computed: the results are displayed in Figure 2.

The next two Figures 3 and 4 allow a better interpretation of Figure 2,
as well as better study of the influence of the two variables (the percent-
ages of added Gaussian noise level and information loss), separately, on the
performance of the proposed method.
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(a) Coimbra Image

(b) Parrot Image (c) Mandrill Image

Figure 2. SNR of six iterations of the proposed algorithm for
model (6), as a scalar function of the two degradation variables:
information loss (variable denoted by ”Loss” in the horizontal
plane), and added Gaussian noise (variable denoted by ”Noise
level” in the horizontal plane).

In Figure 3 the two variables were fixed one by one. On the left column
the curves represent SNR for four fixed information loss (with percentages
5%, 10%, 15% and 20%) and four varied percentages of noise level equal to
1%, 2%, 4% and 8%. Vice-versa, on the right column, the curves represent
SNR for the four fixed noise levels (with percentages 1%, 2%, 4% and 8%)
and varied information loss equal to 5%, 10%, 15% and 20%. As can be seen,
when the percentage of noise level or information loss increases, the final error
also increases, because SNR decreases. However, we see that the SNR curves
are converging to each other. This simply means that the proposed method
is robust against noise and information loss. In particular, the convergence of
the curves is more clear when the noise level increases. The later means that
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Mandrill Image
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Figure 3. Effects of the percentages of Gaussian noise level and information loss,
separately, on the final result in terms of SNR, with model (6). On the left : SNR
curves for four fixed information loss and varied noise level. On the right : SNR
curves for four fixed noise level and varied information loss.

the proposed method/model is slightly more robust against the Gaussian
noise rather than information loss.

Figure 4 tracks the change of the degraded image (with added Gaussian
noise and information loss) towards the final restored image, again in terms
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Coimbra Image
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Figure 4. Evolution of SNR when the percentages of noise level or, vice-versa,
information loss are fixed, during the execution of the algorithm for model (6).

of SNR measure, along the execution of the proposed algorithm for model
(6). Similarly to the previous Figure 3, on the left column of Figure 4, each
graphic exhibits four curves representing the SNR function for a fixed 20% of
information loss, and four percentages of noise level (1%, 2%, 4% and 8%).
On the right column the graphics show the SNR curves for a fixed noise level
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(a) Medical image with
specular highlights

(b) Binary mask of the
specular highlights ≡
function γi

(c) Restored image

Figure 5. Original in vivo medical image (a) and restored image
(c) obtained with model (6). In (b) the white spots correspond
to the graphic of the characteristic function in (3) (γ1 = γ2 = γ3).

and four different percentages of information loss (respectively, 5%, 10%,
15% and 20%). On can see that the curves diverge slightly and become
parallel to each other when the percentage of information loss is fixed. This
means that the initial added noise level has a negligible impact on the final
result. In contrast, when the noise level is fixed, the corresponding curves
depending on the amount of information loss converge to parallel lines and
tend to decrease their distance. This also means that the proposed algorithm
effectively recovers/overcomes the lost pixel value information.

In the previous experiments the original good quality images are artificially
corrupted in order to evaluate the performance and quality of the proposed
method. In this last test we consider an original image, which is already
naturally degraded due to the acquisition procedure. Figure 5 shows the
results obtained for a medical image, shown in Figure 5-a, with the proposed
algorithm for model (6). It is an in vivo image extracted from a colonoscopy
video, acquired during a medical exam to a patient (courtesy of the De-
partment of Gastroenterology, CHUC - Centro Hospitalar e Universitário de
Coimbra, Coimbra, Portugal). This type of colonoscopy images is in gen-
eral degraded. In fact, very often these images exhibit specular highlights,
which are bright white spots, originated by reflection of the colonoscope light
source. This is a serious drawback for doctors who search to detect different
abnormalities in the images, mainly colonic polyps, precursors of colon can-
cer. When very small polyps are covered or hidden by specular highlights
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in the images, they can be missed by the doctor who is analysing the video,
and this is a risk for the patient. For example, in the medical image shown
in Figure 5-a, we can perceive, in the middle top, a small polyp covered with
specular highlights.

Clearly, the method we propose in this paper is suited for inpainting these
specular highlights. Figure 5-a displays the original image, that is already
degraded with the bright white spots. The regions to be inpainted are pre-
cisely these bright white spots. The identification of these regions can be
done by using a simple threshold method based on the intensity of the pix-
els. In this way, we obtain the characteristic functions γi (3), whose graphic
is displayed in Figure 5-b. For this image we consider the three functions
γ1, γ2, and γ3 to be equal for the three RGB channels. Finally, we obtain
the restored image, shown in Figure 5-c, with the proposed algorithm for
model (6) described in subsection 3.3.3. As can be observed, all the specular
highlights have disappeared and we have a better visualization of the mucosa
and the small colonic polyp.

For all the experiments, a computer with Intel( R) Core(TM) processor i7-
6700 CPU@3.40 GHz was used, and the algorithms were implemented with
MATLAB R© 2018b (The MathWorks, Inc., Natick, Massachusetts, United
States).
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