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Abstract: This paper aims to propose a finite difference method for an differential-
algebraic systems that couples an elliptic equation with a convection-diffusion-
reaction equation with mixed derivatives. The parabolic equation depends on the
gradient of the solution of the elliptic equation. If the numerical approximation
for this gradient presents lower accuracy then the numerical approximations for the
solution of the parabolic equation can be deteriorated. In order to get a second
order approximation for the solution of the parabolic equation, the challenges that
we have to face are the construction of the right discretizations of the elliptic and
parabolic equations that lead to a second order approximation for the gradient as
well as the development of the numerical analysis of the proposed method. Numeri-
cal simulations in the context of cell dynamics in a colonic crypt of the human colon
will be presented.

Keywords: Coupled system of elliptic and parabolic equations, Mixed derivatives,
Finite difference methods, Cell dynamics, Colonic crypt.

1. Introduction
This paper intents to propose a numerical method for the initial boundary

value problem (IBVP)
−∇ · (A∇p) = αc,
∂c

∂t
+∇ · (v(∇p)c) = ∇ · (DA∇c) + βc, in Ω× (0, T ],

p = 0 , c = 0 on ∂Ω× (0, T ],

c(0) = c0 in Ω,

(1)

where Ω = (0, 1)2, ∂Ω represents its boundary, T denotes a final time, A
represents a matrix of order 2 with entries Aij, i, j = 1, 2, α and β are
bounded functions in Ω, v : R2 → R2 with v = (v1, v2), is such that v` :
R2 → R, ` = 1, 2, are bounded and Lipschitz functions, that is, there exists a
positive constant Lv such that |v`(z)−v`(z̃)| ≤ Lv‖z−z̃‖2, z, z̃ ∈ R2. It should
be pointed out that, for z ∈ R2, v(z) should be identified with −Az when
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‖z‖∞ << +∞, and lim
‖z‖∞→+∞

‖v(z)‖∞ = v∞ < +∞. This last assumption

means that the convective velocity v(∇p) is bounded when ‖∇p‖∞ → +∞.
Later, we take v(z) = −Az, z ∈ R2 in the examples in Section 5 and v(z) =
−ξAz in Section 6, where ξ > 0 is constant. We refer to c and p in (1) as
concentration and pressure, respectively.

To solve numerically the IBVP (1) we can use the MOL (method of lines)
approach: spatial discretization followed by a time integration. The spatial
discretization converts the IBVP (1) in a differential-algebraic system - an or-
dinary differential system coupled with a system of algebraic equations. This
system can be solved numerically using an efficient and accurate numerical
method for this kind of problems (see for instance [2], [9]). We observe that
the second equation of (1) depends on the gradient of p defined in the first
equation. If such gradient is not computed with an adequate accuracy then
the accuracy of the approximation for c can be lost. Our aim is to propose
a finite difference method defined on nonuniform rectangular grids of Ω that
presents truncation error of first order with respect to the norm ‖.‖∞ but
leads to a second order approximation for ∇p and for c.

We observe that (1) presents mixed derivatives. This fact leads to addi-
tional difficulties that were analyzed in [4] and [5]) for elliptic equations and
the research in the numerical treatment of these type of derivatives have not
been fruitful. Without being exhaustive we mention [3] where parabolic equa-
tions in high dimension space have been considered and high-order compact
schemes where proposed defined in uniform partitions for each space com-
ponent. In financial market Heston models have been proposed to describe
the time evolution of European option prices that depend on the underlying
asset price and its variance. These models are defined by a PDE presents the
mixed derivative of the option price with respect the underlying asset price
and its variance. A common approach to compute numerical approxima-
tions for the option prices in this case is to use a transformation of variables
that eliminates the mixed derivative term in the new PDE that is defined
in a new domain with a curved boundary. The treatment of the new prob-
lem using finite difference methods presents new difficulties associated with
the spatial grid (see [8] and their references). In [7] the Heston-Hull-White
PDE was discretized using centered finite difference operators in the original
space domain for the underlying asset price, its variance and for the risk as-
set domains, considering nonuniform grids that are smooth transformations
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of uniform partitions. No theoretical analysis was present in this work to
support the obtained numerical results.

In this paper our aim is to propose a semi-discrete finite difference method
(FDM) to compute approximations for the pressure p and concentration c
defined by the IBVP (1). The FDM is considered in nonuniform rectangular
grids and it leads to a second order approximation for p and c with respect to
a discrete version of the usual H1-norm. Particular attention will be given to
(1) in the context of the cell dynamics in a colonic crypt of the human colon.
The human colon is prone to develop a cancer due to its cell renovation
that consists in a large number of cell divisions per day located in small
cavities of the colon epithelium, called crypts. The colon epithelium is filled
by millions of crypts, and it is known that mutations in the cell proliferation
process (inside the crypts) can lead to the carcinogenesis. The model that
governs the interactions between three populations of cells is a coupled PDE
system formed by an elliptic and parabolic equations whose unknowns are
the proliferative cell density c and the exerted cell pressure p.

The paper is organized as follows. In Section 2 we introduce notations and
basic results. In Section 3 we present a first attempt to conclude the stability
of the semi-discrete problem where we conclude that we need to impose
the uniform boundness of the numerical gradient of p to get stability. This
results is proved starting by establishing the uniform boundness of the semi-
discrete approximations. The convergence analysis of the proposed semi-
discrete approximation is established in Section 4. Section 5 is devoted to
the numerical illustration of the convergence results established here and the
numerical behavior of p and c in the context of the proliferative cell density
and the exerted cell pressure in a human colonic crypt is the focus of Section
6. Finally, in Section 7 we present some conclusions.

2. Definition and preliminary results
Let Ω = (0, 1)2 and Λ be a sequence of vectorsH = (h, k), h = (h1, . . . , hN), k =

(k1, . . . , kM) with positive entries satisfying
N∑
i=1

hi =
M∑
j=1

kj = 1. Let Hmax =

max{hmax, kmax} with hmax = max
i=1,...,N

hi and kmax = max
j=1,...,M

kj. Analo-

gously, we define Hmin = min{hmin, kmin} with hmin = min
i=1,...,N

hi and kmin =

min
j=1,...,M

kj. We assume that Hmax → 0. For H ∈ Λ we introduce in Ω = [0, 1]2
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the spatial grid ΩH defined by

ΩH = {(xi, yj), i = 0, . . . , N, j = 0, . . . ,M, x0 = y0 = 0, xN = yM = 1,
xi = xi−1 + hi, i = 1, . . . , N, yj = yj−1 + kj , j = 1, . . . ,M}.

We introduce also the following sets

∂ΩH = ΩH ∩ ∂Ω, ΩH = ΩH/∂ΩH .

Let WH be the vector space of grid function uH : ΩH → R. By WH,0 we
represent the subspace of WH of the grid functions that are null on ∂ΩH

where we consider the following inner product

(vH , wH)H =

N−1,M−1∑
i,j=1

hi+ 1
2
kj+ 1

2
vH(xi, yj)wH(xi, yj), vH , wH ∈ WH,0,

where hi+ 1
2

=
hi + hi+1

2
being kj+ 1

2
defined analogously. By ‖.‖H we represent

the norm induced by the last inner product.
We use the following notations: for vH = (vH,1, vH,2),wH = (wH,1, wH,2) ∈

[WH ]2,

(vH ,wH)H− = (vH,1, wH,1)h− + (vH,2, wH,2)k−,

with

(vH,1, wH,1)h− =

N,M−1∑
i,j=1

hikj+ 1
2
vH,1(xi, yj)wH,1(xi, yj)

being (vH,2, wH,2)k− defined analogously.
We also introduce in [WH ]2 the semi-norm

‖vH‖H− = (vH ,vH)
1/2
H− =

(
‖vH,1‖2

h− + ‖vH,2‖2
k−
)1/2

,

where ‖vH,1‖2
h− = (vH,1, vH,1)h− and ‖vH,2‖2

k− is defined analogously.
By ∇H− = (D−x, D−y) we denote the discrete gradient where D−x, D−y are

the backward finite difference operators in x, y-directions respectively. We
introduce now in WH,0 the following discrete version of the usual H1-norm

‖vH‖1,H =
(
‖vH‖2

H + ‖∇H−vH‖2
H,−

)1/2

, vH ∈ WH,0.

Let D?
x be defined by

D?
xvH(xi, yj) =

vH(xi+1, yj)− vH(xi, yj)

hi+ 1
2

,
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being D?
y defined analogously. By ∇∗H we represent the following operator

∇∗H .vH(xi, yj) = D?
xvH,1(xi, yj) +D?

yvH,2(xi, yj), (xi, yj) ∈ ΩH ,

for vH = (vH,1, vH,2) ∈ [WH ]2.
By Dc,x we denote the first order centered operator with respect to x di-

rection

Dc,xvH(xi, yj) =
vH(xi+1, yj)− vH(xi−1, yj)

hi + hi+1
,

being Dc,y the correspondent first order centered operator with respect to y
direction. Let ∇c = (Dc,x, Dc,y) be defined by

∇c.vH(xi, yj) = Dc,xvH,1(xi, yj) +Dc,yvH,2(xi, yj),

and

∇cvH(xi, yj) = (Dc,xvH(xi, yj), Dc,yvH(xi, yj)),

for (xi, yj) ∈ ΩH and vH ∈ [WH ]2, vH ∈ WH,0.
We consider also the operator DH = (Dh, Dk) where

DhvH(xi, yj) =
hi+1D−xvH(xi, yj) + hiD−xvH(xi+1, yj)

hi+1 + hi
, (xi, yj) ∈ ΩH ,

for vH ∈ WH , being Dk defined analogously. We will use DhvH(xN , yj) =
D−xvH(xN , yj), DhvH(x0, yj) = D−xvH(x1, yj) , DkvH(xi, yM) = D−yvH(xi, yM),
and DkvH(xi, y0) = D−yvH(xi, y1).

Finally by Mx we denote the average operator

MxvH(xi, yj) =
1

2
(vH(xi, yj) + vH(xi−1, yj)), (xi, yj) ∈ ΩH ,

being My defined analogously. This allows to define the operator MH :
[WH ]2 → [WH ]2 as follows

MH(vH)(xi, yj) = (Mx(vH,1)(xi, yj),My(vH,2)(xi, yj)),vH ∈ [WH ]2.

In order to simplify the presentation, we also consider

Mx(xi, yj) = (1
2(xi + xi−1), yj), My(xi, yj) = (xi,

1
2(yj + yj−1))

a(Mx)(xi, yj) = a(Mx(xi, yj)), a(My)(xi, yj) = a(My(xi, yj)),

with a : Ω→ R.

Proposition 2.1. For all vH , wH ∈ WH,0, a : Ω→ R, we have

‖MxvH‖h− ≤ ‖vH‖H , (2)
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− (D?
x(a(Mx))D−xvH), wH)H = (a(Mx)D−xvH , D−xwH)h−, (3)

− (Dc,xvH , wH)H = (vH , Dc,xwH)H , (4)

− (Dc,xvH , wH)H = (Mx(vH), D−xwH)h−, (5)

− (Dc,x(aDc,yvH), wH)H = (Mx(aDc,yvH), D−xwH)h−, (6)

− (Dc,xvH , Dc,yvH)H ≤ ‖∇H−vH‖2
H−, (7)

‖DhvH‖H ≤
√

2Cg,h‖D−xvH‖h−, (8)

‖vH‖2
H ≤

1

2
‖∇H−vH‖2

H−, (9)

‖vH‖2
∞ ≤

1

2
‖∇H−vH‖2

H−, (10)

where ‖vH‖∞ = max
(x,y)∈ΩH

|vH(x, y)| and
hmax
hmin

≤ Cg,h.

Proof : The proof of (2)-(5) and (7)-(8), can be easily made by direct verifi-
cation. The relation (6) follows from (5) replacing vH by aDc,yvH , To prove
(9) and (10) we observe that

vH(xi, yj)
2 ≤

N∑
`=1

h`(D−xvH(x`, yj))
2, (xi, yj) ∈ ΩH .

Inequality (9) is usually referred as discrete Poincaré-Friedrichs inequality.
In what follows we use the following matrix norm

‖A‖Cmb (R2) = max
i,j=1,2

‖Aij‖Cmb (R2),

where Cm
b (R2) denotes the space of functions defined in R2 with bounded

derivatives of order less or equal thanm ∈ N0, and ‖Aij‖Cmb (R2) = max
`=0,...,m

‖A(`)
ij ‖∞.

The semi-discrete approximation pH(t), cH(t) ∈ WH,0 for the solution of
the differential-algebraic IBVP (1) that we study in this work is defined by
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the following differential-algebraic initial value problem (IVP)
−LApH(t) = αcH(t),

c′H(t) +∇c · (cH(t)v(DHpH(t))) = LB(cH(t)) + βcH(t), in ΩH , t ∈ (0, T ],

pH(t) = cH(t) = 0, on ∂ΩH , t ∈ (0, T ],

cH(0) = RHc0, in ΩH .
(11)

In (11), RH : C(Ω) → WH denotes the restriction operator RHw(xi, yj) =
w(xi, yj), (xi, yj) ∈ ΩH , w ∈ C(Ω), LA is the following finite difference oper-
ator

LAvH(xi, yj) = ∇∗H .
([

A11(Mx) 0
0 A22(My)

]
∇H−vH

)
(xi, yj)

+∇c.
([

0 A12

A21 0

]
∇cvH

)
(xi, yj), (xi, yj) ∈ ΩH , vH ∈ WH,0,

(12)
being the operator LB defined as LA with A replaced by B = DA.

Let aH(., .) : [WH,0]
2 → R be the bilinear form associated with the finite

difference operator −LA defined by

aH(uH , wH) = (Mx(A11)D−xuH , D−xwh)h− + (Mx(A12Dc,yuH), D−xwh)h−
+(My(A21Dc,xuH), D−ywh)k− + (My(A22)D−yuH , D−ywh)k−,

for uH , wH ∈ WH,0. In fact, it can be proved that

(−LAuH , wH)H = aH(uH , wH), uH , wH ∈ WH,0, (13)

by using (3) and (6).
In what follows we assume that aH(., .) is elliptic, that is, there exists a

positive constant Ce,a, H independent, such that

aH(uH , uH) ≥ Ce,a‖uH‖2
1,H , uH ∈ WH,0. (14)

We assume also that the bilinear form bH(., .) : [WH,0]
2 → R associated with

the finite difference operators −LB, defined as aH(., .) with A replaced by B,
is elliptic, that is, there exists a positive constant Ce,b, H independent, such
that

bH(uH , uH) ≥ Ce,b‖uH‖2
1,H , uH ∈ WH,0. (15)

It is clear that assuming convenient conditions on the entries of A and B, it
can be shown that (14) and (15) hold.
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For instance for the term (Mx(A12Dc,yuH), D−xwh)h− we have

|(Mx(A12Dc,yuH), D−xuh)h−| =
N∑
i=1

M−1∑
j=1

hi
2
kj+1/2

(
|A12(xi, yj)||Dc,yuH(xi, yj|)

+|A12(xi−1, yj)||Dc,yuH(xi−1, yj)|
)
|D−xuH(xi, yj)|

≤ 1√
2
‖A12‖∞

( N∑
i=1

M−1∑
j=1

hikj+1/2

(
Dc,yuH(xi, yj)

2

+Dc,yuH(xi−1, yj)
2
))1/2

‖D−xuH‖h−

≤ 1√
2
‖A12‖∞

( N∑
i=1

M−1∑
j=1

hi+1/22kj+1/2Dc,yuH(xi, yj)
2
)1/2

‖D−xuH‖h−

≤ 1√
2
‖A12‖∞

(N−1∑
i=1

M∑
j=1

2hi+1/2kjD−yuH(xi, yj)
2
)1/2

‖D−xuH‖h−

≤ ‖A12‖∞‖D−yuH‖k−‖D−xuH‖h−.
Analogously, we also have

|(My(A21Dc,xuH), D−xwh)h−| ≤ ‖A21‖∞‖D−yuH‖k−‖D−xuH‖h−.
Then we obtain

|(Mx(A12Dc,yuH), D−xwh)h−|+ |(My(A21Dc,xuH), D−ywh)k−|
≤ (‖A12‖∞ + ‖A21‖∞)‖D−yuH‖k−‖D−xuH‖h−.

It is clear that, if for instance,

Aii ≥ A0 > 0 i = 1, 2,

and

A0 >
1

2
(‖A12‖∞ + ‖A21‖∞),

then (14) holds.

3. Stability of the semi-discrete differential-algebraic IVP
We study in what follows the stability of the differential- algebraic IVP (11).

Here and in the following section we suppose that v is bounded and Lipschitz,
and α, β are bounded functions in Ω̄. Let cH , c̃H ∈ C1([0, T ],WH,0) solutions
of this IVP with initial conditions cH(0), c̃H(0) ∈ WH,0 and let pH(t), p̃H(t)
the corresponding pressures. We establish in what follows upper bounds for
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‖cH(t) − c̃H(t)‖1,H and ‖pH(t) − p̃H(t)‖1,H . We start by studying ‖p(t)‖1,H

and ‖cH(t)‖1,H .

Proposition 3.1. Let cH ∈ C1([0, T ],WH,0) and pH(t) ∈ WH,0, t ∈ (0, T ], be
defined by the differential algebraic IVP (11) with initial condition cH(0). If
aH(., .) and bH(., .) are elliptic in [WH,0]

2 with ellipticity constants Ce,a and
Ce,b, then

‖pH(t)‖2
1,H ≤

‖α‖2
∞

C2
e,a

e
(
‖v‖2∞
Ce,b

+2‖β‖∞)t‖cH(0)‖2
H , (16)

and

‖cH(t)‖2
H + Ce,b

∫ t

0

e
(
‖v‖2∞
Ce,b

+2‖β‖∞)(t−s)‖cH(s)‖2
1,Hds ≤ e

(
‖v‖2∞
Ce,b

+2‖β‖∞)t‖cH(0)‖2
H ,

(17)
for t ∈ [0, T ].

Proof : From (11) and (13) we easily get

aH(pH(t), pH(t)) = (αcH(t), pH(t))H (18)

and using (5) we obtain

1

2

d

dt
‖cH(t)‖2

H + bH(cH(t), cH(t)) = (MH(cH(t)v(DHpH(t))),∇H−cH(t))H−

+‖β‖∞‖cH(t)‖2
H .

(19)
Considering the ellipticity of aH(., .) and (18) we establish

Ce,a‖pH(t)‖2
1,H ≤

‖α‖2
∞

4ε2
‖cH(t)‖2

H + ε2‖pH(t)‖2
H , (20)

and, by using the ellipticity of bH(., .) and the equations (2), (19), we get

1

2

d

dt
‖cH(t)‖2

H + Ce,b‖cH(t)‖2
1,H ≤

‖v‖2
∞

4η2
‖cH(t)‖2

H + η2‖∇H−cH(t)‖2
H−

+‖β‖∞‖cH(t)‖2
H ,

(21)
where ε, η 6= 0 are arbitrary constants. Choosing, in (20) and (21), ε2 = 1

2Ce,a
and η2 = 1

2Ce,b, respectively, we get

‖pH(t)‖2
1,H ≤

‖α‖2
∞

C2
e,a

‖cH(t)‖2
H (22)
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and

d

dt

(
‖cH(t)‖2

He
−(
‖v‖2∞
Ce,b

+2‖β‖∞)t
+ Ce,b

∫ t

0

e
−(
‖v‖2∞
Ce,b

+2‖β‖∞)s‖cH(s)‖2
1,Hds

)
≤ 0,

(23)
for t ∈ (0, T ].

Finally, inequalities (22) and (23) lead to (16) and (17).

Corollary 3.2. Under the assumptions Proposition 3.1 holds the following∫ t

0

‖cH(s)‖2
∞ ≤

1

2Ce,b
e

(
‖v‖2∞
Ce,b

+2‖β‖∞)t‖cH(0)‖2
H , t ∈ [0, T ]. (24)

Proof : It is enough to combine (17) with (10).

In the next result we establish upper bounds for ωp(t) and ωc(t).

Proposition 3.3. Let cH , c̃H ∈ C1([0, T ],WH,0) and pH(t), p̃H(t) ∈ WH,0, t ∈
(0, T ], be defined by the differential algebraic IVP (11) with initial condition
cH(0), c̃H(0), respectively. Let λ be a sequence of stepsizes such that there
exists Cg > 0 satisfying

Hmax

Hmin
≤ Cg, (25)

for H ∈ Λ with Hmax small enough.
If aH(., .) and bH(., .) are elliptic in [WH,0]

2 with ellipticity constants Ce,a
and Ce,b, then for ωc(t) = cH(t)− c̃H(t), ωp(t) = pH(t)− p̃H(t) and for H ∈ Λ
with Hmax small enough, we have

‖ωp(t)‖2
1,H ≤

‖α‖2
∞

C2
e,a

e
∫ t
0

(
4

Ce,b

(
4L2vC

2
g

C2
e,a
‖α‖2∞‖cH(s)‖2∞+‖v‖2∞

)
+2‖β‖∞

)
ds

‖ωc(0)‖2
H ,

(26)

and

‖ωc(t)‖2
H + Ce,b

∫ t

0

e
∫ t
s

(
4

Ce,b

(
4L2vC

2
g

C2
e,a
‖α‖2∞‖cH(µ)‖2∞+‖v‖2∞

)
+2‖β‖∞

)
dµ
‖ωc(s)‖2

1,Hds

≤ e
∫ t
0

(
4

Ce,b

(
4L2vC

2
g

C2
e,a
‖α‖2∞‖cH(s)‖2∞+‖v‖2∞

)
+2‖β‖∞

)
ds
‖ωc(0)‖2

H ,
(27)

for t ∈ [0, T ].
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Proof : From (11) and (13) it can be shown that ωc(t) and ωp(t) satisfy the
following

‖ωp(t)‖2
1,H ≤

α2

C2
e,a

‖ωc(t)‖2
H (28)

and, similarly to (19), we have

1

2

d

dt
‖ωc(t)‖2

H + Ce,b‖ωc(t)‖2
1,H

≤ (MH

(
cH(t)v(DHpH(t))− c̃H(t)v(DH p̃H(t))

)
,∇H−ωc(t))H−

+‖β‖∞‖ωc(t)‖2
H .

(29)

As for ` = 1, 2, holds the following

cH(t)v`(DHpH(t))− c̃H(t)v`(DH p̃H(t)) = cH(t)(v`(DHpH(t))− v`(DH p̃H(t)))
+v`(DH p̃H(t))ωc(t),

considering the assumption (25), the relations (2),(8), the Lipschitz property
of v` and the upper bound (28), we get

(MH

(
cH(t)v(DHpH(t))− c̃H(t)v(DH p̃H(t))

)
,∇H−ωc(t))H−

≤ 2

η2
L2
vC

2
g‖cH(t)‖2

∞‖∇H−ωp(t)‖2
H−

+
1

2η2
‖v‖2

∞‖ωc(t)‖2
H + 2η2‖∇H−ωc(t)‖2

H− (30)

≤
( 2

η2
L2
vC

2
g

‖α‖2
∞

C2
e,a

‖cH(t)‖2
∞ +

1

2η2
‖v‖2

∞
)
‖ωc(t)‖2

H

+ 2η2‖∇H−ωc(t)‖2
H−, (31)

where η 6= 0 is an arbitrary constant. Inserting in (29) the last upper bound
and fixing η2 = 1

4Ce,b, we obtain

d

dt
‖ωc(t)‖2

H + Ce,b‖ωc(t)‖2
1,H

≤
( 4

Ce,b

(4L2
vC

2
g

C2
e,a

‖α‖2
∞‖cH(t)‖2

∞ + ‖v‖2
∞
)

+ 2‖β‖∞
)
‖ωc(t)‖2

H .
(32)

Inequality (32) leads to (27) and from (28) we conclude (26).

Finally Proposition 3.3 and Corollary 3.2 enable us to conclude the stability
of the differential-algebraic IVP (11).
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4. Convergence analysis
Let ec(t) = RHc(t) − cH(t) and ep(t) = RHp(t) − pH(t) ∈ WH,0 be the

spatial discretization errors induced by the spatial discretization that defines
the differential algebraic IVP (11). In these errors, cH(t) and pH(t) are
solutions of the IVP (11). Let TLA(t), TLB(t) be the spatial truncation errors
induced by the spatial discretizations defined by LA, LB and let T∇c(t) be
the truncation error that arises from the discretization of ∇.(c(t)v(∇p(t))).
We introduce Tp(t) = T−LA(t) and Tc,p(t) = T−LB(t) + T∇c(t). For the errors
ec(t), ep(t), Tp(t) and Tc,p(t) we have

−LAep(t) = αec(t) + Tp(t),

e′c(t) +∇c ·
(
RHc(t)v(DHRHp(t))− cH(t)v(DHpH(t))

)
= LB(ec(t))

+βec(t) + Tc,p(t), in ΩH , t ∈ (0, T ],

ep(t) = ec(t) = 0, on ∂ΩH , t ∈ (0, T ],

ec(0) = 0 in ΩH .

(33)
If p(t) ∈ C4(Ω) then the truncation error TLA(t) that admits the represen-

tation
TLA(t) = LA(RHp(t))−RH∇.(A∇p(t))

can be split into

TLA(t) = T
(1)
LA (t) + T

(2)
LA (t),

with

T
(1)
LA (xi, yj, t) = (hi+1 − hi)r(xi, yj, t) + (kj+1 − kj)s(xi, yj, t),

where r, s depend on the derivatives of the entries of A of order less (or equal)
to 2 and on the spatial derivatives of p(t) of order less (or equal) to 3, and

|T (2)
LA (xi, yj, t)| ≤ CH2

max‖A‖C3
b (R2)‖p(t)‖C4(Ω), (34)

being C a positive constant p(t), A, t and H independent.
For the truncation error TLB(t) defined by

TLB(t) = LB(RHc(t))−RH∇.(B∇c(t)),
we have a representation analogous to the one established for TLA(t) with A
replaced by B and p(t) replaced by c(t).

The truncation error T∇c given by

T∇c = ∇c.(RHc(t)v(DHRHp(t)))−RH∇.(c(t)v(∇p(t))),
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admits the representation

T∇c(t) =
3∑
`=1

T
(`)
∇c (t),

where

T
(1)
∇c (xi, yj, t) = (hi+1 − hi)r(xi, yj, t) + (kj+1 − kj)s(xi, yj, t),

representing r and s functions that depend on
∂2

∂x2

(
c(t)v1(∇p(t))

)
and

∂2

∂y2

(
c(t)v2(∇p)

)
,

T
(2)
∇c (t) = Dc,xσ1,H(t) +Dc,yσ2,H(t),

with

σ`,H(t) = RHc(t)
(
v`(DHRHp(t))−RHv`(∇p(t))

)
, ` = 1, 2,

and

|T (3)
∇c (xi, yj, t)| ≤ CH2

max‖c(t)v(∇p(t))‖[C3(Ω)]2,

where C is a positive constant H, t, c, p and v independent.
It is clear that Tp(t) and Tc,p(t) are of first order with respect to the norm
‖.‖∞. Consequently, it is expectable that ep(t) and ec(t) are at least of first
order. In what follows we establish that both errors are indeed of second
order with respect to the norm ‖.‖1,H and considering the inequality (10)
we establish second convergence order with respect to the norm ‖.‖∞. To
conclude such results, we prove in what follows several propositions that will
be used in the main result of this section Theorem 4.4.

Proposition 4.1. The truncation error TLA(t) satisfies the following

(TLA(t), vH)H ≤ C‖A‖2
C3
b (R2)‖p(t)‖

2
C4(Ω)

( 1

16ε2
+

1

2η2

)
H4
max

+ε2‖∇H−vH‖2
H− + 3η2‖vH‖2

H ,
(35)

for vH ∈ WH,0. In (35), ε, η 6= 0 are arbitrary constant and C represents a
constant H and t independent.
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Proof : Using the definition of T
(1)
LA we have

(T
(1)
LA (t), vH)H =

N−1,M−1∑
i,j=1

hi+ 1
2
kj+ 1

2
(hi+1 − hi)r(xi, yj, t)vH(xi, yj)

+

N−1,M−1∑
i,j=1

hi+ 1
2
kj+ 1

2
(kj+1 − kj)s(xi, yj, t)vH(xi, yj).

As vH(x0, yj) = vH(xN , yj) = 0, for the first term of the second member of
the last equality we deduce, successively,

1

2

N−1,M−1∑
i,j=1

kj+ 1
2
(h2

i+1 − h2
i )r(xi, yj, t)vH(xi, yj)

=
1

2

N,M−1∑
i,j=1

kj+ 1
2
h2
i

(
r(xi−1, yj, t)vH(xi−1, yj)− r(xi, yj, t)vH(xi, yj)

)
= −1

2

N,M−1∑
i,j=1

kj+ 1
2
h3
i r(xi−1, yj, t)D−xvH(xi, yj)

−1

2

N,M−1∑
i,j=1

kj+ 1
2
h2
i

∫ xi

xi−1

∂r

∂x
(x, y, t) dxvH(xi, yj)

≤ 1

2
‖r(t)‖C0(Ω)H

2
max

N,M−1∑
i,j=1

kj+ 1
2
hi|D−xvH(xi, yj)|

+
1

2
‖r(t)‖C1(Ω)H

2
max

N,M−1∑
i,j=1

kj+ 1
2
hi|vH(xi, yj)|

≤ H4
max‖r(t)‖2

C1(Ω)

( 1

16ε2
+

1

4η2

)
+ ε2‖D−xvH‖2

h− + η2‖vH‖2
H),

where ε, η 6= 0 are arbitrary constants.
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As for the second term of (T
(1)
LA (t), vH)H admits the upper bound

N−1,M−1∑
i,j=1

hi+ 1
2
kj+ 1

2
(kj+1 − kj)s(xi, yj, t)vH(xi, yj)

≤ H4
max‖s(t)‖2

C1(Ω)

( 1

16ε2
+

1

4η2

)
+ ε2‖D−yvH‖2

k− + η2‖vH‖2
H ,

we obtain

(T
(1)
LA (t), vH)H ≤ H4

max

(
‖r(t)‖2

C1(Ω)
+ ‖s(t)‖2

C1(Ω)

)(
1

16ε2 + 1
4η2

)
+ε2‖∇H−vH‖2

H− + 2η2‖vH‖2
H .

(36)

From (34), taking into account that

(T
(2)
LA (t), vH)H ≤

1

4η2
‖T (2)
LA (t)‖2

H + η2‖vH‖2
H

≤ CH4
max‖A‖2

C3
b (R2)
‖p(t)‖C4(Ω) + η2‖vH‖2

H ,
(37)

we conclude (35).

Proposition 4.2. For the truncation error TLB(t) we have

(TLB(t), vH)H ≤ C‖B‖2
C3
b (R)‖c(t)‖

2
C4(Ω)

( 1

16ε2
+

1

2η2

)
H4
max

+ε2‖∇H−vH‖2
H− + 3η2‖vH‖2

H ,
(38)

for vH ∈ WH,0. In (38), ε, η 6= 0 are arbitrary constant and C represents a
constant H and t independent.

We observe that, if vH ∈ WH,0, then for (T
(1)
∇c (t), vH)H and (T

(3)
∇c , vH)H hold

estimates analogous to (36) and (37), respectively. To conclude an estimate

for (T∇c(t), vH)H we need to establish an upper bound for (T
(2)
∇c (t), vH)H . As

vH and σ`,H are null on ∂ΩH , it can be shown that

(Dc,xσ1,H(t), vH)H =
1

2

N,M−1∑
i,j=1

kj+ 1
2
σ1,H(xi, yj, t)

(
hi+1D−xvH(xi+1, yj)

+hiD−xvH(xi, yj)
)
.

Using the fact that DH is a second order operator also in not uniform meshes

|σ1,H(xi, yj, t)| ≤ Lv‖c(t)‖C0(Ω)‖p(t)‖C3(Ω)H
2
max,
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we get

(Dc,xσ1,H(t), vH)H ≤
1

4ε2
L2
v‖c(t)‖2

C0(Ω)
‖p(t)‖2

C3(Ω)
H4
max + ε2‖D−xvH‖2

h−,

where ε 6= 0 is an arbitrary constant.
Following for (Dc,yσ2,H(t), vH)H the procedure used to get the upper bound

for (Dc,xσ1,H(t), vH)H , we conclude that

(T
(2)
∇c (t), vH)H ≤

1

2ε2
L2
v‖c(t)‖2

C0(Ω)
‖p(t)‖2

C3(Ω)
H4
max + ε2‖∇H−vH‖2

H−.

We proved the next proposition.

Proposition 4.3. If c(t) ∈ C3(Ω), p ∈ C4(Ω), v ∈ [C3
b (R)]2, then, for vH ∈

WH,0, we have

(T∇c(t), vH)H ≤ C‖v‖2
[C3
b (R)]2‖c(t)‖

2
C3(Ω)
‖p(t)‖2

C4(Ω)

( 9

16ε2
+

1

2η2

)
H4
max

+2ε2‖∇H−vH‖2
H− + 3η2‖vH‖2

H ,
(39)

where ε, η 6= 0, C denotes a positive constant H and t independent.

We are now ready to prove the main result of this section:

Theorem 4.4. Let us suppose that the solution of the differential-algebraic
IBVP (1) c and p is such that c ∈ C1([0, T ], C0(Ω)) ∩ L∞([0, T ], C4(Ω)), p ∈
L∞([0, T ], C4(Ω)), and the solution of the cH , pH of the differential algebraic
IVP (11) is such that cH ∈ C1([0, T ],WH,0)) and pH(t) ∈ WH,0, t ∈ (0, T ]
and let ec(t) = RHc(t) − cH(t), ep(t) = RHp(t) − pH(t) be the correspondent
spatial discretization errors. If the sequnce of spatial grids ΩH , H ∈ Λ, satis-
fies (25), for Hmax small enough, and aH(., .), bH(., .) are elliptic in [WH,0]

2

with ellipticity constants Ce,a and Ce,b H independent, then, for Hmax small
enough, there exists a positive constant C that is H, t, c and p independent,
such that

‖ec(t)‖2
H + Ce,b

∫ t

0

e

∫ t

s

gH(c(µ))dµ
‖ec(s)‖2

1,Hds

≤ CH4
max

∫ t

0

e

∫ t

s

gH(c(µ))dµ(
(‖c(s)‖2

∞ + ‖c(s)‖2
C3(Ω)

)‖p(s)‖2
C4(Ω)

+‖c(s)‖2
C4(Ω)

)
ds,

(40)
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‖ep(t)‖2
1,H ≤ CH4

max

(‖α‖2
∞

2C2
e,a

∫ t

0

e

∫ t

s

gH(c(µ))dµ(
(‖c(s)‖2

∞

+‖c(s)‖2
C3(Ω)

)‖p(s)‖2
C4(Ω)

+ ‖c(s)‖2
C4(Ω)

)
ds+ ‖p(t)‖2

C4(Ω)

)
,

(41)

for t ∈ [0, T ]. In (41), gH(c(t)) is defined by

gH(c(t)) =
13

Ce,b

(
2
‖α‖2

∞
C2
e,a

L2
vC

2
g‖c(t)‖2

∞ + ‖v‖2
∞
)

+ 2‖β‖∞. (42)

Proof : From (33), we easily get

Ce,a‖ep(t)‖2
1,H ≤

1

4η2
‖α‖2

∞‖ec(t)‖2
H + η2‖ep(t)‖2

H + (Tp(t), ep(t))H , (43)

where η 6= 0 is an arbitrary constant, and

1

2

d

dt
‖ec(t)‖2

H +Ce,b‖ec(t)‖2
1,H ≤ ‖β‖∞‖ec(t)‖2

H + (Tc,p(t), ec(t))H

+(MH(RHc(t)v(DH(RHp(t)))− cH(t)v(DH(pH(t)))),∇H−ec(t))H−.
(44)

Taking into account Proposition 4.1, from (43), we obtain

(
Ce,a − 4η2)‖ep(t)‖2

H +
(
Ce,a − ε2

)
‖∇H−ep(t)‖2

H− ≤
‖α‖2

∞
4η2
‖ec(t)‖2

H

+CH4
max‖A‖2

C3
1 (R2)
‖p(t)‖2

C4(Ω)
,

(45)

where C depends on η−2, ε−2. Fixing conveniently η and ε in (45), we deduce

‖ep(t)‖2
1,H ≤

‖α‖2
∞

2C2
e,a

‖ec(t)‖2
H + CH4

max‖A‖2
C3
b (R2)‖p(t)‖

2
C4(Ω)

. (46)

As done in (30), we have

(MH

(
RHc(t)v(DHRHp(t))− cH(t)v(DHpH(t))

)
,∇H−ec(t))H−

≤ 2

η2
L2
vC

2
g‖RHc(t)‖2

∞‖∇H−ep(t)‖2
H− +

1

2η2
‖v‖2

∞‖ec(t)‖2
H

+2η2‖∇H−ec(t)‖2
H−,



18 G.C.M. CAMPOS, J.A. FERREIRA AND G. ROMANAZZI

where η 6= 0 is an arbitrary constant. Taking now into account (46), we
obtain

(MH

(
RHc(t)v(DHRHp(t))− cH(t)v(DHpH(t))

)
,∇H−ec(t))H−

≤
( 1

η2
L2
vC

2
g

‖α‖2
∞

Ce,a
‖c(t)‖2

∞ +
1

2η2
‖v‖2

∞
)
‖ec(t)‖2

H + 2η2‖∇H−ec(t)‖2
H−

+CH4
max

L2
vC

2
g

η2 ‖A‖
2
C3
b (R2)
‖p(t)‖2

C4(Ω)
‖c(t)‖2

∞.

Inserting the last upper bound in (44), considering Propositions 4.2 and 4.3
and choosing conveniently η2 and ε2, it can be shown that holds the following
differential inequality

d

dt
‖ec(t)‖2

H + Ce,b‖ec(t)‖2
1,H ≤ gH(c(t))‖ec(t)‖2

H + TH(t), (47)

with gH(c(t)) defined by (42) and TH(t) given by

TH(t) = CH4
max

(
(‖c(t)‖2

∞ + ‖c(t)‖2
C3(Ω)

)‖p(t)‖2
C4(Ω)

+ ‖c(t)‖2
C4(Ω)

)
,

and C is a positive constant H,t, c and p independent.
The differential inequality (47) leads to (40). Finally, combining (40) with

(46) we conclude (41).

5. Numerical simulation - convergence results
This section aims to illustrate the main convergence result of this paper:

Theorem 4.4, more precisely the error estimates (40) for the concentration
error ec(t) = RHc(t)− cH(t) and (41) for the pressure error ep(t) = RHp(t)−
pH(t), where ph(t) and cH(t) are defined by the differential algebraic problem
(11).

In the time interval [0, T ] we fix the time grid {tn, n = 0, . . . ,M} with fixed
time step ∆t = T/M and the time integration of the initial value differential-
algebraic problem (11) using the implicit-explicit method

−LApn+1
H = RHαc

n
H ,

cn+1
h − cnH

∆t
+∇c · (cnHv(DHp

n+1
H )) = LB(cn+1

H ) +RHβc
n
H ,

in ΩH , n = 0, . . . ,M − 1,

pnH = cnH = 0, on ∂ΩH , n = 1, . . . ,M,

c0
H = RHc0, in ΩH .

(48)
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In what follows we consider the following notations

‖ep‖H = max
n=1,...,M

‖enp‖H , (49)

where enp = RHp(tn)− pnH , and

‖ec‖H = max
n=1,...,M

√√√√‖enH‖2
H +

n∑
j=1

∆t‖∇H−e
j
H‖2

H−, (50)

with ejc = RHc(tj)− cjH . We also consider

Ratei =

log
‖ei‖H
‖ei‖H̃

log
Hmax

H̃max

, (51)

for i = p, c.

Example 5.1. We start by considering a regular C4 solution

p(x, y, t) = c(x, y, t) = e−t sin(πx) sin(πy),

defined in [0, 1]2 × [0, T ], with T = 0.1, ∆t = 10−3,

A(x, y) =

[
4 + sin(πy)2 − sin(πx) sin(πy)

− sin(πx) sin(πy) 4 + sin(πx)2

]
, D =

1

8π2
,

The errors ‖ep‖H ‖ec‖H for the numerical approximations defined by 48 as
well as the convergence rates are included in Table 1 and in Figures 3(a) and
3(b).

Table 1. Numerical errors and convergence rates in Example 5.1

Hmax ‖ep‖H Ratep ‖eC‖H RateC
2.503216e-01 1.706188e-01 - 3.505003e-01 -
1.252408e-01 3.605839e-02 2.244438 7.620294e-02 2.203528
8.342393e-02 1.541813e-02 2.091040 3.357726e-02 2.017093
6.255882e-02 8.574553e-03 2.038528 1.906057e-02 1.967243
5.023403e-02 5.469237e-03 2.049362 1.224774e-02 2.015729
4.204243e-02 3.793964e-03 2.054495 8.511195e-03 2.044562
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Figure 1. Convergence rates in Example 5.1

(a) ‖ep‖H (b) ‖eC‖H

Example 5.2. In what follows we reduce the smoothness of the solution of
the differential problem under consideration. We take

p(x, y, t) =


e8−t((x− 1

10
)(x− 9

10
)(y − 1

10
)(y − 9

10
))4,

1

10
≤ x, y ≤ 9

10
,

0, otherwise,

(52)

and (53)

c(x, y, t) = e−t sin(πx) sin(πy). (54)

with Ω = (0, 1)2, T = 0.1, ∆t = 10−3 and

A(x, y) =

[
1 + sin(πy)2 − sin(πx) sin(πy)

− sin(πx) sin(πy) 1 + sin(πx)2

]
, D =

1

2π2

Table 2 and Figures 3(a) and 3(b). Even with reduced smoothness, the
numerical results also present second convergence rate.
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Table 2. Numerical errors and convergence rates in Example 5.2

Hmax ‖ep‖H Ratep ‖eC‖H RateC
8.340501e-02 4.244955e-04 - 1.855296e-03 -
7.699766e-02 3.614419e-04 2.011679 1.590796e-03 1.924220
7.149196e-02 3.127291e-04 1.951262 1.381933e-03 1.897174
6.673173e-02 2.732260e-04 1.959786 1.209120e-03 1.938781
6.254805e-02 2.412143e-04 1.924663 1.069797e-03 1.890848
5.900608e-02 2.144615e-04 2.016581 9.522958e-04 1.995874
5.560734e-02 1.909160e-04 1.960324 8.492288e-04 1.930827
5.280920e-02 1.713778e-04 2.091092 7.651417e-04 2.019521

Figure 2. Convergence rates in Example 5.2

(a) ‖ep‖H (b) ‖eC‖H

6. Modeling the cell dynamics in a colonic crypt by a
elliptic-parabolic PDE system

A crypt Γ in the colon epithelium has a geometry similar to that shown in
figure (3) (see [10, 13, 12]).
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Figure 3. Different views of the epithelium crypt geometry Γ
defined by the graph of z = f(x, y) given in (55)-(56).

On averaging, a crypt has a height that is almost 14 times the diameter
of the top crypt orifice, in particular, its height from the bottom to the top
orifice is 433µm and the diameter of the top orifice is 31.1µm including the
epithelium tissue ([10]). After a proper scaling of their dimensions we get
for a standard crypt Γ a height h = 7µm and a radius R = 0.25µm, and we
assume that a crypt can be seen as a two dimensional manifold Γ represented
by the the graph of a continuum and differentiable function f : Ω→ R

Γ = {(x, y, z) ∈ R3 : (x, y) ∈ Ω, z = f(x, y)}, (55)

where Ω = [0, 1]2 and f is the following function

f(x, y) = h(1− e−(R(x,y)
σ )

2

), (x, y) ∈ Ω, (56)

with R(x, y) = (x − 1/2)2 + (y − 1/2)2, and σ > 0. In the following we use
σ = 0.03µm that allows to have a crypt with height h = 7µm and a top crypt
radius R = 0.25µm, see Figure 3.

Inside a normal epithelium crypt, stem cells live and are fixed at the crypt
bottom. Their differentiation give rise to semi-differentiated cells (also called
transit cells) that can migrate upwards in the direction of the top orifice.
During this migration, transit cells continue to differentiate and become fully
differentiated (or mature) at the crypt top [18, 17, 19]. Cell location of these
three families of cells are depicted in Figure 6.



DENSITY-PRESSURE IBVP: CELL DYNAMICS IN A COLONIC CRYPT 23

Figure 4. Stem, transit and fully-differentiated cells location in
a normal crypt.

In order to model the cell dynamics in a crypt, we denote by c(x, y, z, t) the
density of the stem and semi–differentiated cells located at (x, y, z) ∈ Γ at
time t. The semi–differentiated cells are under the effect of a cell-cell adhesion
pressure p(x, y, z, t), at (x, y, z) ∈ Γ at time t, that is responsible for the cell
migration. Then considering the mathematical models in [11, 12, 13] for the
colon cell dynamics, the behavior of the colonic cell density c and pressure p
can be described by the following IBVP

−ξ∆Γp = αc,
∂c

∂t
−∇Γ · (ξc∇Γp) = ∇Γ · (D∇Γc) + βc, in Γ× (0, T ],

p = c = 0, on ∂Γ× (0, T ],

c(0) = c0, in Γ,

(57)

where the diffusion coefficient D is supposed constant, and ξ is a positive
constant that depends on the permeability and viscosity of the epithelium
tissue [11]. The cell velocity v in (57) is given in fact by Darcy’s law v(∇Γp) =
−ξ∇Γp, as it will be analyzed later. Here the operators ∇Γ and ∆Γ are the
gradient and Laplace operators acting on the spatial variables x, y, z on the
crypt manifold Γ. In (57), the function c0 describes the initial distribution
of cell density in the crypt, α is the proliferation rate for the stem and
transit cells, and β is defined by β = α − γ, where γ denotes the rate of
transformation of the transit cells into fully differentiated cells. In a normal
epithelium crypt, γ is considered null at the crypt bottom where no transit
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cells are present and increases along the crypt axis up to two thirds of its
height where thereafter only mature cells reside [22, 20].

Since in the normal epithelium cell behavior in the crypt is basically invari-
ant in time depending only on their relative position with respect the crypt
bottom ([18, 17, 19]), the functions α, β, γ can be assumed constant in time
depending only on the cell quote z along the vertical crypt axis. Then we
consider α(x, y, z, t) = α(z), β(x, y, z, t) = β(z) and γ(x, y, z, t) = γ(z), for
all (x, y, z) ∈ Γ. Thus, in normal epithelium, we can assume that we have
a stable cell density of type c(x, y, z, t) = cstab(z) and also the pressure p
satisfies p(x, y, z, t) = pstab(z) for all (x, y, z) ∈ Γ.

In [11, 12, 13], a PDE model similar to (57) has been studied considering
only the transit cell density. In order to define a more precise and complete
model, here c represents the density of the stem and transit cells, where the
latter differs from the first for its location in the middle of the crypt axis.
Moreover, transit cells have larger proliferation, they move in the transition
phase whereas stem cells are fixed and proliferate very slowly.

We remark that the PDE model (57) can be used to describe the colon cell
dynamics in a normal epithelium crypt, as well as in an abnormal crypt, by
changing the parameters, the initial condition c0 and the rate functions α, β,
as it will be discussed later.

We start now to specify the parameters and rate functions in (57) to de-
scribe the cell dynamics in a normal crypt. It has been observed that the
proliferation rate α is very low at the crypt bottom where stem cells are
located and rapidly increases along the crypt axis up to reach almost one
third of the crypt height [21, 22]. Then it decreases up to reach a quote 2

3h
so that transit cells proliferate up to two-thirds of the crypt height [17, 20].
Based on this biological information, we use the following expression for the
proliferation rate in a normal epithelium crypt of height h

α(z) =


τ

(
1− z

1
3h

)2(
1− z

2
3h

)2

e−(z−h3 )2,
h

3
≤ z ≤ 2

3
h,

0,
2

3
h < z ≤ h or 0 ≤ z <

h

3
,

(58)

where τ > 0 is a constant that will be estimated later. A plot for the rate α
defined by (58) is presented in Figure 5.

Note that α depends only on the relative position of z with respect the
crypt height h, and it is null in the crypt bottom below the quote z = h

3 .
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Figure 5. Proliferation rate α of stem and transit cells in a
normal epithelium crypt along its vertical axis (left figure) and
on the crypt manifold Γ (right figure) for h = 7, σ = 0.03 and
τ = 0.60974.

This assumption reflects the fact that the stem cells that are filling the crypt
base are not proliferating in short time periods, as evidenced in [21, 22], and
permits to have a null velocity at the crypt bottom, as it is expected, since
stem cells located there are fixed.

To have a natural and phenomenological construction of the function γ,
we introduce a time independent solution cstab of (57) that is able to capture
some biological information: in the normal epithelium only stem cells are
locates in the crypt bottom and no transit cells or stem cells are found in
the last third of the crypt height. As in [11, 13], in the region where c = 1
no fully differentiated cells are found and, viceversa, where c = 0 then only
fully differentiated cells are present. As normal cell density for the stem and
semi-differentiated cells we consider

cstab(z) =


τ

(
2

3
h− z

)
r(z)e−(z−h3 )2,

h

3
≤ z ≤ 2

3
h,

1, 0 ≤ z ≤ h

3
,

0,
2

3
h < z ≤ h,

(59)

with r(z) = −54

h3
z2 +

45

h2
z − 6

h
that guarantees that c′stab(

h
3) = c′stab(

2
3h) = 0,

and that 0 ≤ cstab ≤ 1.
In Figure 6 we plot cstab in the crypt Γ with height h = 7 and σ = 0.03

(left) and its contour plot (right).
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Figure 6. Left: Plot of cstab in the crypt manifold Γ. Right:
Contour plot of cstab(f(x, y)) for (x, y) ∈ Ω.

The function γ is now computed considering that cstab is an invariant stable
solution of the PDE system (57). In fact, from (57) and taking into account
that β = α−γ, we obtain the transformation rate γ of transit cells into fully
differentiated cells for z ∈ (h3 ,

2h
3 )

γ =
1

cstab

(
∇Γ(ξcstab∇Γpstab) +∇(D∇cstab)

)
+ α, (60)

where pstab is such that −ξ∆Γpstab = αcstab holds in Γ and pstab = 0 on
∂Γ. Note that since α and cstab are invariant with respect x, y and depends
only on z, for (x, y, z) ∈ Γ, then also the transformation rate γ given in (60)
depends only on z. In Figure 6 we illustrate the behaviour of γ for D = 10−05,
τ = 0.60974 and ξ = 0.02473.

Since no cell transformation is active where there are no transit cells, as
we have for z ≤ h

3 or z ≥ 2h
3 , thus we take γ(z) = 0 for z ≤ h

3 or z ≥ 2h
3 .

Consequently, β in the normal epithelium crypt is given by β(z) = α(z)−
γ(z) with

β(z) =


τ

(
1− z

1
3h

)2(
1− z

2
3h

)2

e−(z−h3 )2 − γ(z),
h

3
< z <

2

3
h,

0, 0 ≤ z ≤ h

3
or

2

3
h ≤ z ≤ h.

(61)

In order to complete system (57) to describe the cell dynamics in a normal
epithelium crypt, we need to specify the positive constants τ and ξ. Note
that these parameters appear in the first equation of system (57) in the
left and right hand sides respectively. Then its ratio will depend on the
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Figure 7. Transformation rate for semi-differentiated cells into
fully differentiated cells in the normal epithelium with cell density
cstab(z) and proliferation rate α(z).

pressure pstab and cell density cstab solution of (57) in normal epithelium and
it will be deduced by using the known velocity of cells at the crypt top.
In fact, it is known, see [17], that transit cells moves upwards along the
vertical crypt height up to reach the crypt top with an increasing velocity
that reaches an estimated maximum of 0.85 cell-position per hour at the
crypt top. Since a cell-position along the crypt axis corresponds to the cell
height, that is 5.9µm, as estimated in [10] and in the references therein,
then the maximum cell velocity is 0.85 × 5.9 µm

hour . Since the height of a
real crypt is 433µm (estimated value), the height of a single cell in a crypt
with height h is obtained through a linear projection hcell = 5.9 h

433 . For
instance, for a crypt with height h = 7µm, the maximum velocity is then
vmax = 0.85hcell ≈ 0.0811. Note that since the first equation in (57) can be
write as ∇ · v = αc, with v(∇p) = −ξ∇p, we can use the facts that α in
(58) depends only on the crypt quote z and that it is null in the last third
of the crypt height (for z ≥ 2

3h) to assert that the maximum velocity vmax is

reached at the crypt quote z = 2h
3 (see Figure 8).

In what follows we consider the abnormal case characterized by the for-
mation of adenomas in the middle of the crypt axis due to an accumulation
of transit proliferating cells that are hyper proliferating and are not able to
complete their differentiation before the two thirds of the crypt height. This
pathologic behaviour occurs due to the APC cell mutations occurring in the
migrating transit cells. This early genetic hit can stop the differentiation
process and perturbs the upward migration of the cells that it is so retained
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Figure 8. Plot of the euclidean norm of the cell velocity
‖v(x, 0.5, z)‖2, with y = 0.5, z = f(x, 0.5) and x ∈ (0, 1). The
dashed line corresponds to x = 0.6773 that is where the Γ crypt
quote z = f(x, 0.5) is equal to 2

3h.

Figure 9. Abnormal transit cells forming an adenoma in the
middle of the crypt marked in dark. This adenoma is in the
transit region marked in light-blue.

in the middle of the colonic crypt. A such abnormal case was considered
previously for instance in [23, 24]. A representation of what can happen it is
represented in Figure 9.

In an abnormal epithelium crypt context, some of the biological facts ex-
amined before are not observed, in particular we are not able to assure a time
stable solution cstab along the time period of cell dynamics examined. This
fact is consequence of the perturbation of the proliferation rate and the dif-
ferentiation due to some cell mutations in the regular cell life cycle observed
in normal crypts.
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Figure 10. Left: Plot of c̃0 defined in (62) in the crypt Γ. Right:
Contour plot of c̃0(f(x, y)) for (x, y) ∈ Ω.

To apply (57) in the description of the behaviour of abnormal cell prolif-
eration and differentiation characterized by a growing adenoma, we need to
change the parameters considered before in the normal case. For instance we
should consider a higher proliferation rate with a coefficient τ that is 10 times
higher than the one estimated in the normal epithelium, more precisely, we
use τ = 0.60974 · 10 = 6.0974. In what concerns the differentiation process,
it should stop in the transient region. This fact is achieved taking γ(z) = 0,
for z ∈ [h3 ,

2h
3 ]. In what concerns the initial condition c0 in the abnormal

scenario we use c(x, y, z, 0) = c0(x, y, z) = c0(x, y, f(x, y)) = c̃0(x, y) with

c̃0(x, y) =
xy(x− 1)(y − 1)

(0.5)4
e
−

R(x, y)

σ

2

, (x, y) ∈ Ω. (62)

Figure 10 illustrates the behaviour of c̃0.
The last choice for the initial condition allows to describe the cell dynamics

in a abnormal epithelium crypt considering at the initial time a larger number
of transit cells in the middle of the crypt that leads to an adenoma formation
and its growing.

To present some numerical experiments illustrating the cell dynamics in
the abnormal case described by (57) we need to rewrite this system in an
equivalent form (1). This procedure allow us to use the implicit-explicit
method (48) studied in this paper. We start by remarking that ∆Γp, ∇Γ ·
(ξc∇Γp) and ∇Γ · (D∇Γc) are defined in Γ× (0, T ], where Γ is the manifold
defined by (55) with f given by (56). Let ϕ : Ω→ Γ be defined by ϕ(x, y) =
(x, y, f(x, y)), (x, y) ∈ Ω. We observe that {Ω, φ} is a chart of the manifold
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Γ. Now to simplify the rewriting of the PDE model in Γ we consider (x, y) =
(u1, u2) ∈ Ω and let (., .) be the Euclidean inner product and let G = [Gi,j]

be the following matrix Gi,j = (
∂φ

∂ui
,
∂φ

∂uj
), i, j = 1, 2,

G =

 1 + (
∂f

∂x
)2 ∂f

∂x

∂f

∂y
∂f

∂x

∂f

∂y
1 + (

∂f

∂y
)2

 .

We observe that since det(G) = 1 + (
∂f

∂x
)2 + (

∂f

∂x
)2, then G is nonsingular.

Let p̂(x, y, t) = p(φ(x, y), t), ĉ(x, y, t) = c(φ(x, y), t), (x, y) ∈ Ω. Following
[14, 15, 16], it can be shown that ĉ and p̂ satisfy the PDE system in Ω×(0, T ]


−∇ · (ξA∇p) =

√
det(G)αc,√

det(G)
∂c

∂t
−∇ · (ξA∇pc) = ∇ · (DA∇c) +

√
det(G)βc, in Ω× (0, T ],

c = p = 0 on ∂Ω× (0, T ],

c(0) = c̃0 in Ω,
(63)

where the hat notation was omitted for simplification. In (63) the following
terms are used:
A =

√
det(G)G−1 that is

A =
1√

det(G)


1 +

(
∂f

∂y

)2

−∂f
∂x

∂f

∂y

−∂f
∂x

∂f

∂y
1 +

(
∂f

∂x

)2

 , (64)

α defined in (58) and β = α.
We consider then the problem of abnormal cell dynamics in a colonic crypt

described by the system (63) with initial condition for the cell density given
in (62).
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The numerical solution of (63) with T = 1, is obtained by applying the
implicit-explicit method (48) that is now written in the following form

−ξLApn+1
H = RH(

√
detGα)cnH ,

RH(
√
detG

cn+1
h − cnH

∆t
+∇c · (cnHv(DHp

n+1
H )) = LB(cn+1

H )

+RH(
√
detGβ)cnH , in ΩH , n = 0, . . . ,M − 1,

pnH = cnH = 0, on ∂ΩH , n = 1, . . . ,M,

c0
H = RH c̃0 in ΩH .

(65)

with v(DHp
n+1
H ) = −ξADHp

n+1
H . The numerical experiments were obtained

with hmax = 0.0021 and ∆t = 0.1.
The IBVP (57) or (63) with the parameters and initial condition defined

before intent to model the cell dynamics in a abnormal epithelium crypt
characterized by an APC cell mutation that appears on the daughter transit
cells that are hyper proliferative and persistent in the transit region. The
behaviour of the simulation results presented in what follows agree with
the one described in the literature [23, 17, 24] where it is reported that
abnormal proliferative cells presenting an APC mutation in the transit region
are responsible by an adenoma formation that starts to fill the rest of the
crypt moving upwards along the crypt axis.

Figure 11 illustrates the behaviour of the cell density c defined by (65) at
t = 1. We observe an increasing of the cell density in the region around the
circle centered in (0.5, 0.5) and radius 0.2 which is the zone of the adenoma
formation by the abnormal transit cells. This fact is well illustrated in the
plot of c(x, 0.5, 1), x ∈ [0, 1], included in the bottom of this figure.

Figures 12, 13 and 14 illustrate the behavior of cell density, the adhesion
pressure and the velocity norm in the curve of the manifold Γ defined by
the intersection of Γ with the vertical plane y = 0.5 that is parallel to the
xoz plane. In Figure 12 we observe that cells proliferate abnormally in a
restricted zone leading to a rapidly increasing of the transit cells density.
We observe the abnormal cell proliferation occur in the transit region for
x < x2h/3, being x2h/3 the abscissa of z = 2h

3 . Consequently, the growing of
this cell density leads to an increasing of the pressure in all domain as it can
be seen in Figure 13.

The increasing of the pressure leads to an increasing of cell velocity and,
in particular, we have an enlargement of the transit region. The cells reach
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Figure 11. Left: Plot of the cell density c in the crypt Γ at
time t = 1 with adenoma region. Right: Contour plot of the
cell density c(x, y, f(x, y), 1), (x, y) ∈ Ω, where the colored ring
region is the location of the abnormal transit cells.

Figure 12. Plots of c(x, 0.5, t) for x ∈ [0, 1] and t = 0, 0.3, 0.5, 0.7, 1.

Figure 13. Pressure p at y = 0.5 and x ∈ [0, 1] for t = 0, 0.3, 0.5, 0.7, 1.
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Figure 14. Plots of ‖v(x, 0.5, t)‖2 for x ∈ [0, 1] and t = 0, 0.3, 0.5, 0.7, 1.

their maximum velocity at z∗ > 2h
3 . In fact, in Figure 14 we observe that

the maximum velocity is obtained at x∗ ≈ 0.7 > x2h/3 = 0.6773 where
the maximum of the cell velocity norm is attained in the normal epithelium
crypt, as it can be seen in Figure 8. In this scenario, cells continue to have
an increasing velocity over the normal transit region defined by the quote
z = 2h

3 and, consequently, we have an expanded region for the proliferative
transit cells. Biologically, the formation of an adenoma leads to the filling of
the crypt walls following a bottom-up theory expansion [24, 25].

7. Conclusions
This paper deals with numerical tools for systems of partial differential

equations defined by an elliptic equation and a parabolic equation of convection-
diffusion-reaction type presenting mixed derivatives and a convective velocity
depending on the gradient of the solution of the elliptic equation (1). Follow-
ing the method of lines approach, we propose a finite-difference method for
the IBVP (1) defined in nonuniform partitions of a two dimensional square
and the stability and convergence analysis are provided.

In what concerns the stability of the semi-discrete approximation defined
by the differential-algebraic IVP (11) we establish in Proposition 3.1 the first
stability upper bounds that lead to the uniform boundness of the sequence
of approximations for the pressure and concentration. After, in Proposition
3.3 we conclude the stability of the IVP (11).

The main convergence result is established in Theorem 4.4 which is conse-
quence of a series of propositions where the particular structure of the spatial
truncation error is exploited. In spite of the truncation error associated with



34 G.C.M. CAMPOS, J.A. FERREIRA AND G. ROMANAZZI

the pressure and concentration discretizations are only of first order, in The-
orem 4.4 we show that the numerical approximations for the pressure and
for the concentration are second order convergent with respect to a discrete
H1-norm. We observe that in [1] the authors studied a differential system
analogous to the one studied here but where the elliptic equation does not
depends on the solution of the parabolic equation and the last equation does
not presents mixed derivatives. These two facts add difficulties in the con-
struction of the numerical scheme as well as in its convergence analysis.

The numerical illustration of the convergence result is included in this
paper. We also consider the numerical simulation of the cell dynamics in a
colonic crypt in a normal and abnormal scenarios assuming that the density
c of the semi-differentiated and stem crypt cells and the cell-cell adhesion
pressure p responsible by its convective transport are solutions of the elliptic-
parabolic IBVP (57) defined in a 3D surface representing a crypt. Taking into
account that the 3D surface is a manifold, a differential-algebraic system of
the type of the one studied here is obtained and then applying the numerical
tool analyzed we illustrate the behavior of c, p and cell velocity v in normal
and abnormal scenarios.
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