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UNIFORM LOCALES AND
THEIR CONSTRUCTIVE ASPECTS

GRAHAM MANUELL

Abstract: Much work has been done on generalising results about uniform spaces
to the pointfree context. However, this has almost exclusively been done using
classical logic, whereas much of the utility of the pointfree approach lies in its
constructive theory, which can be interpreted in many different toposes. Johnstone
has advocated for the development of a constructive theory of uniform locales and
wrote a short paper on the basic constructive theory via covering uniformities, but
he never followed this up with a discussion of entourage uniformities or completions.

We present a more extensive constructive development of uniform locales, including
both entourage and covering approaches, their equivalence, completions and some
applications to metric locales and localic algebra.

Some aspects of our presentation might also be of interest even to classically
minded pointfree topologists. These include the definition and manipulation of
entourage uniformities using the internal logic of the geometric hyperdoctrine of
open sublocales and the emphasis on pre-uniform locales. The latter leads to a
description of the completion as the uniform reflection of the pre-uniform locale of
Cauchy filters and a new result concerning the completion of pre-uniform localic
rings, which can be used to easily lift addition and multiplication on Q to R (or Qp)
in the pointfree setting.

Math. Subject Classification (2010): 54E15, 06D22, 03F65, 54B30.

0. Introduction
Thirty years ago in [13] Johnstone took the first steps in a constructive

development of the theory of uniform locales. This was promised to be the
first in a series of papers on the topic, but the later papers never materialised
and no one else has taken up the mantle.
Still the classical theory of uniform locales (and uniform spaces) has con-

tinued unabated and it would be as useful as ever to have access to these
techniques in the constructive setting, where the results we prove have greater
applicability by being interpretable in any topos with natural numbers object.
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This paper can be thought of as a somewhat belated sequel to [13] (in
addition to making some minor corrections and modifications to the theory
developed there). We have nonetheless attempted to keep our development
self-contained within reason, though the original paper still provides a useful
source of counterexamples (which we do not discuss) and a more exploratory
account of what the theory should be.
We describe uniform locales in terms of both entourages and covers and

prove their equivalence before developing the theory of uniform comple-
tions. Our account is somewhat atypical in how strong a focus it places
on pre-uniform locales. This provides an easy route to proving complete-
ness and cocompleteness of the category UnifLoc of uniform locales by
factoring the forgetful functor UnifLoc→ Loc into a reflective subcategory
UnifLoc ↪→ PUnifLoc, a topological functor PUnifLoc→ OLoc and core-
flective subcategory OLoc ↪→ Loc. It also allows us to phrase the relationship
between the classifying locale of all Cauchy filters and the completion in terms
of the uniform reflection.
However, the true motivation for this approach is revealed in the final section

where we discuss a few important examples of uniform locales and make some
first applications to localic algebra. Here it seems to be important to be able
to take completions of pre-uniform locales, since the uniform reflection might
not preserve products, while its composite with the completion always does.
This is apparent already in the example of completing the rational numbers
to give the localic ring of real numbers.
We also provide a constructive proof of the classically known result that

an overt localic group is complete with respect to its two-sided uniformity.
Further properties of uniform locales, such as total boundedness, will be left
for a later paper.
Let me end this section by drawing the reader’s attention to some other

related work in formal topology that I became aware of after starting to write
this paper. In [15], Kawai describes the completion a uniform space as formal
topology. He uses the gauge approach to uniform spaces, and as I understand
it, what are called (generalised) uniform spaces there are closer to what are
sometimes called (quasi-)gauge spaces and have different morphisms. The
paper [6] also considers a notion of uniform formal topologies using gauges,
but the notion of completeness considered there depends on the (global)
points of the formal topology and thus appears to be weaker than the usual
definition of completeness for uniform locales.
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Finally, Kawai mentions in [15] that the PhD thesis of Fox [7] also discusses
uniform formal topologies, though unfortunately I was unable to obtain a
copy of this thesis until very recently. The thesis is worth reading. Fox
defines uniform formal topologies in terms of covers, describes their relation
to metric formal topologies and gauges and defines a uniform completion.
Thus, despite not discussing entourages there is some overlap with the current
paper. Nonetheless, our approach is significantly different and I believe
that the locale-theoretic framework used in this paper will be more easily
understandable to a wider audience than the approach via formal topology
used by Fox.

1. Background
We assume a basic knowledge of (at least the classical theory of) frames

and locales. See [19] for a good introduction, which also has a nice account of
the classical situation regarding uniform frames and locales. Background on
uniform spaces is not strictly necessary, but can be found in standard general
topology textbooks such as [22].
We denote the category of locales by Loc and the category of frames by

Frm. We will usually start with a locale X and write OX for its associated
frame. We maintain a strict notational distinction between these to avoid
confusion between an open a ∈ OX and an element of x of X in the internal
logic (described below). If f : X → Y is a locale morphism, we write f ∗ for
the corresponding frame map and f∗ for its right adjoint. If f ∗ has a left
adjoint, we will write this as f!.
We do not assume the reader has any great familiarity with constructive

pointfree topology and will attempt to provide a brief introduction below. A
reasonably extensive introduction to the topic can be found in the background
chapter of [17] and further information can be found in [14, Part C]. The
constructive theory of metric locales is described in [9].
Some understanding of category theory is also assumed. We make some

use of the theory of topological functors, a good account of which can be
found in [1]. We will also use the internal logic of a geometric hyperdoctrine,
the basic idea of which we describe below. A slightly longer overview can
again be found in the background of [17], but for a more careful and thorough
introduction see [20].
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1.1. Positivity, overtness and hyperdoctrines. Constructively, the ini-
tial frame is the lattice of truth values Ω, though this is no longer necessarily
isomorphic to the two-element set {>,⊥}. When using constructive logic, we
do not have access to double negation elimination and so it is best to phrase
definitions in a ‘positive’ way (without using negations) since negations can
be difficult to get rid of once they are introduced. An example of this is can
be seen in the relevant importance of nonempty versus inhabited sets. At set
X is inhabited if ∃x ∈ X. This is more useful than the weaker condition that
X 6= ∅, since we have access to the element x to use in later arguments.
A similar concept appears in pointfree topology. An element a of a frame
OX is said to be positive (written a > 0) if whenever a ≤ ∨

A then the set A
is inhabited. Classically, this is equivalent requiring a 6= 0, but constructively
it is a stronger condition. We say the locale X is positive if 1 > 0 in OX. If
V is a sublocale of X we write V G a to mean that the restriction of a to V
is positive. In particular, a G b ⇐⇒ a ∧ b > 0.
A locale X is said to be overt if it has a base of positive elements. Some

people also call such locales locally positive or even open. Classically, every
locale is overt. Constructively, the condition is nontrivial, though it still
holds for many locales that appear in practice. A locale X is overt if and
only if the unique map ! : X → 1 is open. In this case, the left adjoint
∃ : OX → Ω of the associated frame map measures the positivity of elements:
∃(a) = > ⇐⇒ a > 0. Another characterisation gives that X is overt if the
product projection π2 : X × Y → Y is open for every locale Y . In this way it
can be seen to be a kind of ‘dual’ to compactness. Finally, we note that open
sublocales of overt locales are overt.
We write OLoc for the category of overt locales and locale morphisms. This

is a coreflective subcategory of Loc. (A proof of this fact can be found in [16],
but the main idea is that every locale has a largest overt sublocale.) Thus,
OLoc is complete and cocomplete. Moreover, it can be shown that OLoc
is closed under finite products in Loc and that OLoc has (epi, extremal
mono)-factorisations where the extremal monomorphisms are precisely the
overt sublocale inclusions.
The obvious functor O : OLocop → Frm sending an overt locale to its frame

of opens satisfies the necessary axioms to be a geometric hyperdoctrine (without
equality). This means that for every product projection π2 : X × Y → Y , the
map O(π2) = π∗2 has a left adjoint ∃X satisfying the Frobenius reciprocity
condition ∃X(a ∧ π∗2(b)) = ∃X(a) ∧ b, and moreover, the family of maps
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(∃X)Y : O(X × Y ) → OY is natural in Y (the Beck–Chevalley condition).
These hold because the projections are open maps, which is why we need
overtness.
This geometric hyperdoctrine allow us to interpret geometric logic in the

category OLoc, with predicates being given by opens. We can discuss
equality judgements t =~x t

′, which state that terms (given by morphisms in
the category) are equal, and sequents ϕ `~x ψ where ϕ and ψ are formulae in
the variables ~x involving finite conjunctions, possibly infinitary disjunctions
and existential quantification, which mean that the open defined by ϕ is
contained in that defined by ψ. In particular, this logic contains regular logic
as fragment and so we have a well-behaved calculus of open relations. For
the details behind the interpretation of logic in hyperdoctrines see [20], while
more information about the specific case of O : OLocop → Frm can be found
in [17].

1.2. Strong density and weak closedness. Another important concept
we will need is that of strong density. A locale map f : X → Y is dense if
f ∗(a) = 0 =⇒ a = 0. If X and Y are overt locales, f is strongly dense (or
fibrewise dense) if a > 0 =⇒ f ∗(a) > 0. Strong density implies density, but
the converse cannot be proved constructively. It is strong density that is more
important for the study of uniform locales.
We can express the condition for strong density in terms of ∃ as ∃(a) ≤
∃f ∗(a). Then taking right adjoints gives the equivalent condition that f∗!(p) ≤
!(p) for all p ∈ Ω. (This definition even makes sense when X and Y are not
overt, though we will not need this.)
Strongly dense maps form a factorisation system on OLoc together with

the weakly closed sublocales. In particular, every overt sublocale V ↪→ X has
a weak closure wk-cl(V ) ↪→ X, which is the largest sublocale in which it is
strongly dense (and this is necessarily overt). It can be shown that if V is
an overt sublocale then V G a ⇐⇒ wk-cl(V ) G a. Every closed sublocale is
weakly closed, but all sublocales of discrete locales are weakly closed, while
all open sublocales of 1 are closed only if excluded middle holds.
With this weaker notion of closedness come weakened separation axioms.

In particular, we say a locale X is weakly Hausdorff if the diagonal is weakly
closed. Defining a to be weakly rather below b if wk-cl(a) ≤ b in the order
of sublocales we also obtain a notion of weak regularity. See [12] for more
details.
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1.3. Other miscellaneous results. As is well understood, the lattice of
sublocales of a locale X is a coframe SX. Moreover, this is functorial so
that for f : X → Y we have a coframe homomorphism Sf : SY → SX,
which is obtained by pulling back along f . This map then has a left adjoint
(Sf)! : SX → SY which can be understood as taking images. Now if V is an
overt sublocale of X it can be shown that (Sf)!(V ) is overt and (Sf)!(V ) G
a ⇐⇒ V G f ∗(a).
We end this section by mentioning some results concerning products which

will be of use to us.

Lemma 1.1. Let f : X → Y and g : X ′ → Y ′ be strongly dense maps between
overt locales. Then their product f × g : X ×X ′ → Y × Y ′ is strongly dense.

Proof : Consider the following pullback diagrams.

X ×X ′

X

Y ×X ′

Y

π1

f ×X ′

f

π1

Y ×X ′

X ′

Y × Y ′

Y ′

π2

Y × g

g

π2

Since X ′ and Y are overt, the product projections π1 and π2 are open. But
strongly dense maps are stable under pullback along open maps (see [11,
Lemma 1.9]) and hence f ×X ′ and Y × g are strongly dense. Thus, so is the
composite f × g = (Y × g) ◦ (f ×X ′).

Lemma 1.2. Let f : X → Y and g : X ′ → Y ′ be locale morphisms. Then
(f × g)∗(c) = ∨{f∗(a)⊕ g∗(b) | a⊕ b ≤ c}.

Proof : See [4, Section 3, Lemma 2] (though the proof is not difficult).

2. Entourage uniformities
Uniform locales are probably most easily understood via the entourage

approach. An (open) entourage on a locale X can be thought of an open
approximate equality relation on X.
In order to have a good theory of open relations, we require a well-behaved

notion of existential quantification for open subobjects and we must therefore
restrict our attention to overt locales. Since O : OLocop → Frm is in
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particular a regular hyperdoctrine, we may define composition of open relations
E,F ∈ O(X ×X) in the internal logic by

F ◦ E = {(x, z) : X ×X | ∃y : X. (x, y) ∈ E ∧ (y, z) ∈ F}.
We can now use this to mimic the usual definition of a uniform space.

Definition 2.1. A pre-uniform locale is an overt locale X equipped with a
filter E on O(X ×X) such that for each E ∈ E ,

• `x : X (x, x) ∈ E,
• there is an Eo ∈ E such that (x, y) ∈ E a`x,y : X (y, x) ∈ Eo,
• there is an F ∈ E such that F ◦ F ≤ E.

We call E a uniformity and the elements of E entourages. We say a set B ⊆ E
is a base for the uniformity E if E is generated by B as an upset.

This is not yet what is usually called a uniform locale, since we have not
assumed a compatibility condition between the uniformity E and the ‘topology’
of X and so it is possible for X to have a finer topology than that induced
by E . In particular, X could be a discrete locale in which case we recover
the definition of a uniform space (but where we do not think of X as being
equipped with the usual uniform topology).

Definition 2.2. We define the uniformly below relation on the opens of a
pre-uniform locale (X, E) by

a C b ⇐⇒ ∃E ∈ E . E ◦ (a⊕ a) ≤ b⊕ b.

Then a uniform locale is a pre-uniform locale (X, E) such that every b ∈ OX
can be expressed as

b =
∨
aCb

a.

In this case the uniformity E is said to be admissible.

The following lemma provides an intuitive way to understand the uniformly
below relation using the internal logic.

Lemma 2.3. Let E be an entourage. We have E ◦ (a⊕ a) ≤ b⊕ b if and only
if

y ∈ a ∧ (y, z) ∈ E `y,z : X z ∈ b
in the internal logic. An equivalent expression is ∃y : X. y ∈ a ∧ (y, z) ∈
E `z : X z ∈ b.
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Proof : Let us start with the forward direction. In the internal logic the
assumption means ∃y : X. x ∈ a ∧ y ∈ a ∧ (y, z) ∈ E `x,z : X x ∈ b ∧ z ∈ b.
We can simply ignore the x ∈ b part of the consequent and eliminate the
existential quantification to obtain x ∈ a ∧ y ∈ a ∧ (y, z) ∈ E `x,y,z : X z ∈ b.
But now substituting in y for x yields the desired sequent.
For the converse, note that the assumption implies x ∈ a `x : X x ∈ b by

reflexivity (taking z = y = x). Then this together with the assumption again
easily gives the desired statement. Finally, the second form easily seen to be
equivalent to the first by the rules for existential quantification.
The uniformly below relation satisfies many of the axioms of a strong

inclusion on OX (see [2]).
Lemma 2.4. Let (X, E) be a pre-uniform locale. Then the uniformly below
relation satisfies:

i) ≤ ◦C ◦ ≤ ⊆ C ⊆ ≤,
ii) C is a sublattice of OX ×OX,
iii) C is interpolative — that is, C ⊆ C ◦C.

Proof : i) For the first inclusion, suppose a′ ≤ a C b ≤ b′. Then E ◦ (a⊕ a) ≤
b⊕ b for some E ∈ E , and hence we easily find E ◦ (a′ ⊕ a′) ≤ E ◦ (a⊕ a) ≤
b⊕ b ≤ b′ ⊕ b′, so that a′ C b′, as required.
We actually already proved the second inclusion in Lemma 2.3 using re-

flexivity and the equivalent description of the uniformly below relation given
there.
ii) It is easy to see that 0 C 0 and 1 C 1. It then suffices to show a C b and

a C b′ implies a C b ∧ b′ and that a C b and a′ C b implies a ∨ a′ C b.
For the former, we have E ◦ (a⊕a) ≤ b⊕b and E ′ ◦ (a⊕a) ≤ b′⊕b′ for some

E,E ′ ∈ E . Thus, (E∧E ′)◦(a⊕a) ≤ (E◦(a⊕a))∧(E ′◦(a⊕a)) ≤ (b∧b′)⊕(b∧b′).
Since E ∧ E ′ ∈ E , we may conclude that a C b ∧ b′.
For the latter, we have E ◦ (a⊕a) ≤ b⊕ b and E ′ ◦ (a′⊕a′) ≤ b⊕ b for some

E,E ′ ∈ E . Thus, by Lemma 2.3 we have y ∈ a ∧ (y, z) ∈ E `y,z : X z ∈ b
and y ∈ a′ ∧ (y, z) ∈ E `y,z : X z ∈ b and so we may conclude (y ∈ a ∧
(y, z) ∈ E) ∨ (y ∈ a′ ∧ (y, z) ∈ E) `y,z : X z ∈ b. The equivalent form of
E ◦ ((a ∨ a′)⊕ (a ∨ a′)) ≤ b⊕ b then follows by distributivity, as required.
iii) Suppose a C b. Then E◦(a⊕a) ≤ b⊕b for some E ∈ E . Take F ∈ E such

that F ◦F ≤ E and set c = {z : X | ∃y : X. y ∈ a ∧ (y, z) ∈ F}. Again by the
characterisation in Lemma 2.3, we have a C c. Moreover, F ◦ (c⊕ c) ≤ b⊕ b
if and only if ∃y : X. ∃x : X. x ∈ a ∧ (x, y) ∈ F ∧ (y, z) ∈ F `z : X z ∈ b.
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This is equivalent to ∃x : X. x ∈ a ∧ (x, z) ∈ F ◦ F `z : X b, which holds since
F ◦ F ◦ (a⊕ a) ≤ E ◦ (a⊕ a) ≤ b⊕ b. Thus, c C b and C interpolates.
Morphisms of uniform locales can be defined straightforwardly.

Definition 2.5. A morphism of (pre-)uniform locales f : (X, E)→ (Y,F) is
a morphism of locales f : X → Y such that (f × f)∗(F ) ∈ E for all F ∈ F .

Lemma 2.6. If f : (X, E) → (Y,F) is a morphism of pre-uniform locales,
then f ∗ preserves the uniformly below relation.

Proof : Suppose a C b in Y . Then there is an F ∈ F such that F◦(a⊕a) ≤ b⊕b.
Applying f ∗⊕f ∗ we have (f ∗⊕f ∗)(F ◦(a⊕a)) ≤ f ∗(b)⊕f ∗(b). Note that in the
internal logic (x, z) ∈ (f ∗⊕f ∗)(F◦(a⊕a)) holds if and only if ∃y : Y. (f(x), y) ∈
a ⊕ a ∧ (y, f(z)) ∈ F . This is implied by ∃y′ : X. (f(x), f(y′)) ∈ a ⊕ a ∧
(f(y′), f(z)) ∈ F and hence (f ∗ ⊕ f ∗)(F ) ◦ (f ∗(a) ⊕ f ∗(a)) ≤ (f ∗ ⊕ f ∗)(F ◦
(a⊕ a)) ≤ f ∗(b)⊕ f ∗(b). Therefore, since (f ∗ ⊕ f ∗)(F ) ∈ E we have f ∗(a) C
f ∗(b).

Proposition 2.7. The category PUnifLoc of pre-uniform locales is topolo-
gical over OLoc.

Proof : Consider a family of pre-uniform locales (Xi, Ei) and locale morphisms
fi : Y → Xi where i ∈ I. We claim that there is an initial lift (Y, E). Here we
define E to be the filter generated by (fi × fi)∗(Ei) for each Ei ∈ Ei and each
i ∈ I.
Note that this is indeed a uniformity. First observe that (fi × fi)∗(Ei)

always satisfies the reflexivity condition and that this condition is stable
under finite meets. It is also easy to see that the symmetry condition is
inherited from the Ei uniformities. Finally, consider a general entourage
E = ∧

j∈J(fj × fj)∗(Ej) ∈ E where J is a finite subset of I. For each
Ej there is a Fj ∈ Ej such that Fj ◦ Fj ≤ Ej. Then as we saw before,
(fj×fj)∗(F )◦ (fj×fj)∗(F ) ≤ (fj×fj)∗(F ◦F ) ≤ (fj×fj)∗(Ej), and therefore
setting F = ∧

j∈J(fj × fj)∗(F ) ∈ E we have F ◦F ≤ E. Thus, the final axiom
of an entourage is satisfied.
Now is now routine to check that (Y, E) satisfies the necessary property in

order to be a universal lift.
By a general result, limits in PUnifLoc can be computed as the limits of

the underlying overt locales equipped with the initial uniformity with respect
to the limiting cone. Moreover, the existence of initial structures implies the
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existence of final structures. Then colimits can be computed dually and we
obtain the following corollary.

Corollary 2.8. The category PUnifLoc is complete and cocomplete.

The following result allows the category UnifLoc of uniform locales to
inherit some of the good behaviour of the category of pre-uniform locales. We
state it here for convenience, but since it will be easier to prove with covering
uniformities, we postpone the proof until Section 3.

Proposition 2.9. Uniform locales form a reflective subcategory of the category
pre-uniform locales.

Corollary 2.10. The category UnifLoc is complete and cocomplete.

We can also use this approach to define the notion of a uniform embedding.

Definition 2.11. A morphism of (pre-)uniform locales is a uniform embedding
if it is an initial locale embedding — that is, if it is initial with respect to the
topological functor PUnifLoc→ OLoc and its underlying locale morphism
is an extremal monomorphism. By general principles, these maps are precisely
the extremal monomorphisms in PUnifLoc.

Explicitly, we have that if (X, E) is a pre-uniform locale and i : S ↪→ X
is an overt sublocale, then i is a uniform embedding if and only if the S is
equipped with the uniformity {(i× i)∗(E) | E ∈ E}. Moreover, it is easy to
see that in this case S is a uniform locale whenever X is.

3. Covering uniformities
In pointfree topology it is more common to describe uniform locales via

uniform covers and this is the approach taken by Johnstone in [13]. However,
as pointed out in [18], all definitions of uniform spaces or locales via covers
that I have been able to find [21, 10, 22, 8, 13, 19] are incorrect. Classically
the error is a minor one, since it only manifests for uniformities on the empty
set (or the initial locale), but constructively it is more important. I explain
this error after the definitions below.

Definition 3.1. A covering downset C on a locale X is a downset on OX
such that ∨C = 1. We say a covering downset is strong if it is generated by
its positive elements.
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Definition 3.2. Given a locale X, an overt sublocale V of X and a covering
downset U ⊆ OX, the star of V with respect to U is defined by st(V, U) =∨{u ∈ U | V G u}. In particular, this yields a notion of star of an open
a ∈ OX when X is overt. For a covering downset U on an overt locale we
set U ? = ↓{st(u, U) | u ∈ U}.

Lemma 3.3. Let V and U be as defined as above. Then V ≤ wk-cl(V ) ≤
st(V, U) under the ordering of sublocales.

Proof : First note that since V G a ⇐⇒ wk-cl(V ) G a, we have st(V, U) =
st(wk-cl(V ), U) and hence it is enough to prove V ≤ st(V, U).
We write the frame quotient map associated to V as a 7→ a ∩ V . To prove

the result we will show st(V, U) ∩ V = 1 in OV .
Since U is a cover, we have ∨

U = 1 in OX. Applying the quotient
map then gives ∨{u ∩ V | u ∈ U} = 1 in OV . Now since V is overt, we
may replace this join by a similar one consisting only of positive elements∨{u ∩ V | u ∈ U, u ∩ V > 0}. But u ∩ V > 0 in V if and only if V G u in
X and hence this join is in turn equal to (∨{u ∈ U | V G u}) ∩ V , which is
simply st(V, U) ∩ V . Thus, we have shown st(V, U) ∩ V = 1, as required.

Definition 3.4. A pre-uniform locale via covers is an overt locale X equipped
with a filter U of covering downsets such that for every U ∈ U there exists a
strong V ∈ U such that V ? ⊆ U .

Remark 3.5. Where the usual definitions of covering uniformities go wrong
is that they omit the strength condition on V . Without it, {{0}} and the
powerset of {0} would be distinct valid uniformities on the trivial locale in
disagreement with the entourage approach. Johnstone [13] notices that this
strength condition is important and calls a uniformity proper if it satisfies it,
but does not require it for every uniformity, nor does he require (pre-)uniform
locales to be overt in general. (Johnstone also fails to require that a uniformity
be inhabited, but I imagine this was just an mistake in the writeup.)

Nonetheless, it is easy to modify an otherwise valid covering uniformity
to ensure that the strength condition holds. It is not hard to see that a
collection B of covering downsets that is a base for a filter which satisfies
every property of a covering uniformity aside from the strength condition can
be made into a base for a true uniformity by simply replacing each B ∈ B
with ↓{u ∈ B | u > 0}.
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Definition 3.6. We define the uniformly below relation on the opens of a
pre-uniform locale via covers (X,U) by

a C b ⇐⇒ ∃U ∈ U . st(a, U) ≤ b.

Then as before, a uniform locale via covers is a pre-uniform locale via covers
(X,U) such that every b ∈ OX can be expressed as b = ∨

aCb a.
As is well-known classically, the definition of uniformities via covers is

equivalent to the entourage approach discussed in Section 2.
Definition 3.7. A morphism of (pre-)uniform locales via covers f : (X,U)→
(Y,V) is a morphism of locales f : X → Y such that ↓f ∗[V ] ∈ U for all V ∈ V .
Theorem 3.8. There is an isomorphism of categories between the category
of pre-uniform locales via entourages and the category of pre-uniform locales
via covers (which commutes with the forgetful functor into OLoc).
Proof : Let (X,U) be a pre-uniform locale via covers. We define an entourage
uniformity U on X with basic entourages of the form U = ∨{u⊕ u | u ∈ U}
for each strong covering downset U ∈ U . It is easy to see that U ∩ V ≤ U ∧V
and so this is indeed a filter base. We now confirm that the three axioms
hold.
First observe that if ∆: X → X×X is the diagonal map, ∆∗(U) = ∨{u∧u |

u ∈ U} = 1, since U is a cover. But this is precisely what the reflexivity
axiom is saying in the internal logic.
Next we note that each of these basic entourages is fixed under the auto-

morphism of X ×X sending (x, y) to (y, x) in the internal logic. It follows
easily that the symmetry condition holds for the resulting filter of entourages.
Finally, we require for each basic entourage U an entourage F ∈ U such

that F ◦ F ≤ U . We claim that if V is a strong covering downset such
that V ? ⊆ U , then V is such an F . Suppose (x, z) ∈ V ◦ V in the internal
logic. This means there is a y : X such that (x, y) ∈ V and (y, z) ∈ V . But
V = ∨{v ⊕ v | v ∈ V } and so we may assume x, y ∈ v and y, z ∈ v′ for
some v, v′ ∈ V . Thus, we have reduced the claim to the proving sequent
x ∈ v ∧ z ∈ v′ ∧ ∃y : X. y ∈ v ∧ v′ `x,z : X (x, z) ∈ U . But this sequent just
means that v ⊕ v′ ≤ U whenever v G v′. In that case, v, v′ ≤ st(v, V ). So
v ⊕ v′ ≤ st(v, V ) ⊕ st(v, V ) ≤ ∨

w∈V st(w, V ) ⊕ st(w, V ) = V ? ≤ U and the
claim follows.
We now show that the map (X,U) 7→ (X,U) is functorial. We need only

show that if f ∗ : OY → OX sends uniform covers to uniform covers, then it
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sends entourages to entourages. It is enough to show this for basic entourages.
Suppose V is a basic entourage on Y . We have (f×f)∗(V ) = ∨{f ∗(v)⊕f ∗(v) |
v ∈ V } = ∨{u ⊕ u | u ∈ ↓f ∗[V ]} = ↓f ∗[V ], which is a (basic) entourage on
X.
Now let (X, E) be a pre-uniform locale (via entourages). We define a

covering uniformity Ê with basic covering downsets of the form Ê = ↓{u ∈
OX | u > 0, u ⊕ u ≤ E} for each E ∈ E . As above, reflexivity gives that
1 = ∨{u ∧ u′ | u⊕ u′ ≤ E} ≤ ∨{u | u⊕ u ≤ E}. Then by overtness, we may
restrict this join to the positive elements and so Ê is indeed a cover. Again,
it is easy to see that Ê ∧ E ′ ≤ Ê ∩ Ê ′ and so Ê is a filter base. To see that Ê
is a covering uniformity, it just remains to show the ‘star-refinement’ axiom.
Let Ê be a basic covering downset in Ê . We must find a strong covering

downset V in Ê such that V ? ⊆ Ê. By using the final ‘transitivity’ axiom
of entourage uniformities twice we have that there is an F ∈ E such that
F ◦ F ◦ F ≤ E. We claim that F̂ is a V satisfying the above condition.
To see this, first note that F̂ is strong by construction. To show F̂ ? ⊆ Ê, it

is enough to show that for all v ∈ F̂ , st(v, F̂ ) ≤ u for some positive u such
that u ⊕ u ≤ E. In particular, we can show st(v, F̂ ) ⊕ st(v, F̂ ) ≤ E. (We
may restrict to v > 0 since F̂ is strong and then st(v, F̂ ) ≥ v > 0.) Further
expanding the definitions, we have st(v, F̂ ) = ∨{v′ ∈ OX | v′ > 0, v′ ⊕ v′ ≤
F, v G v′} and so the desired inequality reduces to v′ ⊕ v′′ ≤ E for all v′, v′′
such that v′ ⊕ v′, v′′ ⊕ v′′ ≤ F , v G v′ and v G v′′. We now use the internal
logic. Take x ∈ v′ and y ∈ v′′. There exist x′ ∈ v ∧ v′ and y′ ∈ v ∧ v′′. Now
since x, x′ ∈ v′, we have (x, x′) ∈ F . Similarly, (y′, y) ∈ F . But recall that
v ∈ F̂ , so that v ⊕ v ≤ F . Thus since x′, y′ ∈ v, we also have (x′, y′) ∈ F . So
by the definition of relational composition, we have (x, y) ∈ F ◦ F ◦ F ≤ E.
Therefore, F̂ ? ⊆ Ê and Ê is a covering uniformity.
As before, we show that (X, E) 7→ (X, Ê) is functorial by proving that

f ∗ : OY → OX sends uniform covers to uniform covers whenever it sends
entourages to entourages. Let F̂ be a basic uniform covering downset on Y . To
show that this is sent to a uniform cover we require that Ê ⊆ ↓f ∗[F̂ ] for some
entourage E on X. We will take E = (f×f)∗(F ′) for an entourage F ′ on Y to
be chosen later. So we require ↓{u | u > 0, u⊕u ≤ (f × f)∗(F ′)} ⊆ ↓{f ∗(v) |
v > 0, v⊕ v ≤ F}. Explicitly, for a positive u such that u⊕u ≤ (f × f)∗(F ′),
we require a positive v such that v ⊕ v ≤ F and u ≤ f ∗(v). To find such
a v we might try to take v as small as possible such that u ≤ f ∗(v). If f
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had a left adjoint f! we could achieve this by taking v = f!(u). In general
this is not possible. However, we can approximate this by taking image of
u as a sublocale (which always exists) and then using the star operation to
find an open containing this. In this way we set v = st((Sf)!(u), F̂ ′). Then
f ∗(v) = f ∗(st((Sf)!(u), F̂ ′)) = st(u, ↓f ∗[F̂ ′]) ≥ u, as desired. Also note that
(Sf)!(u) is positive as the image of the positive open u and hence v > 0. It
remains to show v ⊕ v ≤ F .
This can be shown in a similar way to the proof of the star-refinement

axiom above. Expanding the definitions, we must show that given w,w′ such
that w ⊕ w ≤ F ′ and w′ ⊕ w′ ≤ F ′ and such that u G f ∗(w) and u G f ∗(w′),
we can conclude w⊕w′ ≤ F . In the internal logic, we take x ∈ w and y ∈ w′.
Then ∃x′ : X. x′ ∈ u ∧ f(x′) ∈ w and ∃y′ : X. y′ ∈ u ∧ f(y′) ∈ w′. Recall
u⊕u ≤ (f×f)∗(F ′) and so we have (x, f(x′)) ∈ w⊕w ≤ F ′, (f(x′), f(y′)) ∈ F ′
and (f(y′), y) ∈ F ′. Thus, (x, y) ∈ F ′ ◦ F ′ ◦ F ′. Now we can choose F ′ to
satisfy F ′ ◦ F ′ ◦ F ′ ≤ F and so we are done.
We have thus constructed functors from the category of pre-uniform locales

via covers to the pre-uniform locales via entourages and back. Moreover, it is
clear that these commute with the forgetful functor into OLoc. It remains
to show that these are inverses and it is enough to show this on objects.
Consider a covering uniformity U on X. Then Û has a base consisting of

covering downsets of the form Û = ↓{v ∈ OX | v > 0, v ⊕ v ≤ ∨{u⊕ u | u ∈
U}} for each uniform covering downset U ∈ U . We may restrict to strong U ,
in which case it is clear that U ⊆ Û and hence Û ⊆ U .
On the other hand, suppose v is one of the generators of Û . Then v > 0

so that v G 1 = ∨
U and hence v G u′ for some u′ ∈ U . We then have

v ⊕ (v ∧ u′) ≤ ∨{u⊕ (u ∧ u′) | u ∈ U} and applying (π1)! we find v ≤ ∨{u ∈
U | u G u′} = st(u′, U) ∈ U ?. Therefore, Û ⊆ U ?. It follows that U ⊆ Û and
hence U = Û , as required.
Finally, suppose E is an entourage uniformity on X. Then Ê has a base of

entourages of the form Ê = ∨{u⊕ u | u ∈ OX, u > 0, u⊕ u ≤ E} for each
entourage E ∈ E . It is clear that Ê ≤ E and hence E ⊆ Ê .
For the other direction, let F be an entourage such that F ◦ F ≤ E and

let G = F ∧ F o ∈ E . Suppose u ⊕ u′ ≤ G, where we may assume u, u′ > 0
without loss of generality. We have u ⊕ u′ ≤ G ≤ F and u′ ⊕ u ≤ Go ≤ F .
Now in the internal logic, consider x, z ∈ u. Since u′ > 0, we have ∃y : X. y ∈
u′. Thus, (x, y) ∈ u ⊕ u′ ≤ F and (y, z) ∈ u′ ⊕ u ≤ F . It follows that



UNIFORM LOCALES AND THEIR CONSTRUCTIVE ASPECTS 15

(x, z) ∈ F ◦ F ≤ E. So we have shown u ⊕ u ≤ E. Similarly, u′ ⊕ u′ ∈ E
and hence (u ∨ u′)⊕ (u ∨ u′) = u⊕ u ∨ u⊕ u′ ∨ u′ ⊕ u ∨ u′ ⊕ u′ ≤ E. Thus,
u⊕ u′ ≤ (u ∨ u′)⊕ (u ∨ u′) ≤ Ê and we can conclude that G ≤ Ê. It follows
that Ê ≤ E and hence Ê = E , as required.
Now in order to relate the entourage and covering approaches to uniform

locales, we must understand the relationship between their uniformly below
relations.
Lemma 3.9. With the definitions from the previous theorem, if E is an
entourage and E ◦ (a ⊕ a) ≤ b ⊕ b then st(a, Ê) ≤ b. If U is a uniform
covering downset and st(a, U) ≤ b, then U ◦ (a ⊕ a) ≤ b ⊕ b. Therefore,
the uniformly below relation defined from an entourage uniformity and that
defined by its corresponding covering uniformity coincide.

Proof : Suppose E ◦ (a ⊕ a) ≤ b ⊕ b. Recall that in the internal logic this
is equivalent to ∃y : X. y ∈ a ∧ (y, z) ∈ E `z : X z ∈ b. We also have
st(a, Ê) = ∨{u ∈ Ê | a G u} = ∨{u | u ⊕ u ≤ E, a G u}. Consider u ∈ OX
such that u⊕ u ≤ E and a G u. Then if z ∈ u in the internal logic, we can
take y ∈ a ∧ u and conclude that z ∈ b. So u ≤ b and hence st(a, Ê) ≤ b, as
required.
Now suppose st(a, U) ≤ b. Then for any u ∈ U such that a G u, we

have u ≤ b. We must show y ∈ a ∧ (y, z) ∈ U `y,z : X z ∈ b where
U = ∨{u⊕ u | u ∈ U}. By the join and existential quantification rules it is
enough to show ∃y : X. y ∈ a ∧ (y, z) ∈ u ⊕ u `z : X z ∈ b for each u ∈ U .
But this is just the assumption expressed in the internal logic and so we are
done.
Now combining Theorem 3.8 and Lemma 3.9 we obtain the following result.

Theorem 3.10. The isomorphism of categories from Theorem 3.8 restricts
to one between uniform locales via entourages and uniform locales via covers.

We can now provide the proof of Proposition 2.9, which states that UnifLoc
is a reflective subcategory of PUnifLoc, using the covering approach.
Proof of Proposition 2.9: Given a pre-uniform locale X = (X,U), we can
consider the set R ⊆ OX of elements b such that b = ∨

aCb a. We claim that
R is a subframe of OX.
This is most easily understood by showing the map r : b 7→ ∨

aCb a is a
conucleus — that is, a meet-preserving interior operator. Certainly, r is
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monotone and deflationary. For idempotence, we consider a C b. Then there
is a c such that a C c C b and so a C c ≤ r(b). Hence, r(b) ≤ r(r(b)) and r is
idempotent.
We have r(1) = 1, since 1 C 1. We must show r(b) ∧ r(b′) ≤ r(b ∧ b′). It

suffices to consider a C b and a′ C b′ and show that a ∧ a′ C b ∧ b′. But this
is immediate from part (ii) of Lemma 2.4. Thus, r is indeed a conucleus and
its set of fixed points R is a subframe.
We define ΥX to be the locale with underlying frame R equipped with the

final uniformity from the locale map given by R ↪→ OX. This uniformity
can be described explicitly as {U ⊆ R | ↓i[U ] ∈ U} where i is the subframe
inclusion. It is easy to see this is indeed the final uniformity once we know it
is a uniformity at all. The only nontrivial condition to check is that for each
U ⊆ R such that ↓i[U ] ∈ U there is a strong cover V such that ↓i[V ] ∈ U and
V ? ⊆ U . Since i is injective and hence strongly dense we know that a > 0 in
R if and only if i(a) > 0 in OX. Thus, there is no difference between strength
or the star operation with respect to the subframe versus the parent frame
and so it is enough to show that covers of the from ↓i[U ] give a base for U .
Let V be a uniform cover of X and consider the downset V ′ = ∨{u | u C

v ∈ V }. Take a uniform cover W such that W ? ⊆ V . Then for w ∈ W , we
have w ≤ st(w,W ) ∈ V and hence w ∈ V ′. Thus, W ⊆ V ′ and so V ′ is a
uniform cover. But note that ∨uCv u lies in R by idempotence of r and set
U = ↓{∨uCv u | v ∈ V } ⊆ R. It is now clear that V ′ ⊆ ↓i[U ] ⊆ V and so U is
uniform cover of ΥX and the covers of the form ↓i[U ] form a base for U .
The above arguments also quickly imply that the uniformly below relations

on R and OX agree. Thus, the uniformity on ΥX is admissible by the
construction of R.
We claim that the epimorphism of pre-uniform locales υX : X → ΥX

induced by i is the unit of an adjunction between Υ and the inclusion functor
from UnifLoc into PUnifLoc. Consider the following diagram in PUnifLoc
where Y is a uniform locale. We must show f [ exists. (It is unique since υX
is epic.)

ΥX

X Y

υX
f [

f
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Since υX is final, it is sufficient to check this factorisation on the level of the
underlying locale maps. So we only need to show that the image of the frame
homomorphism f ∗ lies in R ⊆ OX.
As Y is a uniform locale, every element of OY satisfies b = ∨

aCb a. Applying
f ∗ we obtain f ∗(b) = ∨

aCb f
∗(a) ≤ ∨

a′Cf∗(b) a
′ ∈ R, where the inequality holds

since a C b =⇒ f ∗(a) C f ∗(b). The result follows.

We end this section with some more basic results about uniform locales.
The following result was already observed by Johnstone in [13].

Proposition 3.11. Uniform locales are weakly regular.

Proof : By Lemma 3.3 we know that a C b implies that a is weakly rather
below b. Thus, weak regularity follows from the admissibility condition.

Remark 3.12. In fact this gives somewhat more. Classically under the assump-
tion of the Axiom of Dependent Choice, uniform locales are not just regular,
but completely regular. Without Dependent Choice (but still using classical
logic) complete regularity is too strong a condition. However, there is a variant
of completely regularity, called strong regularity in [3], which still holds. A
frame is strongly regular if every element b can be expressed as b = ∨

aCb a for
some interpolative relation C contained in ≺. This is implied by complete
regularity, and is equivalent to it given Dependent Choice. Moreover, using
classical logic, a locale is uniformisable if and only if it is strongly regular. The
terminology becomes rather unfortunate in our setting: since the uniformly
below relation interpolates, the above proof shows that every uniform locale
is ‘strongly weakly regular’.

Corollary 3.13. Strongly dense uniform maps are epic in UnifLoc.

Proof : The proof proceeds exactly like the familiar one for Hausdorff spaces
or Hausdorff locales.

A full characterisation of uniformisable locales appears to be difficult and we
do not attempt it here. However, the following proposition does improve on
Johnstone’s result that completely regular (overt) locales are uniformisable.

Proposition 3.14. Strongly regular overt locales are uniformisable.

Proof : Let X be an overt locale and let C be an interpolative relation con-
tained in ≺ witnessing its strong regularity. We will take our subbasic uniform
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covering downsets to be ↓{a∗, b} for a C b. Note that these are indeed covers
since a C b implies a ≺ b.
We claim that the covers of the form ↓{u ∈ ∧

iCi | u > 0} where each Ci
is one of these subbasic covers constitute a base for an admissible covering
uniformity on X. To show this gives a uniformity it suffices to find for each
subbasic cover ↓{a∗0, a1} a finite set S of subbasic covers such that (∧S)? ⊆
↓{a∗0, a1}. We use the interpolativity of C to obtain a0 C a 1

3
C a 2

3
C a1 and

consider C = ↓{a∗0, a1
3
}∩↓{a∗1

3
, a2

3
}∩↓{a∗2

3
, a1}. Writing each ↓{x, y} as ↓x∪↓y

and using distributivity we find that C = ↓{a 1
3
, a∗0 ∧ a 2

3
, a∗1

3
∧ a1, a

∗
2
3
}. Observe

that the first two elements a 1
3
and a∗0 ∧ a 2

3
are disjoint from the last element

a∗2
3
, while the last two elements are disjoint from the first one. Thus, when x is

one of the first two elements we have st(x,C) ≤ a 1
3
∨ (a∗0∧a 2

3
)∨ (a∗1

3
∧a1) ≤ a1

and when x is one of the last two elements we have st(x,C) ≤ (a∗0 ∧ a 2
3
) ∨

(a∗1
3
∧ a1) ∨ a∗2

3
≤ a∗0. So we do have C? ⊆ ↓{a∗0, a1} as required.

Finally, we show admissibility. Suppose a C b. Then {a∗, b} is a uni-
form cover and we have st(a, {a∗, b}) ≤ b and hence a is uniformly below b.
Admissibility then follows from the assumption that b = ∨

aCb a.

4. Completion
We are now in a position to discuss completeness of uniform locales. The

definition is similar to the classical case except we use weak closedness and
strong density instead of ordinary closedness and density.

Definition 4.1. A uniform locale X is complete if it is universally weakly
closed in the sense that whenever it occurs as a uniform sublocale of a uniform
locale, it is a weakly closed sublocale. Equivalently, it is complete if every
strongly dense uniform embedding X ↪→ Y is an isomorphism.

Every uniform locale has a completion — that is, a (unique) complete
uniform locale in which it is strongly densely uniformly embedded. As in
the spatial setting, the completion may be constructed by means of Cauchy
filters.

Definition 4.2. A Cauchy filter on a uniform locale (X,U) is a filter F on
OX such that

• F only contains positive elements,
• F contains an open from every uniform cover.
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We say a Cauchy filter F is regular if for every a ∈ F there is a b ∈ F such
that b C a.
The regular Cauchy filters on X will be the points of the completion of X.

Thus, we consider the classifying locale CX of the theory of regular Cauchy
filters on X. This classifying locale is given by a presentation with a generator
[a ∈ F ] for each a ∈ OX and the following relations:

i) [1 ∈ F ] = 1,
ii) [a ∧ b ∈ F ] = [a ∈ F ] ∧ [b ∈ F ],
iii) [a ∈ F ] ≤ ∨{1 | a > 0},
iv) ∨u∈U [u ∈ F ] = 1 for each U ∈ U ,
v) [a ∈ F ] ≤ ∨

bCa[b ∈ F ].
By the universal property of the classifying locale, the identity morphism
on CX corresponds to a ‘CX-indexed regular Cauchy filter on X’ sending
a ∈ OX to [a ∈ F ] ∈ OCX. There is also a locale embedding γ : X ↪→ CX
given by the frame homomorphism [a ∈ F ] 7→ a (corresponding to the identity
X-indexed regular Cauchy filter on X). In fact, it is not hard to see that the
former map is the right adjoint of the latter. (For the nontrivial direction,
write a general element of OCX as ∨α[aα ∈ F ] and break the inequality up
into a part for each α.) Condition (iii) then implies that γ∗(!(p)) ≤ !(p) for
all p ∈ Ω and hence γ is strongly dense.
It will also be useful to define the classifying locale CX of all Cauchy filters

on X. The presentation is similar to that of CX, but without the regularity
condition (v). As above, we have a canonical strongly dense embedding
b : X ↪→ CX defined by b∗ : [a ∈ F ] 7→ a and whose right adjoint is a
CX-indexed Cauchy filter on X sending a to [a ∈ F ]. Of course, we have
b∗ = γ∗ρ∗ and ρ∗b∗ = γ∗ where ρ is the natural embedding CX ↪→ CX.
We can use b∗ to define a pre-uniform structure on CX.

Lemma 4.3. Let (X,U) be a uniform locale. The downsets of the form
↓b∗[U ] for U ∈ U form a base for a covering uniformity on CX. Moreover,
b : X ↪→ CX is a strongly dense uniform embedding.
Proof : First note that CX is overt, since X is overt and b : X → CX is
strongly dense.
The above downsets indeed are covers by condition (iv). It is also easy to

see that they form a filter base.
For the star-refinement axiom, consider ↓b∗[U ]. There is a strong V ∈ U

such that V ? ≤ U . We claim (↓b∗[V ])? ⊆ ↓b∗[U ]. It suffices to show
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st(b∗(v),b∗[V ]) ≤ b∗(st(v, V )) ∈ ↓b∗[U ] for all v ∈ V . Consider w ∈ V
such that b∗(v) G b∗(w). Since b is strongly dense, we then have v ∧ w =
b∗b∗(v ∧ w) = b∗(b∗(v) ∧ b∗(w)) > 0 and hence v G w. Thus, w ≤ st(v, V ) so
that b∗(w) ≤ b∗(st(v, V )) and the claim follows.
Finally, since b∗ is a section of b∗, it preserves positive elements. To see

this explicitly, suppose a ∈ OX is positive and b∗(a) ≤ ∨
A. Applying b∗

we have a = b∗b∗(a) ≤ ∨ b∗[A]. Hence b∗[A] is inhabited and so is A. Thus,
b∗(a) is positive. It follows that b∗[V ] as defined above is strong since V is.
Thus, we have shown that we do have a base for a uniformity on CX. The
map b is then a uniform embedding by construction, since b∗b∗ = idOX .

We obtain a uniform structure on CX in a similar way.

Corollary 4.4. Let (X,U) be a uniform locale. The downsets of the form
↓γ∗[U ] for U ∈ U form a base for an admissible covering uniformity on CX.
Moreover, γ : X ↪→ CX is a strongly dense uniform embedding.

Proof : As above we have that CX is overt, since X is overt and γ : X → CX
is strongly dense. Now since ρ∗b∗ = γ∗, the downsets ↓γ∗[U ] form a base for
the uniformity on CX inherited as a sublocale of CX. Furthermore, γ is a
uniform embedding as before.
It only remains to show admissibility. As we showed above for b we have

st(γ∗(v), γ∗[V ]) ≤ γ∗(st(v, V )). Applying γ∗ we then see that st(v, V ) ≤ u
implies st(γ∗(v), γ∗[V ]) ≤ γ∗(u) and so v C u in OX implies γ∗(v) C γ∗(u) in
OCX. It is enough to show admissibility for the basic opens γ∗(u) = [u ∈ F ]
and by condition (v) we have γ∗(u) ≤ ∨

vCu γ∗(v) ≤ ∨
γ∗(v)Cγ∗(u) γ∗(v), as

required.

The uniformity on CX is not in general admissible, while the uniformity
on CX is. The following proposition explains the relationship between these
pre-uniform locales.

Proposition 4.5. The uniform locale CX is the uniform reflection of CX.
Moreover, the frame homomorphism corresponding to the unit υCX : CX →
CX is left adjoint to ρ∗.

Proof : We claim there is a well-defined frame map r : OCX → OCX sending
[a ∈ F ] to ∨

bCa[b ∈ F ]. By part (ii) of Lemma 2.4 we see it satisfies
relations (i) and (ii) and it satisfies (iii) simply due to the similar relation
on OCX. For condition (iv) we can use that star-refinement axiom to show
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that {b | b C a ∈ U} is a uniform cover whenever U is. Finally, relation (v)
holds since C interpolates.
We now show that r is left adjoint to ρ∗. It is clear that ρ∗r = idOCX by

condition (v) on OCX. On the other hand, rρ∗([a ∈ F ]) = ∨
bCa[b ∈ F ] ≤

[a ∈ F ] and so rρ∗ ≤ idOCX , as required.
By the universal property of the uniform reflection, the image of r : OCX →
OCX lies in the the subframe OΥCX of elements B such that B ≤ ∨

ACB A.
We must show that every such element lies in the image of r.
Suppose B ≤ ∨

ACB A. Then since the elements [a ∈ F ] form a base, we have
B ≤ ∨

[a∈F ]CB[a ∈ F ]. Now suppose [a ∈ F ] C B. Then st([a ∈ F ],b∗[U ]) ≤
B for some uniform cover U onX. Explicitly, st([a ∈ F ],b∗[U ]) = ∨

u∈U, aGu[u ∈
F ]. Now let V be a uniform cover such that V ? ≤ U and take v ∈ V such that
v G a. Then st(a ∧ v, V ) ≤ st(v, V ) ∈ U , and clearly st(a ∧ v, V ) G a, so that
[st(a ∧ v, V ) ∈ F ] ≤ st([a ∈ F ],b∗[U ]) ≤ B. Thus, [a ∧ v ∈ F ] C [b ∈ F ] ≤ B
for some b ∈ OX and so we have [a∧v ∈ F ] ≤ ∨

[c∈F ]C[b∈F ]≤B[c ∈ F ] = rρ∗(B).
Taking the join over all such v we then find ∨

v∈V, vGa[a ∧ v ∈ F ] ≤ rρ∗(B).
Now note that ∨v∈V, vGa[a∧v ∈ F ] = ∨

v∈V [a∧v ∈ F ] = [a ∈ F ]∧∨v∈V [v ∈ F ] =
[a ∈ F ] where the first equality follows from condition (iii) for CX, the second
equality is from condition (ii) and the third equality is from condition (iv).
Therefore, [a ∈ F ] ≤ rρ∗(B) and so rρ∗(B) ≤ B ≤ ∨

[a∈F ]CB[a ∈ F ] ≤ rρ∗(B).
Thus, B is in the image of r as required.

We now observe that C and C are functorial.

Proposition 4.6. The construction of the locale of Cauchy filters gives rise
to a functor C: UnifLoc → PUnifLoc. Furthermore, the maps b : X →
CX assemble into a natural transformation from the inclusion UnifLoc ↪→
PUnifLoc to C.

Proof : Let f : X → Y be a morphism of uniform locales. Recall that
bX∗ : OX → OCX is an CX-indexed Cauchy filter on X, from which it
easily follows that bX∗ f ∗ is an OCX-indexed Cauchy filter on Y . By the
universal property of CY we obtain a frame homomorphism from OCY to
OCX. Explicitly this sends [a ∈ F ] to [f ∗(a) ∈ F ]. We define Cf to be a
corresponding locale map.
It is now easy to see this definition respects identities and composition and

that b is natural.
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Corollary 4.7. Similarly, the regular Cauchy filter locale yields a functor
C : UnifLoc → UnifLoc and the maps γ : X → CX give a natural trans-
formation from the identity to C.
Proof : Simply set C = Υ ◦ C and note that γ is equal to Υb (up to isomorph-
ism).
We shall now attempt to show CX is the completion of X. To see this we

note that some of the results that we have seen to hold for γ actually hold for
any strongly dense uniform embedding. We will proceed in a similar manner
to [19, Chapter VIII] for the next few results. Let us begin by proving an
analogue of Corollary 4.4.
Lemma 4.8. If j : (X,U) ↪→ (Y,V) is a strongly dense embedding of pre-
uniform locales, then the downsets of the form ↓j∗[U ] for U ∈ U form a base
for V.
Proof : We first observe that the downsets ↓j∗[U ] are V-uniform covering
downsets. Since j is a uniform embedding, every U ∈ U contains ↓j∗[V ] for
some V ∈ V . We then have ↓j∗[U ] ⊇ ↓j∗j∗[V ] ⊇ V and hence ↓j∗[U ] ∈ V .
Now take V ∈ V . There is a W ∈ V such that W ? ⊆ V . Then ↓j∗[W ] ∈ U

and we claim ↓j∗j∗[W ] ⊆ V . An element of j∗j∗[W ] is of the form j∗j
∗(w)

for w ∈ W . Note that if j∗j∗(w) G a, then by strong density of j we have
j∗(w) = j∗j∗j

∗(w) G j∗(a), which in turn means w G a. Thus, the open
sublocale j∗j∗(w) is contained in wk-cl(w). But w ∈ W satisfies st(w,W ) ≤ v
for some v ∈ V . Now by Lemma 3.3 we have j∗j∗(w) ≤ wk-cl(w) ≤ v and
hence j∗j∗(w) ∈ V , as claimed.
Now recall that the right adjoint γ∗ is an indexed regular Cauchy filter.

In fact, this is true of every strongly dense uniform embedding, which helps
explain why there is a link between Cauchy filters and completeness in the
first place.
Lemma 4.9. Let j : (X,U)→ (Y,V) be a strongly dense embedding of uniform
locales. Then the right adjoint j∗ : OX → OY is an (OY)-indexed regular
Cauchy filter.
Proof : Since j∗ preserves meets it satisfies conditions (i) and (ii) and strong
density means j∗(a) ≤ !∃(a) and hence condition (iii) holds.
To see condition (iv) holds recall that j is a uniform embedding and so each

uniform covering downset U ∈ U satisfies U ⊇ ↓j∗[V ] for some V ∈ V. We
then have ∨u∈U j∗(u) ≥ ∨

v∈V j∗(j∗(v)) ≥ ∨
v∈V v = 1, as required.
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Now note that if b C j∗(a), then j∗(b) C j∗j∗(a) = a and hence j∗(a) =∨
bCj∗(a) b ≤

∨
j∗(b)Ca b ≤

∨
j∗(b)Ca j∗j

∗(b) ≤ ∨
b′Ca j∗(b′), which is the regularity

condition (v).

We are now able to prove that CX is, in a sense, the largest uniform locale
into which X can be strongly densely embedded.

Proposition 4.10. Let j : X ↪→ Y be any strongly dense embedding of
uniform locales. Then γ : X ↪→ CX factors uniquely through j to give a
strongly dense uniform embedding k : Y ↪→ CX.

Proof : By Lemma 4.9 we have that j∗ : OX → OY is an indexed regular
Cauchy filter. Then by the universal property of CX this gives a locale
map k : Y → CX whose corresponding frame homomorphism is defined by
[a ∈ F ] 7→ j∗(a). This indeed composes with j∗ to give γ∗, since j∗j∗ = idOX .
Pulling back a basic uniform cover on CX along k gives ↓{k∗γ∗(u) | u ∈ U}

for U a uniform cover on X. But note that k∗γ∗ = j∗ and so by Lemma 4.8
these give a base of uniform covers of Y . Hence k is uniform and initial. Now
to show that k is a uniform embedding it remains to prove k∗ is surjective.
Observe that if b C a in OY then b ≤ ∨{v ∈ V | v G b} ≤ a for some basic
uniform cover V of Y and hence each a ∈ OY is a join of elements of the
form k∗γ∗(u). Consequently, k∗ is indeed surjective. Finally, k is strongly
dense since γ is and the map k is unique since j is epic by Corollary 3.13.

It follows that CX is indeed the completion of X.

Theorem 4.11. The uniform locale CX is the unique completion of X.

Proof : We first show that CX is complete. Suppose e : CX ↪→ Y is a strongly
dense uniform embedding. Then by Proposition 4.10 we have that eγ factors
through γ to give a uniform map f : Y → CX such that γ = feγ. But
γ is strongly dense and hence epic, so that fe = idCX and e is a split
monomorphism. But e is also an epimorphism and thus an isomorphism.
Therefore, CX is complete.
Now we show uniqueness. Suppose e′ : X ↪→ C is a completion of X. Then

by Proposition 4.10 there is a strongly dense uniform embedding f ′ : C ↪→ CX
such that f ′e′ = γ. This is an isomorphism by the completeness of C.

Theorem 4.12. Complete uniform locales form a reflective subcategory
CUnifLoc of UnifLoc with C as the reflector and γ as the unit.
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Proof : By Theorem 4.11, CX is complete. Moreover, γY is an isomorphism
for complete Y , since γY is a strongly dense embedding. Thus, any uniform
map f : X → Y factors through γX to give γ−1

Y Cf . Finally, this factorisation
is unique since γY is epic.

We will occasionally wish to talk about the completion of a pre-uniform
locale. This may be defined simply as the completion of its uniform reflection.
On the other hand, the definition of CX works equally well when X is
only a pre-uniform locale and its fundamental properties still go through.
With no essential modification the proof of Proposition 4.5 then shows that
ΥCX ∼= CΥX in this general situation. Moreover, we have γΥXυX = υCXbX .
Even with this generalised notion of completion we have the following result.

Proposition 4.13. The completion of pre-uniform locales preserves finite
products.

Proof : The terminal pre-uniform locale is already a complete uniform locale,
since reflective subcategories are closed under limits in the parent category.
To show that CΥ preserves binary products, it suffices to show that the

canonical map from Υ(X × Y ) to CΥX × CΥY is a strongly dense uniform
embedding. The latter is complete, since as a reflective subcategory, complete
uniform locales are closed under products.
Certainly the unit υX : X → ΥX is strongly dense since it is an epimorphism

of locales. Also, we already know that γΥX : ΥX → CΥX is strongly dense.
Therefore, the composite γΥXυX : X → CΥX is strongly dense (and similarly
for Y ). It then follows that the product map X × Y → CΥX × CΥY is
strongly dense. This factors through the unit map υX×Y : X×Y → Υ(X×Y )
to give the map in question. Now as required, this map is strongly dense
since it is the second factor of strongly dense map.

The functoriality of C means that uniform maps between pre-uniform locales
lift to (uniform) maps between their completions. However, these are not the
only maps that lift to (not-necessarily-uniform) maps between the completions.

Lemma 4.14. A general locale map f : X → Y between pre-uniform locales
lifts to give a (unique) locale map f̃ : CΥX → CΥY such that f̃γΥXυX =
γΥY υY f if and only if (γΥX)∗(υX)∗f ∗ sends uniform covers to covers.

Proof : The reverse direction of the proof proceeds as in the proof of Pro-
position 4.6. The composite map (γΥX)∗(υX)∗f ∗ is an OCX-indexed Cauchy
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filter on Y and thus lifts to give a frame homomorphism from OCY to OCX.
Then the universal property of the uniform reflection of CY (together with
the isomorphism ΥCX ∼= CΥX) gives the desired lift f̃ : CX → CY .
For the forward direction consider the following calculation.

(γΥX)∗(υX)∗f ∗υ∗Y γ∗ΥY = (γΥX)∗(υX)∗υ∗Xγ∗ΥX f̃ ∗ ≥ f̃ ∗

Certainly, the frame homomorphism f̃ sends all covers to covers and hence
so does (γΥX)∗(υX)∗f ∗υ∗Y γ∗ΥY . But we also know that (γΥY )∗ and (υY )∗
preserve uniform covers and hence (γΥX)∗(υX)∗f ∗υ∗Y (υY )∗, which is equal to
(γΥX)∗(υX)∗f ∗υ∗Y γ∗ΥY (γΥY )∗(υY )∗, sends uniform covers to covers. Now in the
proof of Proposition 2.9 we showed uniform covers of the form ↓υ∗Y (υY )∗[U ]
form a base for the uniformity on Y and hence (γΥX)∗(υX)∗f ∗ also sends
uniform covers to covers, as required.
This can also be expressed in terms of entourages.

Corollary 4.15. A locale map f : X → Y between pre-uniform locales lifts to
a locale map f̃ : CΥX → CΥY as above if and only if (γΥXυX × γΥXυX)∗(f ×
f)∗ sends entourages on Y to reflexive relations on CΥX.

Proof : We must simply show that (γυ × γυ)∗(f × f)∗ sends entourages to
reflexive relations if and only if γ∗υ∗f ∗ sends uniform covers to covers.
The proof of the forward direction proceeds almost exactly as in the proof

that the map (X, E) 7→ (X, Ê) is functorial in Theorem 3.8 (and using
u ≤ γ∗υ∗f

∗(v) ⇐⇒ υ∗γ∗(u) ≤ f ∗(v) as appropriate).
Conversely, suppose γ∗υ∗ sends uniform covers to covers. Using the same

notation as in Theorem 3.8 (and applying Lemma 1.2) we have
∆∗(γυ × γυ)∗(f × f)∗(V ) =

∨
{γ∗υ∗(a) ∧ γ∗υ∗(b) | a⊕ b ≤ (f × f)∗(V )}

=
∨
{γ∗υ∗(c) | c⊕ c ≤ (f × f)∗(V )}

=
∨
{γ∗υ∗(c) | c⊕ c ≤

∨
{f ∗(v)⊕ f ∗(v) | v ∈ V }}

≥
∨
{γ∗υ∗(c) | c ≤ f ∗(v), v ∈ V }

=
∨
{γ∗υ∗f ∗(v) | v ∈ V }

=
∨

(↓γ∗υ∗f ∗[V ])
= 1.

Thus, (γυ × γυ)∗(f × f)∗ indeed sends entourages to reflexive relations, as
required.
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It is sometimes convenient to be able to describe the completion of a (pre-)
uniform locale X in terms of basic opens and basic uniformities on X instead
of all elements of OX. This was done in the metric case by Henry in [9]. We
conclude this section with a discussion of how to do this in our setting.
Let X be a locale and let B be a collection of covers of X by positive opens

such that {↓C | C ∈ B} is a base for a covering uniformity U on X. Set
B = ⋃B.
Note that every element of OΥX is a join of elements of B. For a ∈ OΥX

we have a ≤ ∨
bCa b. Now b C a means b ≤ st(b, C) = ∨{c ∈ C | c G b} ≤ a for

some C ∈ B and so a ≤ ∨{c | C ∈ B, c ∈ C, b ∈ OX, st(b, C) ≤ a, c G b} ≤ a.
By replacing each element c of each C ∈ B by ∨

c′Cc c
′ we may assume

without loss of generality that B ⊆ OΥX and hence that B is a base for
OΥX.

Proposition 4.16. Given X, B and B as defined above, the completion CΥX
has an alternative presentation with a generator [b ∈ FB] for each b ∈ B and
the following relations:

a) [a ∈ FB] ≤ [b ∈ FB] for a ≤ b,
b) [a ∈ FB] ∧ [b ∈ FB] ≤ ∨

c∈B∩↓a∩↓b[c ∈ FB],
c) ∨c∈C [c ∈ FB] = 1 for each C ∈ B,
d) [a ∈ FB] ≤ ∨

b∈B, bCa[b ∈ FB].

Proof : We first note that every generator [a ∈ F ] in the original presentation
for CX satisfies [a ∈ F ] = ∨

b∈B∩↓a[b ∈ F ]. To see this, recall that [a ∈ F ] ≤∨
a′Ca[a′ ∈ F ] by regularity and that a′ C a means st(a′, C) ≤ a for some
C ∈ B. Then by Cauchiness we have [a′ ∈ F ] ≤ [a′ ∈ F ] ∧ ∨c∈C [c ∈ F ] =∨
c∈C [a′ ∧ c ∈ F ]. Putting these together, we find

[a ∈ F ] ≤
∨
{[a′ ∧ c ∈ F ] | C ∈ B, c ∈ C, a′ ∈ OX, st(a′, C) ≤ a}.

Now by properness (that is, condition (iii) for the presentation) we can restrict
the join to the elements [a′ ∧ c ∈ F ] such that a′ G c. But a′ G c and c ∈ C
give c ≤ st(a′, C) ≤ a and hence [a ∈ F ] ≤ ∨{[c ∈ F ] | C ∈ B, c ∈ C, c ≤
a} ≤ ∨

c∈B∩↓a[c ∈ F ], as claimed.
We can use this to show the generators [b ∈ F ] for b ∈ B indeed satisfy the

above relations required for [b ∈ FB]. That (a) and (b) hold is immediate
from (ii) and the claim above, while relation (c) follows from (iv). Finally,
relation (d) follows from the regularity condition (v) and the above claim.
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It remains to define [a ∈ F ] in terms of [b ∈ FB] show that relations (i)–(v)
for the original presentation follow from (a)–(d). The claim suggests defining
[a ∈ F ] to be ∨b∈B∩↓a[b ∈ F ]. Condition (i) says that ∨b∈B[b ∈ FB] = 1, which
holds by (c) and the fact that, as a base, B is inhabited. The “≤” direction of
(ii) follows from (a), while for the “≥” direction follows from (b). Condition
(iii) comes from the fact that every b ∈ B is positive. Finally, (iv) and (v)
follow from (c) and (d) respectively.

5. Examples and applications
In this section we discuss the relationship between metric and uniform

locales and some applications of uniform locales to localic algebra.

5.1. Metric locales. Classically, perhaps the most important example
of uniform spaces is given by metric spaces. As one might expect, in the
constructive setting metric locales also have uniform structures. Our definition
of metric locales follows that of Henry in [9].
Metric locales take values in the nonnegative extended upper reals ←−−R∞≥0 —

the classifying locale of extended upper Dedekind cuts on the set of positive
rationals Q+. Explicitly, a presentation of O←−−R∞≥0 has a generator [0, q) for
each q ∈ Q+ subject to the relations [0, q) = ∨

p<q[0, p).
Definition 5.1. A pre-metric locale is an overt locale X equipped with a
locale map d : X ×X →←−−R∞≥0 such that in the internal logic we have

• d(x, x) = 0 (x : X),
• d(x, y) = d(y, z) (x, y : X),
• d(x, z) ≤ d(x, y) + d(y, z) (x, y, z : X),

where ≤ is interpreted as the reverse of the order enrichment.
If (X, d) is a metric locale, we now attempt to define a uniformity Ed on X

with basic entourages of the form Eq = d∗([0, q)) for each q ∈ Q+.
Lemma 5.2. This indeed gives a pre-uniform locale (X, Ed).
Proof : Since Ep ≤ Eq for p ≤ q, it is clear that the basic entourages Eq form
a filter base. For the reflexivity condition, we know that in the internal logic
we have d(x, x) = 0 < q and hence (x, x) ∈ Eq, as required. The symmetry
condition follows from the fact that Ed is symmetric by the symmetry condition
on d. Finally, we will show Eq/2 ◦ Eq/2 ≤ Eq. In the internal logic, (x, z) ∈
Eq/2 ◦Eq/2 means ∃y : X. (x, y) ∈ Eq/2 ∧ (y, z) ∈ Eq/2. That is, d(x, y) < q/2
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and d(y, z) < q/2. By the triangle inequality it follows that d(x, z) ≤
d(x, y) + d(x, y) < q/2 + q/2 = q. Thus, (x, z) ∈ Eq and we have shown the
desired inclusion.

This construction also interacts well with morphisms of pre-metric spaces.

Definition 5.3. A map f : X → Y between pre-metric locales is nonexpansive
if we have `x,y : X dY (f(x), f(y)) ≤ dX(x, y) in the internal logic — that is, if
EX
q ≤ (f × f)∗(EY

q ) for all q ∈ Q+.

From this definition it is clear that a nonexpansive map is uniform with
respect to the induced pre-uniformities. Thus, the association of the above
metric uniformity to a metric locale to a uniform locale gives a forgetful
functor from the category PMetLoc of pre-metric locales and nonexpansive
maps to PUnifLoc, which commutes with the obvious forgetful functors into
OLoc.
There is a relation Cq on pre-metric locales, the definition of which is

precisely equivalent to a Cq b ⇐⇒ (a⊕ a) ◦ Eq ≤ b⊕ b. Then the definition
of C by a C b ⇐⇒ ∃q ∈ Q+. a Cq b coincides with the usual uniformly
below relation for the metric uniformity.

Definition 5.4. A metric locale is a pre-metric locale X for which a = ∨
bCa b

for all a ∈ OX. By the above discussion, this is clearly the equivalent to the
metric uniformity being admissible.

Thus, the forgetful functor PMetLoc→ PUnifLoc restricts to a functor
U from the category MetLoc of metric locales to UnifLoc.
Finally, we note that the completion of a metric locale described in [9]

agrees with the completion of the underlying uniform locale in the sense that
the following diagram commutes.

MetLoc CMetLoc

UnifLoc CUnifLoc

U U

C

C
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5.2. Localic groups. Another important class of examples of uniform spaces
is given by topological groups. In our setting we will see that every overt
localic group has a natural uniform structure.
By localic group we simply mean an internal group in Loc. More explicitly,

this means we have a locale G and maps ε : 1→ G, ι : G→ G and µ : G×G→
G satisfying the group axioms.

Remark 5.5. Localic groups are the pointfree analogue of topological groups.
However, even though classically every T0 topological group is Tychonoff and
hence sober, not every topological group is the spectrum of a localic group,
since a product of two locales can diverge from that of the corresponding
spaces. The difference between the two theories can be understood in terms
of uniform structures: every localic group satisfies a certain completeness
condition (as shown in [4] in the classical setting).

Definition 5.6. Let G be an overt localic group. The left uniformity on G is
given by the following set of basic entourages: for each open neighbourhood
of the identity u we define Lu to be {(x, y) : G×G | x−1y ∈ u} in the internal
logic.
The right uniformity is similar with Ru = {(x, y) : G×G | xy−1 ∈ u}. The

two-sided uniformity is the join of these in the lattice of uniformities. It has a
base consisting of the entourages Tu = {(x, y) : G×G | x−1y ∈ u ∧ xy−1 ∈ u}.

Lemma 5.7. These all define admissible uniformities on G.

Proof : We will show this for the left uniformity. The proof for the right
uniformity is similar and the result for the two-sided uniformity follows from
the results for the other two uniformities.
First note that {Lu | ε∗(u) = >} is a filter base, since Lu∧v = Lu ∧ Lv. We

have that each basic entourage Lu is reflexive, since x−1 · x = 1 ∈ u. For the
symmetry condition it is enough to show Lo

u = Lι∗(u) and this holds since
x−1y ∈ u if and only if y−1x = (x−1y)−1 ∈ ι∗(u).
For the transitivity condition, we must find an open neighbourhood of the

identity v such that Lv ◦ Lv ≤ Lu. In the internal logic, we have 1 · 1 = 1 ∈ u
and so ` (1, 1) ∈ µ∗(u). Since elements of the form a ⊕ b form a base for
O(G×G), there are a and b such that (1, 1) ∈ a⊕b ≤ µ∗(u). Setting v = a∧b
it follows that 1 ∈ v and v ⊕ v ≤ µ∗(u). Now take (x, y) and (y, z) in Lv.
Then x−1y, y−1z ∈ v ≤ µ∗(u). Multiplying these we then have x−1z ∈ u and
so (x, z) ∈ Lu. Thus, we have shown Lv ◦ Lv ≤ Lu as required.
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Finally, we demonstrate admissibility. We first observe that if ε∗(u) = >
and a⊕ u ≤ µ∗(b), then (a⊕ a) ◦ Lu ≤ b⊕ b. To see this it suffices to show
y ∈ a ∧ y−1z ∈ u `y,z : G z ∈ b by Lemma 2.3. Suppose y ∈ a and y−1z ∈ u.
Then (y, y−1z) ∈ a⊕ u ≤ µ∗(b), so that z = yy−1z ∈ b, as required.
In particular, we have shown that if ε∗(u) = > and a ⊕ u ≤ µ∗(b), then

a C b. So to show admissibility, it suffices to prove that b ≤ ∨{a ∈ OG |
ε∗(u) = >, a⊕ u ≤ µ∗(b)}. But the axiom x · 1 = x means that (OG⊕ ε∗)µ∗
is the canonical isomorphism OG ∼= OG⊕ Ω and so

b⊕> = (OG⊕ ε∗)µ∗(b)
= (OG⊕ ε∗)

(∨
{a⊕ u | a⊕ u ≤ µ∗(b)}

)
=
∨
{a⊕ ε∗(u) | a⊕ u ≤ µ∗(b)}

=
∨
{a⊕> | ε∗(u) = >, a⊕ u ≤ µ∗(b)}

and the desired result follows.
As before we see this assignment of uniformities is functorial.

Lemma 5.8. Every homomorphism f : G→ H of localic groups is uniform
with respect to the left, right or two-sided uniformities.

Proof : Simply observe that (f × f)∗(Lu) = Lf∗(u) and similarly for Ru and
Tu.
Thus, we obtain three functors L, R and T from the category OLocGrp

of overt localic groups to UnifLoc which each commute with the forgetful
functors to OLoc.
We can now proceed as in [4] to show that an overt locale localic group is

complete with respect to its two-sided uniformity.

Lemma 5.9. The multiplication µ : G × G → G on an overt localic group
lifts to a map µ̃ : CG× CG→ CG on the completion with respect to the left,
right or two-sided uniformity.

Proof : Let us first show this for the completion with respect to the left
uniformity. By Proposition 4.13 and Corollary 4.15 it suffices to show that
(γG × γG)∗µ∗ sends entourages to reflexive relations. Here (γG × γG)∗µ∗(c) =∨{[a ∈ F ]⊕ [b ∈ F ] | a⊕ b ≤ µ∗(c)} and so for each open neighbourhood of
the identity u we must show∨

{[a ∈ F ]⊕ [b ∈ F ] | a⊕ b⊕ a⊕ b ≤ (µ× µ)∗(Lu)} = 1.
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Note that in the internal logic the inequality in above join says that
x, x′ ∈ a ∧ y, y′ ∈ b `x,y,x′,y′ : G y−1x−1x′y′ ∈ u. (∗)

Consider b ‘sufficiently small’ in the sense that b⊕ b ≤ Lv for some v to be
determined and set w = {z : G | ∃ỹ, ỹ′ : b. ỹ−1zỹ′ ∈ v} in the internal logic.
Note that ` 1 ∈ w.
Now take a ∈ OG such that a ⊕ a ≤ Lw. Note that since Lv and Lw are

entourages taking the join of [a ∈ F ]⊕ [b ∈ F ] over all such a and b gives∨
{[a ∈ F ]⊕[b ∈ f ] | a⊕a ≤ Lwb

, b⊕b ≤ Lv} =
∨
{1⊕[b ∈ f ] | b⊕b ≤ Lv} = 1.

This will imply that the desired join is also 1 once we show that these choices
for a and b satisfy condition (∗) above. Expanding the definition of a we
have x, x′ ∈ a `x,x′ : G ∃ỹ, ỹ′ : b. ỹ−1x−1x′ỹ′ ∈ v, which is close to the desired
condition. We must just ensure that each y and y′ in b are close to the given
ỹ and ỹ′.
Indeed, if x, x′ ∈ a and y, y′ ∈ b then we know there exist ỹ, ỹ′ ∈ b such

that (xỹ, x′ỹ′) ∈ Lv. But also, y, ỹ ∈ b implies (y, ỹ) ∈ Lv, which in turn
gives (xy, xỹ) ∈ Lv. Similarly, (x′ỹ′, x′y′) ∈ Lv. Combining these we find
(xy, x′y′) ∈ Lv ◦ Lv ◦ Lv. Choosing Lv so that Lv ◦ Lv ◦ Lv ≤ Lu then yields
the desired result.
Thus, we have shown (γG × γG)∗µ∗ sends the entourages Lu to reflexive

relations. Entirely dually, the entourages Ru for the right uniformity are also
sent to reflexive relations.
To prove a similar result for the basic two-sided entourages Tu = Lu∧Ru, we

consider both b⊕ b ≤ Tv and a⊕a ≤ Twb
as above, as well as a′⊕a′ ≤ Tv′ and

b′⊕b′ ≤ Tw′a′ as for the right uniformity. Then the join of [a∧a′ ∈ F ]⊕ [b∧b′ ∈
F ] over all such a, a′, b and b′ is again a cover, since it is the meet of two
covers. Finally, for x, x′ ∈ a ∧ a′ and y, y′ ∈ b ∧ b′, we find (xy, x′y′) ∈ Lu
as above and dually (xy, x′y′) ∈ Ru. Thus, (xy, x′y′) ∈ Lu ∧ Ru = Tu.
Thus, ∨{[a ∈ F ] ⊕ [b ∈ F ] | a ⊕ b ⊕ a ⊕ b ≤ (µ × µ)∗(Tu)} is also 1 and
(γG × γG)∗µ∗ sends two-sided entourages to reflexive relations. Hence µ lifts
to the completion with respect to the two-sided uniformity.
Theorem 5.10. Every overt localic group G is complete with respect to its
two-sided uniformity.

Proof : By the previous lemma the multiplication G lifts to the completion
CG. Moreover, the inversion map ι simply exchanges left and right entourages,
so it uniformly continuous with respect to the two-sided uniformity and hence
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clearly also lifts to the completion. Of course, the unit lifts too. Since Gn

is a strongly dense sublocale of (CG)n, the group axioms hold on a strongly
dense sublocale of CG. But since CG is uniformisable, it is weakly Hausdorff
and so the sublocale on which the axioms hold is weakly closed. Thus, they
must hold everywhere.
It follows that CG is a localic group and G is a strongly dense localic

subgroup. But it is well-known that an overt subgroup of a localic group is
weakly closed (see [11] for a constructive proof). Thus, G ∼= CG and G is
complete.

5.3. Real numbers and the completion of rings. Another important
application of completions is the construction of the localic ring of reals as
the completion of the ring of rational numbers. The rationals are best viewed
as a discrete locale Q. This has a pre-uniform structure which can be given
by the usual Euclidean metric or directly from a base of entourages of the
form Eq = {(x, x′) ∈ Q×Q | |x− x′| < q} for q ∈ Q+.
We can use Proposition 4.16 to obtain a presentation for the completion of

Q. An appropriate set B of basic uniform covers consists of Cq = ↓{(p, p+q) ⊆
Q | p ∈ Q} for q ∈ Q+ and where (r, s) denotes the interval of rationals lying
strictly between r and s (for r < s). The resulting presentation of CΥQ has
generators ((r, s)) for r < s ∈ Q and the relations:

• ((r, s)) ∧ ((r′, s′)) = ((r ∨ r′, s ∧ s′)) for r, r′ < s, s′,
• ((r, s)) ∧ ((r′, s′)) = 0 otherwise,
• ∨p∈Q((p, p+ q)) = 1 for q > 0,
• ((r, s)) ≤ ∨

r<r′<s′<s((r′, s′)).
It is easy to see this is isomorphic to the usual frame of reals OR as presented
in terms of Dedekind cuts (with generators `q and uq meaning q is in the
lower or upper cut respectively) via frame homomorphisms sending ((r, s)) to
`r ∧ us in the one direction and sending `r to

∨
s>r((r, s)) and us to

∨
r<s((r, s))

in the other direction. A proof of a similar equivalence can be found in [19,
Chapter XIV, Proposition 1.2.1].
Now let us discuss the lifting of the ring operations to R. We note that the

uniformity on Q is translation invariant.

Definition 5.11. A uniformity on a localic abelian group G is translation
invariant if it has a base of entourages E such that (x, y) ∈ E `x,y,z : G
(x+ z, y + z) ∈ E.
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For translation-invariant entourage E we always have (x, y) ∈ E a`x,y : G
(x− y, 0) ∈ E (by taking z = ±y). Now since u := {z : G | (z, 0) ∈ E} is an
open neighbourhood of the identity, each basic entourage in a translation-
invariant uniformity is of the form Tu (the three group uniformities coincide
for abelian G). In this way, a translation-invariant uniformity can be specified
by giving a collection of open neighbourhoods of the identity.
The operations of a localic abelian group always respect translation-invariant

pre-uniform structures.

Lemma 5.12. Let E be a translation-invariant uniformity on a localic abelian
group G. Then the operations of G are uniformly continuous with respect to
E.

Proof : Inversion is uniformly continuous by commutativity and it is trivial
that the unit is uniformly continuous. For the addition we consider an
entourage T ∈ E and take a symmetric entourage F ∈ E such that F ◦ F ≤
E. To show addition is uniformly continuous it is enough to show that
(x, x′), (y, y′) ∈ F `x,x′,y,y′ : G (x + y, x′ + y′) ∈ E. But if (x, x′), (y, y′) ∈ F
then (x + y, x′ + y) ∈ F and (x′ + y, x′ + y′) ∈ F by translation invariance.
Thus, (x+ y, x′ + y′) ∈ F ◦ F ≤ E as required.

Remark 5.13. This yields an analogue of Lemma 5.9 restricted to abelian
groups, but for general translation-invariant uniformities. In fact, the re-
striction to the abelian case is not necessary. If we define a notion of left-
or right-translation-invariant uniformity on a non-abelian group G, then a
simple modification of the proof of Lemma 5.9 shows that the multiplication
on G lifts to the ‘pre-uniform completion’ of G with respect to any such
uniformity — and for any uniformity with a base of entourages of the form
Tu.

Corollary 5.14. The (pre-uniform) completion with respect to a translation-
invariant uniformity preserves the abelian group structure of G. Moreover,
this gives a reflection from the category of translation-invariant pre-uniform
localic abelian groups onto the category of localic abelian groups (with their
canonical group uniformities).

Thus, in particular the additive structure on Q extends to R. That the
entire ring structure extends to R is a consequence of the following general
result, which is a pointfree analogue of [5, III, §6.5, Proposition 6].
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Proposition 5.15. Let R be a localic ring equipped with a pre-uniform struc-
ture that is translation invariant with respect to its additive group. Further-
more, suppose the multiplication µ× : R × R → R is ‘continuous at 0’ with
respect to the pre-uniform structure in the sense that whenever Tu is an en-
tourage, there is an entourage Tv such that v ⊕ v ≤ µ∗×(u). Then CΥR has
the structure of a localic ring and the map γΥRυR : R→ CΥR is a localic ring
homomorphism.

Proof : It suffices to show that the multiplication lifts to the completion.
Similarly to before, by Corollary 4.15 it is enough to show∨

{[υ∗(a) ∈ F ]⊕ [υ∗(b) ∈ F ] | a⊕ b⊕ a⊕ b ≤ (µ× × µ×)∗(Tu)} = 1

for each basic entourage Tu. Note that the inequality can be expressed in the
internal logic as x, x′ ∈ a ∧ y, y′ ∈ b `x,y,x′,y′ : G xy − x′y′ ∈ u. Now consider
the following sequence of equalities.

xy − x′y′ = xy − xy′ + xy′ − x′y′

= x(y − y′) + (x− x′)y′

= (x̃+ x− x̃)(y − y′) + (x− x′)(ỹ + y′ − ỹ)
= x̃(y − y′) + (x− x̃)(y − y′) + (x− x′)ỹ + (x− x′)(y′ − ỹ)

By the uniform continuity of addition there is a u′ such that Tu′ is an entourage
and whenever each of these terms lies in u′ their sum xy − x′y′ lies in u.
Consider a ∈ OR such that a ⊕ a ≤ Tv for some entourage Tv to be

determined later. Note that ∨{[υ∗(a) ∈ F ] | a ⊕ a ≤ Tv} = 1 since Tv
is an entourage. We set w = {z : R | z ∈ v ∧ ∃x̃ : a. x̃z ∈ u′} and note
that ` 1 ∈ w. Now take b ⊕ b ≤ Tw. As before we find that the join of
[υ∗(a) ∈ F ]⊕ [υ∗(b) ∈ F ] over all such a and b is 1. In the internal logic, if
x, x′ ∈ a and y, y′ ∈ b we have x − x′, y − y′ ∈ v and some x̃ ∈ a such that
x̃(y − y′) ∈ u′.
We also wish to show (x− x̃)(y−y′) ∈ u′. We know x− x̃ ∈ v and y−y′ ∈ v.

Now we use ‘continuity at 0’ to choose v such that v ⊕ v ≤ µ∗×(u′), which
gives the desired result.
Similarly, a dual choice of a and b gives that the other two terms lie in u′.

Taking the meet of these two choices of a and b then means all of the terms lie
in u′ and hence xy − x′y′ ∈ u. Thus, the result follows as in Lemma 5.9.

Corollary 5.16. The ring structure on Q lifts to a ring structure on R.
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Proof : By the above it suffices to show the multiplication on Q is ‘continuous
at 0’. This amounts to showing for each ε ∈ Q+ there is a δ ∈ Q+ such that
if |x|, |y| < δ then |xy| < ε. We can now simply take δ = min(ε, 1) so that
|xy| = |x||y| < δ2 ≤ ε · 1 = ε.

Remark 5.17. We can also show in an entirely analogous way (using the p-adic
absolute value) that the p-adic uniformity on Q is translation invariant and
continuous at 0 and hence there is an induced localic ring structure on the
resulting locale of p-adic numbers.
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