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Abstract

Using the close connection between the Parzen–Rosenblatt estimator for linear data and the re-

cently proposed Parzen–Rosenblatt type estimator for circular data, we establish some asymp-

totic properties of this last estimator, such as asymptotic unbiasedness, weak and strong point-

wise consistency, and weak and strong uniform consistency.
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1 Introduction

Given an independent and identically distributed sample of angles X1, . . . ,Xn ∈ [0, 2π[ from

some absolutely continuous random variable X with unknown probability density function f , the

standard kernel estimator of f is defined, for θ ∈ [0, 2π[, by

f̃n(θ;L, g) =
cg(L)

n

n
∑

i=1

L

(

1− cos(θ −Xi)

g2

)

, (1)

where L : [0,∞[→ R is a bounded function satisfying some additional conditions, g = gn is a

sequence of strictly positive numbers such that g → 0, as n → ∞, and cg(L), depending on the

kernel L and the bandwidth g, is chosen so that f̃n(·; g) integrates to unity. Kernel estimators of

this form for estimating densities of q-dimensional unit spheres, for q ≥ 1, were initially studied

in Beran (1979), Hall, Watson, and Cabrera (1987), Bai, Rao, and Zhao (1988) and Klemela

(2000), the last paper being restricted to q ≥ 2, and more recently by Garćıa-Portugués (2013)

and Garćıa-Portugués, Crujeiras, and González-Manteiga (2013). Quite recently, an alternative

kernel density estimator for circular data is proposed and studied in Tenreiro (2022, 2023). Such

an estimator, which is close in spirit to the Parzen–Rosenblatt (PR) estimator for linear data (see

Rosenblatt, 1956, and Parzen, 1962), is defined, for θ ∈ [0, 2π[, by

f̂n(θ;K,h) =
dh(K)

n

n
∑

i=1

Kh(θ −Xi), (2)

where h = hn is a sequence of strictly positive real numbers converging to zero as n tends to

infinity, Kh is a real-valued periodic function on R, with period 2π, such that

Kh(θ) = K(θ/h)/h, for θ ∈ [−π, π[,

withK a kernel on R, that is, a bounded and integrable real-valued function on R with
∫

R
K(u)du >

0, and dh(K) is a normalizing constant depending on the kernel K and the bandwidth h which

is chosen so that f̂n(·;h) integrates to unity. The periodicity imposed on Kh makes estimator

(2) well adapted to deal with circular data by automatically correcting the potential boundary

problems that may occur at the endpoints of the distribution support when the PR-estimator for

linear data is used to estimate f . This can be observed in Figure 1 that shows the contribution

to the estimator of an observation X for three different locations of such observation.

From a estimation point of view, the previous estimators are closely linked as established

in Tenreiro (2022) (Section 3). In fact, the estimator (1) with kernel L and bandwidth g and

the estimator (2) with kernel K(u) = L(u2) and bandwidth h =
√
2g share the same first-

order asymptotic terms for the corresponding mean integrated squared errors. Some simulation

experiments, as those performed by taking as test densities the 20 circular models introduced

and detailed described in Oliveira, Crujeiras, and Rodŕıguez-Casal (2012) (not shown here), have

also revealed that the two estimators present similar finite sample behaviours for a large variety
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Figure 1: Kernel density estimates f̂n(·;K,h) based on observation X for h = π/2 and h = π/4

when K is the gaussian kernel K(u) = exp(−u2).

of underlying distributions even when the sample size is small. The close connection between

the two estimators is shown in Figure 2 where estimates for the dragonflies orientation density

based on the orientation of 214 dragonflies with respect to the azimuth of the sun (see Batschelet,

1981, pp. 23–24) are computed for three different bandwidths. As most dragonflies have chosen a

direction of approximately 90◦ either to the right or to the left of the sun’s rays, the underlying

circular density should be bimodal.

Despite the close connection between the standard kernel estimator (1) and the PR-type

estimator (2), we think that it is worth drawing the attention of the reader to the simple structure

of the PR-type estimator which allows us to derive, with a little extra effort, some of its main

asymptotic properties by making use of techniques that are similar to those used, long ago, for

the PR-estimator for linear data. This is the main goal of this paper. The rest of the article is

as follows. In Section 2 we show that the PR-type estimator is asymptotically unbiased and we

derive its asymptotic variance at every point at which f is continuous. For that we follow closely

the approach of Parzen (1962) after noticing that the bias and variance of the PR-type estimator

(2) at a point θ can be expressed in terms of the convolution between Kh and the circular density

f . In Sections 3 and 4 we establish a set of sufficient conditions for the weak and strong pointwise

consistency, and for the strong uniform consistency of the PR-type estimator. For that we follow

the approaches used by Bhattacharya (1967) and Nadaraya (1965) for the PR-estimator for linear

data. Finally, in Section 5, we draw some conclusions. The plots shown in this article were carried

out using the R software R Development Core Team (2021).

2 Bias and variance

Taking into account Theorem 2.1 in Tenreiro (2022) and the fact that the class of delta sequence

estimators studied in the previous work comprises the class of PR-type estimators, we know

that under certain conditions on the kernel K the PR-type estimator f̂n(·;K,h) defined by (2)
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Figure 2: Estimates for the dragonflies orientation density by using estimators f̃n(·;L, g) and

f̂n(·;K,h) where L(t) = exp(−t), K(u) = exp(−u2), h =
√
2g and g = 0.2 (left), g = 0.4 (centre)

and g = 0.6 (right).

is asymptotically unbiased and an expression for its asymptotic variance can be given when the

probability density function f is continuous on [0, 2π[. In this section we establish the same

asymptotic properties under less restrictive conditions on K and f . With this purpose in mind

we employ an alternative and simpler approach that follows closely the one used by Parzen (1962)

for the PR-estimator for linear data. For that, we begin by noticing that, similarly to the PR-

estimator for linear data, the bias and variance of f̂n(·;K,h) at a point θ can be expressed in terms

of the convolutions between Kh or (K2)h and the circular density f . In fact, for all θ ∈ [0, 2π[,

we have

Ef̂n(θ;K,h) = dh(K)

∫ 2π

0
Kh(θ − u)f(u)du = dh(K)(Kh ∗ f)(θ) (3)

and

Varf̂n(θ;K,h) = (nh)−1dh(K)2
(

((K2)h ∗ f)(θ)− h(Kh ∗ f)(θ)2
)

, (4)

where for the sake of simplicity we are also denoting by f the periodic extension of f to R given by

f(θ) = f(θ − 2kπ), whenever θ ∈ [2kπ, 2(k + 1)π[, for some k ∈ Z (see Tenreiro, 2023, Equations

(10) and (11)). Recall that if α and β are real-valued functions with period 2π defined on R, the

convolution of α and β is defined, for x ∈ R, by

(α ∗ β)(x) =
∫ 2π

0
α(x− y)β(y)dy,

whenever this integral exists. As the integrand is periodic with period 2π, the previous definition

does not depend on the considered interval of integration with length 2π. The convolution (α ∗
β)(x) exists for almost every x ∈ R whenever α and β are integrable on [0, 2π[, and it exists for

every x ∈ R if one of the functions α or β is bounded. Moreover, it exists and is continuous for

every x ∈ R, whenever α and β are square integrable on [0, 2π[. Obviously, the convolution is a

periodic function if it exists (see Butzer and Nessel, 1971, §0.4).
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The following result is a version of the Bochner’s lemma for real-valued periodic functions

with period 2π (Bochner, 1955, p. 2; see also Parzen, 1962, p. 1067, and Bosq and Lecoutre, 1987,

p. 61). It is of crucial importance to deal with the convolutions that appear in the equations (3)

and (4).

Lemma 1. For h > 0, let ϕh be a real-valued periodic function on R with period 2π such that,

ϕh(θ) = ϕ(θ/h)/h, for θ ∈ [−π, π[,

where ϕ : R → R is bounded and integrable on R, and let g : R → R a periodic function with

period 2π.

a) If g is bounded on [0, 2π[, or, in alternative, if g is integrable on [0, 2π[ and ϕ is such that

lim|u|→∞ uϕ(u) = 0, then

(ϕh ∗ g)(θ) → g(θ)

∫

R

ϕ(u)du, h → 0,

at every point θ ∈ [0, 2π[ at which g is continuous.

b) If g is continuous on [0, 2π[, then the previous convergence is uniform on [0, 2π[.

Proof: By using standard arguments, for every h > 0 and 0 < δ < π we have
∣

∣

∣

∣

(ϕh ∗ g)(θ)− g(θ)

∫

R

ϕ(u)du

∣

∣

∣

∣

≤ sup
|z|≤δ

|g(θ − z)− g(θ)|
∫

R

|ϕ(u)|du

+3||g||∞
∫

|u|>δ/h
|ϕ(u)|du,

whenever g is bounded on [0, 2π[, where we denote ||g||∞ = supx∈R |g(x)|, and
∣

∣

∣

∣

(ϕh ∗ g)(θ)− g(θ)

∫

R

ϕ(u)du

∣

∣

∣

∣

≤ sup
|z|≤δ

|g(θ − z)− g(θ)|
∫

R

|ϕ(u)|du

+δ−1 sup
|u|>δ/h

|uϕ(u)|
∫ 2π

0
|g(u)|du

+2|g(θ)|
∫

|u|>δ/h
|ϕ(u)|du,

whenever g is integrable on [0, 2π[. The stated result follows from the previous inequalities. �

Taking into account that

dh(K)−1 =

∫ π/h

−π/h
K(y)dy →

∫

R

K(y)dy, as h → 0, (5)

the following result is a consequence of Lemma 1 and equations (3) and (4).

Theorem 1. Let f be bounded on [0, 2π[, or, in alternative, let K be such that lim|u|→∞ uK(u) =

0. If h → 0 then the PR-type estimator is asymptotically unbiased, i.e.,

lim
n→∞

Ef̂n(θ;K,h) = f(θ),
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and has a variance satisfying

lim
n→∞

nhVarf̂n(θ;K,h) = f(θ)

(
∫

R

K(u)du

)−2 ∫

R

K(u)2du,

at all points θ ∈ [0, 2π[ at which f is continuous. Moreover, if f is continuous on [0, 2π[, then the

previous limits are uniform on [0, 2π[.

As we can conclude from Parzen (1962, pp. 1067, 1069), the previous asymptotic variance

coincides with that of the PR-estimator for linear data when K is such that
∫

R
K(u)du = 1.

3 Pointwise consistency

Taking into account that the mean squared error of the PR-type estimator may be written as

E
(

f̂n(θ;K,h) − f(θ)
)2

= Varf̂n(θ;K,h) +
(

Ef̂n(θ;K,h) − f(θ)
)2
, (6)

under the conditions of Theorem 1 we conclude that f̂n(·;K,h) is consistent in quadratic mean

at all points θ ∈ [0, 2π[ at which f is continuous if in addition to satisfying h → 0, the bandwidth

also satisfies the classical condition nh → ∞. By making use of an exponential inequality, we

prove in this section that under stronger conditions on the bandwidth h the PR-type estimator is

strongly consistent at every point of continuity of f . Apparently, the use of a similar exponential

inequality in the context of the almost sure convergence of the PR-estimator for linear data goes

back to Bhattacharya (1967). The proof we give is similar to that of Theorem 1 in Bai et al.

(1988) where the strong pointwise consistency of the standard kernel estimator (1) is established.

Theorem 2. Under the general conditions of Theorem 1, if h → 0 and

∞
∑

n=1

exp(−γnh) < ∞, for all γ > 0,

we have

f̂n(θ;K,h)
a.s.−→ f(θ),

at every point θ ∈ [0, 2π[ of continuity of f .

Proof: From Theorem 1, it is enough to prove that f̂n(θ;K,h)−Ef̂n(θ;K,h)
a.s.−→ 0, at every point

θ ∈ [0, 2π[ of continuity of f . We have

f̂n(θ;K,h) − Ef̂n(θ;K,h) =
1

n

n
∑

i=1

Zi,n,

where Zi,n = dh(K)
(

Kh(θ −Xi)− EKh(θ −Xi)
)

is such that

|Zi,n| ≤ 2h−1|dh(K)| ||K||∞
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and

E(Z2
i,n) ≤ h−1dh(K)2((K2)h ∗ f)(θ).

Therefore, using Lemma 1 and the equation (5) we conclude that there exist constants C,D > 0

such that |Zi,n| ≤ Ch−1 and E(Z2
i,n) ≤ Dh−1 for n large enough. Using now the Theorem 3 of

Hoeffding (1963), we deduce that

P
(

|f̂n(θ;K,h) − Ef̂n(θ;K,h)| ≥ ǫ
)

≤ 2 exp(−cǫ2nh/D),

for all ǫ ∈ ]0,D/C[ with c = 2 log 2 − 1. The stated result follows now from the Borel–Cantelli

lemma. �

4 Global consistency

The overall quality of a nonparametric density estimator can be assessed through different per-

formance measures. Making use of the equalities (3), (4) and (6), Tenreiro (2023) (Theorem 2)

established that the PR-type estimator is a mean integrated square error consistent estimator of

f , whenever the bandwidth h is such that h → 0 and nh → ∞, that is,

E

∫ 2π

0

{

f̂n(θ;K,h) − f(θ)
}2

dθ → 0,

for all square integrable density f on [0, 2π[. In the following result, which is inspired by the

corresponding result obtained by Nadaraya (1965) for the PR-estimator for linear data, we estab-

lish sufficient conditions for the almost sure uniform convergence of the PR-type estimator. The

kernel K is assumed to be of bounded variation on R (see Cohn, 1980, §4.4), a condition that

holds for the normal kernel K(u) = exp(−u2), and for many other kernels such as the polynomial

kernels K(u) = (1− u2)p1I(|u| ≤ 1), with p ∈ N.

Theorem 3. Let K be of bounded variation on R and f continuous on [0, 2π[. If h → 0 and

∞
∑

n=1

exp(−γnh2) < ∞, for all γ > 0, (7)

we have

sup
θ∈[0,2π[

∣

∣f̂n(θ;K,h) − f(θ)
∣

∣

a.s.−→ 0.

Proof: From Theorem 1, it is enough to prove that supθ∈[0,2π[
∣

∣f̂n(θ;K,h) − Ef̂n(θ;K,h)
∣

∣

a.s.−→ 0.

For θ ∈ [0, 2π[, we have

f̂n(θ;K,h) =
dh(K)

h

∫ 2π

0
Lθ,h(y)dFn(y)

and

Ef̂n(θ;K,h) =
dh(K)

h

∫ 2π

0
Lθ,h(y)dF (y),
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where Fn is the empirical distribution function associated to the observations X1, . . . ,Xn, F is

the distribution function of X, and, for y ∈ R,

Lθ,h(y) = K

(

θ − y − 2π

h

)

1I]−∞,θ−π](y)

+K

(

θ − y

h

)

1I]θ−π,θ+π](y)

+K

(

θ − y + 2π

h

)

1I]θ+π,+∞[(y).

As K is of bounded variation on R and integrable, the function Lθ,h is also of bounded variation

on R with limy→−∞Lθ,h(y) = 0. Moreover, we have

VLθ,h
(R) ≤ 3VK(R) + 4||K||∞,

where Vg(R) denotes the variation on R of the real-valued function g. On integrating by parts

(see Cohn, 1980, pp. 163–164), we find

f̂n(θ;K,h) = L+
θ,h(2π) −

dh(K)

h

∫ 2π

0
Fn(y

−)dµθ,h(y) a.s.

and

Ef̂n(θ;K,h) = L+
θ,h(2π)−

dh(K)

h

∫ 2π

0
F (y−)dµθ,h(y),

where L+
θ,h is the right-continuous function given by L+

θ,h(y) = Lθ,h(y
+), and µθ,h is the signed

measure induced by L+
θ,h on B(R). Therefore, for θ ∈ [0, 2π[, we have

∣

∣f̂n(θ;K,h) − Ef̂n(θ;K,h)
∣

∣ ≤ |dh(K)|
h

∫ 2π

0
|Fn(y

−)− F (y−)|d|µθ,h|(y)

≤ |dh(K)|
h

||Fn − F ||∞|µθ,h|(R),

where |µθ,h| is the variation of µθ,h and

|µh,θ|(R) = VL+

θ,h
(R) ≤ VLθ,h

(R) ≤ 3VK(R) + 4||K||∞.

Finally we get

sup
θ∈[0,2π[

∣

∣f̂n(θ;K,h) − Ef̂n(θ;K,h)
∣

∣ ≤ CK
1

h
||Fn − F ||∞, a.s.,

where the constant CK depends only on the kernel K. The stated result follows now from the

Borel–Cantelli lemma and the exponential inequality

P
(

||Fn − F ||∞ ≥ ǫ
)

≤ 2 exp(−2ǫ2n), (8)

which is valid for all ǫ > 0 and n ∈ N (see Massart, 1990). �
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From the previous proof, we also conclude that, together with the condition h → 0, the

condition

nh2 → ∞ (9)

is sufficient for the weak uniform consistency of the PR-type estimator, that is,

sup
θ∈[0,2π[

∣

∣f̂n(θ;K,h) − f(θ)
∣

∣

p−→ 0,

for K and f under the conditions of Theorem 3. Note also that if the law of the iterated logarithm

lim sup
n→∞

√

2n

log log n
||Fn − F ||∞ ≤ 1, a.s.

(see van der Vaart, 1998, p. 268) is used instead of the exponential inequality (8) in the proof of

Theorem 3, we easily conclude that it also holds whenever the condition (7) on the bandwidth is

replaced by
nh2

log log n
→ ∞. (10)

Nevertheless, any of the conditions (7), (9) and (10) is more restrictive than the condition

nh

log n
→ ∞,

that, together with h → 0, are, for suitable kernels, sufficient for the strong uniform consistency of

the standard kernel estimator (1) as established in Theorem 2 of Bai et al. (1988), and necessary

and sufficient for the weak and strong uniform consistency of the PR-estimator for linear data (see

Bertrand-Retali, 1978, Silverman, 1978, and Devroye and Wagner, 1980). Using a more refined

proof technique as that followed in the last bibliographic reference, we conjecture that it will be

possible to show that, for suitable kernels, the conditions h → 0 and nh/ log n → ∞ are sufficient

for the strong uniform consistency of the PR-type estimator.

5 Conclusion

Taking advantage of the close connection between the well-known PR-estimator for linear data

and the recently proposed PR-type estimator for circular data defined by (2), in this paper we have

successfully explored the possibility of establishing asymptotic properties of this last estimator

(asymptotic unbiasedness, weak and strong pointwise consistency, and weak and strong uniform

consistency) by making use of proof techniques originally proposed for the PR-estimator for linear

data.
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