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1. Introduction
In many applications where two random variables represent the lifetime

of different systems, it is of interest to study their ageing properties. This
study will allow to determine which system is performing better with respect
to some given property: the ageing rate, lifetime expectancy, skewness of
lifetimes, etc. For this purpose, stochastic ordering between random variables
provide a convenient way to describe such comparisons. These orderings may
be defined through relations between distributions, survival or failure rate
functions, of the relevant random variables. The monographs by Shaked and
Shantikumar [16] or Marshal and Olkin [14], give a good account of various
stochastic orders and their applications.

We will be interested in the star-shaped order, introduced by Barlow and
Proschan [3] and defined by a monotonicity property on a suitable transfor-
mation on the distribution functions, as expressed by Definition 1 below. It
can be easily seen that the definition is equivalent to allowing at most one
crossing between the distribution functions of scaled lifetimes, as referred in
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Proposition C.11 of Marshal and Olkin [14] or 4.B.2 in Shaked and Shantiku-
mar [16]. It follows from this characterization that the star-shaped order may
thus be interpreted as a comparison of the lifetime ageing rate for systems
that started functioning simultaneously. From the pratical point of view,
since the distribution functions of the lifetime variables under comparison
often do not have an explicit formula, it may be technically difficult to verify
the star-shaped ordering. Thus, it becomes relevant to establish equivalent
conditions for which the increasingness of the referred function holds. Using
the sign technique referred in Marshal and Olkin [14] or Shaked and Shan-
tikumar [16], Arab and Oliveira [1] analysed the ordering relationships within
the Gamma and the Weibull families of distributions, later extended to the
comparison of lifetimes of parallel systems in Arab et al. [2]. However, when
the underlying distributions depend on a large number of parameters, this
sign analysis becomes rather hard to control and often does not allow for a
conclusion. An alternative approach may be based on a criterion proposed by
Saunders and Moran [15] when the distribution functions depend on a single
real parameter. This criterion turned out to be useful to exhibit order rela-
tions within parametric families of distributions (see Khaledi and Kochar [7],
or Kochar and Xu[9, 10] among many others). As what concerns the lifetimes
of more complex systems, the Saunders and Moran’s criterion was used by
Kochar and Xu [8] to obtain a characterization for parallel systems each one
formed by two types of components with exponentially distributed lifetimes.
More recently, Arab et al. [2] proved that the lifetimes of parallel systems
with homogeneous and independent exponential components get smaller (or
age faster) with respect to the star-shaped order, or age faster, as the num-
ber of components increases. We note that, for the case of series and parallel
systems with more than two heterogeneous and, especially, non exponentially
distributed components, not much work seems to have been done regarding
the star-shaped comparability. Since these are complex models, depending
on more than one parameter, the Saunders and Moran’s [15] result cannot be
used. Hence, it becomes natural to investigate possible extensions of Saun-
ders and Moran’s criterion for this type of models, which will be the main
objective of this paper.

The paper is structured as follows. In Section 2, we present the exten-
sion of the Saunders and Moran’s [15] criterion to families of distributions
depending on multidimensional parameters. In Section 3, we discuss a few
applications of the obtained criterion to complex systems with heterogeneous
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components, describing conditions on the parameters so that the star-shaped
comparability holds when the lifetimes of the components satisfy suitable
proportionality assumptions, including the popular PHR and PRHR models.

2. A criterion for the star-shaped order
Let F denote the family of distributions vanishing at 0 with support con-

tained in [0,+∞). Let X be a nonnegative random variable with distribution
function FX ∈ F , density function fX , and survival function FX . In the fol-
lowing, we start by defining the star-shaped order relation, following Shaked
and Shantikumar [16].

Definition 1. Let X and Y be two nonnegative random variables with dis-
tribution functions FX , FY ∈ F , respectively. The random variable X (or its
distribution FX) is said to be smaller than Y (or its distribution FY ) in the
star-shaped order, denoted by X ≤∗ Y (or FX ≤∗ FY ), if 1

xF
−1
Y (FX(x)) is

increasing with x > 0 (or equivalently,
F−1Y (u)

F−1X (u)
is increasing with u ∈ (0, 1)).

Remark 2. Note that the star-shaped order is scale invariant, implying that
in case of families of distributions that have a scale parameter, we are able
to choose the parameter in a convenient way.

The decision about the star-shaped order often relies on sign variations
techniques, as follows from (4.B.2) from Shaked and Shantikumar [16]. Ex-
pectedly, the sign variation analysis raises technical difficulties, especially
when dealing with distributions involving a large number of parameters,
such as parallel systems, series systems or order statistics. Saunders and
Moran [15] proved a more tractable condition for the star-shaped order to
hold, providing a full characterization of such relation for the whole family
of distributions.

Theorem 3. (Saunders and Moran [15]) Let {Fa : a ∈ I ⊆ R} be a family
of distributions such that Fa ∈ F with density fa, which does not vanish

on any subinterval of its support. Then F−1a (α)

F−1a (β)
decreases (resp., increases)

with respect to a ∈ J ⊆ I, for each fixed α > β, if and only if D(a, x) =
1

xfa(x)
∂Fa
∂a (x) increases (resp., decreases) with respect to x > 0, for every fixed

a ∈ J ⊆ I.

The simple criterion for the star-shaped relationships that follows is derived
as a direct consequence of the monotonicity result presented above.
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Theorem 4. Let {Fa : a ∈ I ⊆ R} be a family of distributions as in Theo-
rem 3. Then Fa ≤∗ Fb, for every a ≤ b such that a, b ∈ J ⊆ I if and only if
D(a, x) = 1

xfa(x)
∂Fa
∂a (x) is decreasing with x > 0, for every a ∈ J ⊆ I.

Proof : Take a, b ∈ J ⊆ I, such that a ≤ b. For α ≥ β, we have that

Fa ≤∗ Fb ⇔
F−1
b (β)

F−1
a (β)

≤
F−1
b (α)

F−1
a (α)

⇔ F−1
a (α)

F−1
a (β)

≤
F−1
b (α)

F−1
b (β)

,

which is equivalent to F−1a (α)

F−1a (β)
being increasing with respect to a. Taking into

account Theorem 3, the conclusion follows.

Note that Theorem 4 states a necessary and sufficient condition for the star-
shaped order to hold between distributions Fa, for every a ∈ J . However, in
general, distributions may depend on more than one parameter, as happens
for parallel or series systems with heterogeneous components, and, in general,
coherent systems. Hence, it is natural to seek for extensions of Theorem 4
to families of distributions indexed by higher dimensional parameters.

To state our result, we need to introduce some notation. Let µ ∈ I ⊆ Rn

and v ∈ Rn, and consider µ + tv, t ∈ R, the line that passes through µ
and has direction vector v. We will denote by L(µ,v) = {λt ∈ I ⊆ Rn : λt =
µ + tv, t ∈ R}. Moreover, given a family of distributions Fλ, ∇Fλ(x) stands
for the gradient of Fλ(x) with respect to the parameter λ and by 〈v,∇Fλ(x)〉,
we denote the inner product between v and ∇Fλ(x).

Theorem 5. Let {Fλ : λ ∈ I ⊆ Rn} be a family of distributions such that
Fλ ∈ F and has density function fλ, which does not vanish on any subinterval
of its support. Let µ ∈ I, v = (v1, v2, . . . , vn) ∈ Rn and J ⊆ I. Then
Fλt ≤∗ Fλt′ , for every λt, λt′ ∈ L(µ,v) ∩ J , for t ≤ t′, if and only if R(x) =
〈v,∇Fλ(x)〉
xfλ(x) is decreasing with x > 0, for every λ ∈ L(µ,v) ∩ J .

Proof : We want to prove that Gt ≤∗ Gt′, for t ≤ t′, where Gt(x) = Fλt(x),
for every x > 0. By Theorem 4, this is equivalent to 1

xgt(x)
∂Gt
∂t (x) being

decreasing with x > 0, where gt(x) = G′t(x) = fλ(x). Therefore, we may

conclude that Fλt ≤∗ Fλt′ if and only if 〈v,∇Fλ(x)〉
xfλ(x) is decreasing with x > 0, for

every λ ∈ L(µ,v) ∩ J .

Remark 6. Note that one could think, of comparing distributions whose pa-
rameters belong to some general parametric curve, instead of straight lines,
which would probably lead to an obvious extension of Theorem 5.
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In the case of families of distributions with 2-dimensional parameters, the
following version, using the slope of the line L(µ,v), is convenient.

Proposition 7. Let {Fλ : λ ∈ I ⊆ R2} be a family of distributions such that
Fλ ∈ F and has density function fλ, which does not vanish on any subinterval
of its support. Let µ ∈ I, v = (v1, v2) ∈ R2 and J ⊆ I. If v1 < 0 (resp.,
v1 > 0), then Fλt ≤∗ Fλt′ , for every λt, λt′ ∈ L(µ,v) ∩ J , where t ≤ t′, if and

only if Q(x) = 1
xf(x)

(
∂Fλ
∂λ1

(x) + k ∂Fλ∂λ2
(x)
)

is increasing (resp., decreasing) with

x > 0, for every λ ∈ L(µ,v) ∩ J , where k = v2
v1

.

Proof : According to Theorem 5, we have that, Fλt ≤∗ Fλt′ , for every λt, λt′ ∈
L(µ,v) ∩ J , where t ≤ t′, if and only if R(x) = 1

xfλ(x)

(
∂Fλ
∂λ1

(x)v1 + ∂Fλ
∂λ2

(x)v2

)
is

decreasing with x > 0, for every λ ∈ L(µ,v) ∩ J . Factorizing R(x) by v1 and
taking into account the sign of v1, the conclusion follows.

3. Applications
We now apply the results proved in the previous section, to prove com-

parability, with respect to the star-shaped order, for some models that are
popular in reliability theory. Throughout this section X1, . . . , Xn will repre-
sent the lifetimes of the components of a complex system. The lifetime of
a parallel system is X(n) = max(X1, . . . , Xn), while the lifetime of a series
system is given by X(1) = min(X1, . . . , Xn).

3.1. Parallel systems with dependent components. First, we provide
a condition for the star-shaped order to hold between parallel systems, for
which their lifetime components are dependent and identically distributed.
We say that the joint distribution of (X1, . . . , Xn) follows an n-dimensional
FGM (Farlie-Gumbel-Morgenstern, cf. [12]) distribution if

F(X1,...,Xn)(x1, . . . , xn) =
n∏
i=1

F (xi)

1 +
∑

1≤j<k≤n

ajkF (xj)F (xk)

 , (1)

where
∣∣∣∑1≤j<k≤n ajk

∣∣∣ ≤ 1. Then, the distribution function of X(n) is given

by

Fc(x) = F n(x)(1 + cF
2
(x)), (2)

where c =
∑

1≤j<k≤n ajk ∈ [−1, 1]. Note that the constant c describes the
strength of dependence among the random variables, while its sign reveals
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the direction of the dependence, i.e., if c > 0 (c < 0), the components are
positively (negatively) dependent.

Proposition 8. Let {Fc : c ∈ [−1, 1]} be a family of distributions defined as

in (2). Then Fa ≤∗ Fb, whenever −1 ≤ a < b ≤ n
n+2, if Q1(x) = F (x)F (x)

xf(x) is

decreasing with x > 0.

Proof : According to Theorem 4, we need to prove that D(c, x) = 1
xfc(x)

∂Fc
∂c (x)

is decreasing with x > 0, for −1 ≤ c ≤ n
n+2 . After simplifications we

have D(c, x) = Q1(x)h(x), where h(x) = F (x)
n(1+c)−2c(n+1)F (x)+c(n+2)F 2(x) . Since

∂Fc
∂c (x) ≥ 0, we have that D(c, x) ≥ 0. Now, taking into account that obvi-

ously Q1(x) ≥ 0, it follows that h(x) ≥ 0, for x > 0. If c = 0, h is decreasing
and the conclusion follows. Finally, assume that |c| ≤ 1 and c 6= 0. Given
that F is increasing and nonnegative, the monotonicity of h is the same as
the monotonicity of the companion function

h̃(x) =
1− x

n(1 + c)− 2c(n+ 1)x+ c(n+ 2)x2
,

for x ∈ (0, 1). Differentiating, it is easily seen that h̃′ has the same sign as
N(x) = −n(1 + c) + 2c(n + 1) − 2c(n + 2)x + c(n + 2)x2. When c > 0,
N(x) ≤ N(0) = c(n + 2) − n ≤ 0, while when c < 0, N(x) ≤ N(1) ≤ 0.
Thus, h̃′(x) ≤ 0, implying that h is decreasing. Taking into account that Q1

is a positive decreasing function, the conclusion follows.

Remark 9. The increasingness assumption about Q1 in Proposition 8 is sat-
isfied by many families of distributions, such as uniform, power, Gamma,
Normal, Gumbell, Pareto, Weibull distributions. The actual verification may
need using Lemma 8 in Arab and Oliveira [1], if a closed form of the distri-
bution function is not available.

Remark 10. Moreover, Proposition 8 implies that, with respect to systems
with independent components, negatively dependent components results in
faster ageing of parallel systems, while positive dependence mean slower age-
ing rates.

3.2. Complex systems based on PHR and PRHR models. We now
prove some ordering relationships for two models that have received extensive
usage when modelling lifetime or survival time data: the proportional hazard
rate model (PHR), introduced by Cox [4], and the proportional reversed
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hazard rate (PRHR) model, introduced by Gupta et al.[5]. The PRHR model
was used, for example, by Tsodikov et al. [17] to describe a stochastic model
of spontaneous carcinogenesis, for which the progression time of the tumor
was modeled by a PRHR model, while Lane et al. [13] modelled bank failure
through a PHR model. We recall the definition of these models: a PHR
(resp., PRHR) model with baseline distribution F has distribution function
satisfying F a(x) = F

a
(x) (resp., Fa(x) = F a(x)), for a > 0. Hence, the

PHR and PRHR models introduce a family of distributions depending on
one parameter. We first characterize the star-shaped ordering for each of
these models as a straightforward consequence of the Saunders and Moran’s
criterion, Theorem 4.

Proposition 11. Let F ∈ F with a density that does not vanish in any
subinterval of its support, be some baseline distribution. Then Fa ≤∗ Fb, for

every 0 < a ≤ b if and only if g(x) = ln(F (x))F (x)
xf(x) is increasing with x > 0, in

the case of the PHR model, or g(x) = ln(F (x))F (x)
xf(x) is decreasing with x > 0, in

the case of the PRHR model.

Proof : Consider the case of PHR model. According to Theorem 4, we have
D(a, x) = 1

xfa(x)
∂Fa
∂a (x) = −1

ag(x). Hence, since a > 0, the conclusion follows.

The PRHR case follows analogously.

Remark 12. The sample maxima and minima from independent, identically
distributed random variables are typical examples of PHR and PRHR models.

3.3. Complex systems with heterogeneous components. Throughout
this subsection we characterize the star-shaped ordering of a few different
types of heterogeneous systems, looking both at parallel and series systems.
A first model looks at parallel systems with components whose lifetimes
distributions are subject to different scale changes. Let F ∈ F be a distribu-
tion function, with density function that does not vanish on any subinterval
of its support and consider random variables Xi with distribution function
Fi(x) = F (λix), where λi > 0, for i = 1, . . . , n. The distribution function of
X(n) is, with λ = (λ1, . . . , λn),

Fλ(x) =
n∏
i=1

F (λix). (3)

First, recall the below definition that concerns a special class of functions.
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Definition 13. (Karlin [6]) A function f : R2 → R is said to be totally
positive of order 2 (TP2) if for every x1 < x2 and y1 < y2, x1, x2, y1, y2 ∈ R,
f(x1, y2)f(x2, y1) ≤ f(x1, y1)f(x2, y2).

Proposition 14. Let {Fλ : λ ∈ (0,+∞)n, λ1 < λ2 < · · · < λn} be a family

of distributions defined as in (3). Let µ, v ∈ (0,+∞)n. If G(a, x) = F (ax)
f(ax) is

TP2, for a > 0, then Fλt ≤∗ Fλt′ , for every λt, λt′ ∈ L(µ,v) ∩ J , where t ≤ t′

and J = {λ ∈ (0,+∞)n : viλj − λivj ≤ 0, i < j, i, j = 1, . . . , n}.
Proof : According to Theorem 5, we need to prove that
R(x) = 1

xfλ(x)

∑n
i=1 vi

∂Fλ
∂λi

(x) is decreasing with x > 0, where fλ is the density

function of Fλ. We have that

∂Fλ
∂λ

(x) = xf(λix)
n∏
j=1
i6=j

F (λjx) and fλ(x) =
n∑
i=1

λif(λix)
n∏
j=1
i 6=j

F (λjx).

Thus, R(x) =
∑n
i=1 viPi(x)∑n
i=1 λiPi(x)

, where Pi(x) = f(λix)
∏n

j=1
i6=j

F (λjx). Differentiating

R, we get that the sign of R′ is the same as the sign of

K(x) =
n−1∑
i=1

n∑
j=i+1

(viλj − λivj)(P ′i (x)Pj(x)− Pi(x)P ′j(x)).

Since, for i < j and i, j = 1, . . . , n, viλj − λivj ≤ 0, we need to prove that
P ′i (x)Pj(x)−Pi(x)P ′j(x) ≥ 0, for i < j. The function P ′i (x)Pj(x)−Pi(x)P ′j(x)

is the numerator of the derivative of L(x) = Pi(x)
Pj(x) =

f(λix)F (λjx)
f(λjx)F (λix) . Given that,

for i < j, λi < λj and G(a, x) is TP2, for every a > 0, it follows that L is
increasing. Hence, the proof is concluded.

Remark 15. The common families of distributions in reliability or ageing
models, such as the Gamma, Weibull, Pareto or power verify the TP2 prop-
erty assumed in Proposition 14.

The following corollary complements the ordering result proved in Kochar
and Xu [8], where only two types of components with exponential lifetimes
were allowed in each parallel system.

Corollary 16. Let {Fλ : λ ∈ (0,+∞)n, λ1 < λ2 < · · · < λn} be a family of
distributions defined as in (3), with F (x) = 1 − e−x. Let µ, v ∈ (0,+∞)n.
Then Fλt ≤∗ Fλt′ , for every λt, λt′ ∈ L(µ,v) ∩ J , where t ≤ t′ and J = {λ ∈
(0,+∞)n : viλj − λivj ≤ 0, i, j = 1, . . . , n, i < j}.
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Proof : Taking into account Proposition 14, we only need to prove that

G(a, x) = F (ax)
f(ax) is TP2, for a > 0. But this is equivalent to proving that, for

a < b,

K(x) =
f(ax)F (bx)

f(bx)F (ax)
=
ebx − 1

eax − 1

is increasing with x > 0, which is easily seen to be true.

We now have a look into complex systems based on components whose
lifetimes follow a PRHR model. Assume that the lifetimes Xi have distri-
bution function Fi(x) = F λi(x), for some baseline function F ∈ F with
density f that does not vanish on any interval of the support of F , where
λi > 0, for every i = 1, . . . , n. Then the distribution function of X(1) is, with
λ = (λ1, . . . , λn),

Fλ(x) = 1−
n∏
i=1

(1− F λi(x)). (4)

Proposition 17. Let {Fλ : λ ∈ (0,+∞)n, λ1 < λ2 < · · · < λn} be a family of

distributions defined as in (4). Let µ, v ∈ (0,+∞)n. If g(x) = ln(F (x))F (x)
xf(x) is

decreasing with x > 0, then Fλt ≤∗ Fλt′ , for every λt, λt′ ∈ L(µ,v) ∩ J , where
t ≤ t′ and J = {λ ∈ (0,+∞)n : viλj − λivj ≤ 0, i < j, i, j = 1, . . . , n}.

Proof : Taking into account Theorem 5 we need to prove that
R(x) = 1

xfλ(x)

∑n
i=1 vi

∂Fλ
∂λi

(x) is decreasing for every λ ∈ J . We have that

∂Fλ
∂λi

(x) = ln(F (x))F λi(x)
n∏
j=1
i 6=j

(1− F λi(x)),

and

fλ(x) = f(x)
n∑
i=1

λiF
λi−1(x)

n∏
j=1
i6=j

(1− F λi(x)).

Hence, R(x) = g(x)h(x), where h(x) =
∑n
i=1 viPi(x)∑n
i=1 λiPi(x)

, with

Pi(x) = F λi−1(x)
∏n

j=1
i6=j

(1 − F λj(x)). It is easily seen that the first term

in R′(x) = g′(x)h(x) + g(x)h′(x) is negative. Observe that, since vi > 0, for
every i = 1, . . . , n, it follows that h(x) ≥ 0. Therefore, to prove that R is
decreasing, it is enough to establish that h is increasing, given that g is a
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negative decreasing function. The sign of h′ is easily seen to be the same as
the sign of

∑n−1
i=1

∑n
j=i+1(viλj − λivj)(P ′i (x)Pj(x) − Pi(x)P ′j(x)). Given that

viλj − λivj ≤ 0, it remains to prove that P ′i (x)Pj(x) − Pi(x)P ′j(x) ≤ 0, for
every i, j = 1, . . . , n, i < j. Observe that P ′i (x)Pj(x) − Pi(x)P ′j(x) is the

numerator of the derivative of K(x) = Pi(x)
Pj(x) = F λi−λj(x)1−Fλj (x)

1−Fλi(x)
. Therefore,

we need to prove that K is decreasing. Given that F is increasing and non-
negative, the monotonicity of K will be the same as the monotonicity of the
companion function

K̃(x) = xλi−λj
1− xλj
1− xλi

=
x−λj − 1

x−λi − 1
, for x ∈ (0, 1),

which is easily seen to be decreasing on (0, 1).

Assuming the components follow a PHR model, we may derive a similar

result about X(n). Consider that Xi has survival function F i(x) = F
λi

(x),
where λi > 0, for every i = 1, . . . , n and F is a baseline distribution as above.
Then the distribution function of X(n) is, with λ = (λ1, . . . , λn),

Fλ(x) =
n∏
i=1

(1− F λi
(x)). (5)

Proposition 18. Let {Fλ : λ ∈ (0,+∞)n, λ1 < λ2 < · · · < λn} be a family of

distributions defined as in (5). Let µ, v ∈ (0,+∞)n. If g(x) = ln(F (x))F (x)
xf(x) is

increasing with x > 0, then Fλt ≤∗ Fλt′ , for every λt, λt′ ∈ L(µ,v) ∩ J , where
t ≤ t′ and J = {λ ∈ (0,+∞)n : viλj − λivj ≤ 0, i < j, i, j = 1, . . . , n}.

Proof : The proof is analogous to that of Proposition 17, taking into account
that

∂Fλ
∂λi

(x) = − ln(F (x))F
λi

(x)
n∏
j=1
i6=j

(1− F λi
(x)),

fλ(x) = f(x)
n∑
i=1

λiF
λi−1

(x)
n∏
j=1
i6=j

(1− F λi
(x)),

where f is the density function of F , and R(x) = −g(x)h(x), where h(x) =∑n
i=1 viPi(x)∑n
i=1 λiPi(x)

, with Pi(x) = F
λi−1

(x)
∏n

j=1
i6=j

(1 − F
λj

(x)). Thus, we now need

to prove that h′(x) ≤ 0, in order to conclude that R′(x) ≤ 0. Since
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viλj − λivj ≤ 0, for i, j = 1, . . . , n, i 6= j, this follows after proving that
P ′i (x)Pj(x) − Pi(x)P ′j(x) ≥ 0, for i < j, which is easily achieved following a
similar approach to the one used in the proof of Proposition 17.

The previous result is an extension of Theorem 3.3 in Kochar and Xu [11],
where the authors considered one of the systems to be formed by homoge-
neous components.

Remark 19. The conclusions in Propositions 17 and 18 may reverse the
direction of the ordering, if the monotonicities assumed for g and g are re-
versed and we redefine the set as J = {λ ∈ (0,+∞)n : viλj − λivj ≥ 0, i, j =
1, . . . , n, i < j}.

Remark 20. It is easily verified that the functions g and g considered in
Propositions 17 and 18, respectively, are monotone for several families of
distributions popular in reliability or ageing models, such as the Gamma,
Lomax, Weibull, Pareto or power.

3.4. Parallel systems with homogeneous distributions. Arab et al
[2] proved, in their Corollary 7.2, that parallel homogeneous systems with
components that have exponential lifetimes age faster as the number of com-
ponents increases. We may prove this also holds when the components have
exponentiated Weibull lifetimes X1, . . . , Xn, whose distribution function is
given by F (x) = (1− e−(λx)β)α, for x > 0, where α, β > 0 are shape param-
eters and λ > 0 is a scale parameter. The distribution function of X(n) is
given by

FX(x) = (1− e−(λx)β)a, (6)

where a = αn, for n ≥ 1. Taking into account Remark 2, we may, without
loss of generality, consider λ = 1.

Proposition 21. Let {F(β,a) : a > 0, β > 0} be a family of distributions

defined as in (6). Let (β′, a′), (β̃, ã) ∈ (0,+∞)2, such that β′ ≥ β̃ and v =
(β̃, ã) − (β′, a′). If β′ = β̃, then Fa′ ≤∗ Fã, for every a′ ≥ ã. If β′ > β̃,
then Fλt ≤∗ Fλt′ , for every λt, λt′ ∈ L((β′,a′),v), where t ≤ t′, if and only if

λt, λt′ ∈ J = {(β, a) ∈ (0,+∞)2 : ã−a′
β̃−β′ ≥ −

a
β}.
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Proof : If β′ = β̃, then the family of distributions F(β,a) follows a PRHR
model. Thus, taking into account Proposition 11, since

ln(F (x))F (x)

xf(x)
=

(ex − 1) ln(1− e−x)
x

,

is increasing with x > 0, the conclusion follows. Consider now β′ > β̃. By

Proposition 7, we need to prove that Q(x) = 1
xf(β,a)(x)

(
∂F(β,a)

∂β (x) + k
∂F(β,a)

∂a (x)
)

is increasing with x > 0, for every (β, a) ∈ L((β′,a′),v), if and only if k = ã−a′
β̃−β′ ≥

− a
β . We begin by study the case where k ≥ 0. Taking into account Lemma

8 in Arab and Oliveira [1], we need to prove that, for every c ∈ R, Q(x)− c
changes sign at most once, as x goes from 0 to +∞, and if the sign change
occurs it is in the order “−,+”. Note Q(x)−c and H(x) = (1−e−xβ)a−1P (x),
where

P (x) =
(
ae−x

β

xβ ln(x) + k(1− e−xβ) ln(1− e−xβ)− caβxβe−xβ
)
.

have, for each x > 0, the same sign. Hence, it is enough to characterize the
sign of P . We look at the sign of P ′, whose sign is, for x > 0, the same as the
one of V (x) = (−axβ ln(x) + a ln(x) + a

β + k ln(1− e−xβ) + k− caβ + caβxβ).

Differentiating V , we have V ′(x) = xβ−1K(x), where K(x) = −aβ ln(x)−a+
a
xβ

+ kβ

ex
β−1

+caβ2. Thus, K ′(x) = −aβ
x −

aβ
xβ+1− kβ2xβ−1ex

β

(ex
β−1)2

. Since k ≥ 0, we have

that K ′(x) ≤ 0, implying that K is decreasing. Given that, limx→0+ K(x) =
+∞ and limx→+∞K(x) = −∞, it follows that the sign variation of K, which
is the same as sign variation of V ′, is “+,−”. Therefore, V has monotonicity
“↗↘. Moreover, limx→0+ V (x) = limx→+∞ V (x) = −∞, which implies that
V has sign variation “−,+,−” or “−”. In the first case, we have that P has
monotonicity “↘↗↘. Since limx→0+ P (x) = limx→+∞ P (x) = 0, the sign
variation of P , which coincides with the sign variation of H, is “−,+”. In
the second cases, where V (x) ≤ 0, then P would be decreasing. But this is
impossible given the behaviour of P near 0 and at +∞. Suppose now that
−−aβ ≤ k = ã−a′

β̃−β′ ≤ 0. Differentiating Q, we obtain

Q′(x) =
((βkxβ − βk)ex

β

+ βk) ln(1− e−xβ) + (βk + a)xβ

xβ+1aβ
.
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Some elementary calculus arguments show that Q′(x) ≥ 0, implying that Q
is increasing with x > 0. If k ≤ − a

β , Q cannot be a monotone function, since

limx→0+ Q(x) = limx→+∞Q(x) = +∞. Therefore, the proof is concluded.

Remark 22. According to Proposition 21, given (β̃, ã) and (β′, a′), we do
not only have that F(β,a) ≤∗ F(β̃,ã), for (β, a) ∈ J ∩L((β′,a′),v), but we also have
that the distributions depending on the parameters in the set J ∩ L((β′,a′),v)

are ordered, with respect to the star-shaped order. That is, if k is the slope of
the line going through (β̃, ã) and (β′, a′), then every point (β, a) in this line
and above the line −kβ′ (condition given by the set J) defines distributions
comparable with each other and with F(β̃,ã). However, it does not allow us to

decide about star-shaped comparability between F(β,a) and F(β̃,ã), when (β, a) /∈
J . Nevertheless, if we keep changing the value of k (and, therefore, the
position of the point (β′, a′)), it follows from Proposition 21 that the set of
points (β, a) for which we have F(β,a) ≤∗ F(β̃,ã) is given by the set {(β, a) ∈
(0,+∞)2 : β ≥ β̃ and a ≥ ãβ

β̃−2β
}.
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