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Abstract

Motivated by interval mathematics, the research on an arithmetic
for closed balls in R

n is continued. In this sense, more algebraic prop-
erties of certain operations on closed balls in R

n, some of which related
either to the Hadamard product of vectors or to the 2-fold vector cross
product when n ∈ {3, 7}, are established. Furthermore, an arithmetic
for matrices of closed balls is pursued, and algebraic properties of
certain operations on matrices of closed balls, some related to the
mentioned operations on closed balls, are studied. In addition, metric
properties for closed balls in R

n as well as for matrices of closed balls,
convergence in particular, are also presented.
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1 Motivation, and structure

According to Pedrycz [14], there is an interest in computing with sets of
numbers, and in identifying associated algebraic structures or systems [3,
8], for error control purposes. Reference [14] contains research on interval
mathematics, involved in granular computing – a computing paradigm of
information processing. More research on interval mathematics, that makes
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use of closed intervals and of closed balls, is due to Gargantini and Henrici
[10], Alefeld and Herzberger [1], and Petković and Petković [15]; Mayer,
in [13], and Farhadsefat, Rohn and Lotfi, in [9], approached, respectively,
convergence and norms of real interval matrices. Recently, Johansson [12]
presented ball arithmetic as a tool for rigorous algebraic computation with
real numbers, and Hoeven [11] stated his reasoned preference for balls over
intervals for complex computations (e. g., inversion of a matrix) and most
applications.

Motivated by interval mathematics, namely the previously cited refer-
ences, an arithmetic for closed balls in R

n was pursued by Beites, Nicolás
and Vitória in [5]. Concretely, the properties of certain operations on closed
balls in R

n, some of which related either to the Hadamard product of vectors,
[4, 16] – for us called “algebraic-Hadamard way” (◦B,r), “interval arithmetic-
Hadamard way” (◦B,c) – or to the 2-fold vector cross product when n ∈ {3, 7},
[4, 7] – for us called “algebraic-cross way” (×B,r), “interval arithmetic-cross
way” (×B,c) –, were studied. In particular, known results for operations on
closed balls in C, which can be identified with R

2, were extended to closed
balls in R

n. More recently, the properties of possible multiplications for
closed balls in C

n were considered in [6], and certain equations involving
these operations were solved.

The present work is structured as follows. In section 2, the research
on an arithmetic for closed balls in R

n started in [5] is continued. In this
sense, more algebraic properties of the operations ×B,r, ×B,c, ◦B,r and ◦B,c
are established. In section 3, an arithmetic for ball matrices is pursued, and
algebraic properties of certain operations on ball matrices, some of them
related to ×B,r, ×B,c, ◦B,r and ◦B,c, are studied. Inclusion monotonicity,
which according to Alefeld and Herzberger in [1] is the foundation for many
applications of interval arithmetic, is satisfied by some of the mentioned
operations on closed balls, as observed in [5], and on ball matrices, as proved
in the current work. Furthermore, metric properties for closed balls as well
as for ball matrices, convergence in particular, are respectively presented in
sections 2 and 3.

2 Closed balls, revisited

The present section is devoted to operations on closed balls, and their prop-
erties.

Consider the Euclidean vector space Rn, and denote the Euclidean norm
of a vector by ‖ · ‖2. Let us recall some definitions on closed balls.

Definition 2.1. [5] Let c ∈ R
n and let r ∈ R

+
0 . The closed ball in R

n with
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center a and radius r is

a = 〈c; r〉 = {x ∈ R
n : ‖x− c‖2 ≤ r}.

The set of closed balls in R
n is denoted by B, and by B+ or B0 if, respectively,

r ∈ R
+ or r = 0.

Definition 2.2. [5] Let a = 〈c1; r1〉, b = 〈c2; r2〉 ∈ B. The closed balls a

and b are equal (a = b) if there is set-theoretic equality between them, that
is, c1 = c2 and r1 = r2. The closed ball a is contained in b (a ⊆ b) if
set-theoretic inclusion holds.

Let ‖ · ‖∞, ◦ and, with n ∈ {3, 7}, × respectively denote the ∞-norm of a
vector, the Hadamard product and the 2-fold vector cross product of vectors.

Definition 2.3. [5] The binary operation +B : B×B → B, hereinafter called
addition +B, is given by

a+B b = 〈c1; r1〉+B 〈c2; r2〉 := 〈c1 + c2; r1 + r2〉.

The binary operation ×B,r : B × B → B, hereinafter called multiplication
×B,r, is given by

a×B,r b = 〈c1; r1〉 ×B,r 〈c2; r2〉 := 〈c1 × c2 + r2c1 + r1c2; r1r2〉.

The binary operation ×B,c : B × B → B, hereinafter called multiplication
×B,c, is given by

a×B,c b = 〈c1; r1〉 ×B,c 〈c2; r2〉 := 〈c1 × c2; r2‖c1‖2 + r1‖c2‖2 + r1r2〉.

The binary operation ◦B,r : B × B → B, hereinafter called multiplication
◦B,r, is given by

a ◦B,r b = 〈c1; r1〉 ◦B,r 〈c2; r2〉 := 〈c1 ◦ c2 + r2c1 + r1c2; r1r2〉.

The binary operation ◦B,c : B × B → B, hereinafter called multiplication
◦B,c, is given by

a ◦B,c b = 〈c1; r1〉 ◦B,c 〈c2; r2〉 := 〈c1 ◦ c2; r2‖c1‖∞ + r1‖c2‖∞ + r1r2〉.

We now introduce one more operation on closed balls, a multiplication
by a scalar.

Definition 2.4. The binary operation ·B : R × B → B, hereinafter called
scalar multiplication ·B, is given by

α ·B a = α ·B 〈c1; r1〉 := 〈αc1; |α|r1〉.
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Next result gives an alternative description of a closed ball obtained by
scalar multiplication.

Theorem 2.5. Let a ∈ B. Let α ∈ R. Then α ·B a = {αx : x ∈ a}.

Proof. It is clear that the result holds when α = 0. Assume now that α 6= 0.
(⊇) Let a = 〈c1; r1〉 ∈ B, and let x ∈ a. Let α ∈ R. As x ∈ a then

‖αx− αc1‖2 = |α|‖x− c1‖2 ≤ |α|r1.

Thus, αx ∈ α ·B a.
(⊆) Let a = 〈c1; r1〉 ∈ B. Let α ∈ R. Let w ∈ α ·B a. Then

‖w − αc1‖2 ≤ |α|r1.

If r1 = 0 then w = αc1 with c1 ∈ a. If r1 6= 0 then w = α
1

α
w, with

1

α
w ∈ a.

In fact,

∣

∣

∣

∣

∣

∣

∣

∣

1

α
w − c1

∣

∣

∣

∣

∣

∣

∣

∣

2

=
1

|α|‖w − αc1‖2 ≤ r1.

By [5, Corollary 3.2], B0 is the set of elements of B which possess recip-
rocal relative to +B. In this sense, we consider an alternative definition for
the subtraction of elements in B.

Definition 2.6. The binary operation −B : B × B → B, hereinafter called
subtraction −B, is given by

a−B b = 〈c1; r1〉 −B 〈c2; r2〉 := 〈c1 − c2; |r1 − r2|〉.

Also for the reason stated in the paragraph previous to this definition,
(B,+B, ·B) is not a real linear space. However, we have all the properties
required for the following algebraic structure introduced by Aseev in [2].

Theorem 2.7. (B,⊆,+B, ·B) is a real quasilinear space.

Proof. Invoking [5, Corollary 2.2.], ⊆ is easily seen to be a partial order
relation defined on B. Furthermore, by the same result, it is straightforward
that, for all a, b, c,d ∈ B and for all α ∈ R, if a ⊆ b then α ·B a ⊆ α ·B b,
and if a ⊆ b, c ⊆ d then a+B c ⊆ b+B d.

From [5, Theorem 3.1], +B is commutative and associative, and o = 〈0; 0〉
is the neutral element relative to +B. Now let a = 〈c1; r1〉 ∈ B, and let
α, β ∈ R. For all a = 〈c1; r1〉, b = 〈c2; r2〉 ∈ B and for all α, β ∈ R,

(αβ) ·B a = 〈αβc1; |αβ|r1〉 = 〈αβc1; |α||β|r1〉 = α ·B (β ·B a),
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1 ·B a = a,

α ·B (a+ b) = 〈α(c1 + c2); |α|(r1 + r2)〉 = α ·B a+ α ·B b,

0 ·B a = o.

Moreover,

(α+β) ·B a = 〈(α+β)c1; |α+β|r1〉, α ·B a+β ·B a = 〈(α+β)c1; (|α|+ |β|)r1〉,

which are concentric balls. As |α + β|r1 ≤ (|α| + |β|)r1, then, from [5,
Corollary 2.2.],

(α + β) ·B a ⊆ α ·B a+ β ·B a

and the reverse inclusion does not hold.

We now consider a metric concept for closed balls, and the corresponding
notation.

Definition 2.8. Let a = 〈c1; r1〉 ∈ B. The absolute value of a is |a| =
‖c1‖2 + r1.

Next results give an alternative description for the absolute value of a
closed ball.

Lemma 2.9. The function ||| · ||| : B → R, defined by

|||a||| = sup{‖x‖2 : x ∈ a},

is a norm on B.
Proof. First of all, as each a ∈ B is a bounded set of Rn, |||· ||| is well-defined.
Now let a, b ∈ B, and let α ∈ R. For all x ∈ a, |||a||| ≥ ‖x‖2 ≥ 0. Also,
|||a||| = 0 iff, for all x ∈ a, ‖x‖2 = 0 iff a = o, where o = 〈0; 0〉. By Theorem
2.5, we obtain

|||α ·B a||| = sup{‖αx‖2 : x ∈ a} = |α| sup{‖x‖2 : x ∈ a} = |α| |||a|||.

From [5, Lemma 3.3], we get

|||a+ b||| = sup{‖u‖2 : u ∈ a+B b}
= sup{‖x+ y‖2 : x ∈ a ∧ y ∈ b}
≤ sup{‖x‖2 + ‖y‖2 : x ∈ a ∧ y ∈ b}
≤ sup{‖x‖2 : x ∈ a}+ sup{‖y‖2 : y ∈ b}
= |||a|||+ |||b|||.

5



Theorem 2.10. Let a ∈ B. Then |a| = max{‖x‖2 : x ∈ a}.

Proof. Let a = 〈c1; r1〉 ∈ B. Let x ∈ a. By the reverse triangular inequality,
we have ‖x‖2 − ‖c1‖2 ≤ ‖x− c1‖2 ≤ r1. Hence,

‖x‖2 ≤ ‖c1‖2 + r1,

that is, ‖c1‖2 + r1 is an upper bound of {‖x‖2 : x ∈ a}. Now suppose that,
for some y ∈ R

n, ‖y‖2 is another upper bound of {‖x‖2 : x ∈ a}, that is,
for all x ∈ a, ‖x‖2 ≤ ‖y‖2. Consider the line that passes through c1 and y,
intersecting the border of a at a point x such that ‖x‖2 = ‖c1‖2+r1+‖x−y‖2.
Once again by the reverse triangular inequality,

‖y‖2 ≥ ‖x‖2 − ‖x− y‖2 = ‖c1‖2 + r1.

Thus, ‖c1‖2 + r1 is the least upper bound of {‖x‖2 : x ∈ a}. Therefore,

sup{‖x‖2 : x ∈ a} = ‖c1‖2 + r1.

Since every a is a compact set of Rn and ‖ · ‖2 : Rn → R is continous, by the
Weierstrass Theorem, the supremum in the definition of ||| · ||| is attained as
the maximum of {‖x‖2 : x ∈ a}.

Properties of the absolute value of a closed ball are collected in the fol-
lowing results.

Theorem 2.11. Let a, b ∈ B. Let α ∈ R. Then:

|a| ≥ 0, |a| = 0 iff a = o, where o = 〈0; 0〉; (1)

|a±B b| ≤ |a|+ |b|; (2)

|α ·B a| = |α||a|; (3)

for ∗B ∈ {×B,r,×B,c, ◦B,r, ◦B,c}\{◦B,r, ◦B,c},

|a ∗B b| ≤ |a||b|. (4)

Proof. Property (1) is straightforward. Now let a = 〈c1; r1〉, b = 〈c2; r2〉 ∈ B.
Respectively for (2) and (3), we get

|a±B b| = ‖c1 ± c2‖2 + |r1 ± r2| ≤ ‖c1‖2 + ‖c2‖2 + r1 + r2 = |a|+ |b|,

|α ·B a| = ‖αc1‖2 + |α|r1 = |α|(‖c1‖2 + r1) = |α||a|.
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Now consider (4). We have

|a×B,r b| = |〈c1 × c2 + r2c1 + r1c2; r1r2〉|
= ‖c1 × c2 + r2c1 + r1c2‖2 + r1r2

≤ ‖c1‖2‖c2‖2 + r2‖c1‖2 + r1‖c2‖2 + r1r2

= (‖c1‖2 + r1)(‖c2‖2 + r2)

= |a||b|,

|a×B,c b| = |〈c1 × c2; r2‖c1‖2 + r1‖c2‖2 + r1r2〉|
= ‖c1 × c2‖2 + r2‖c1‖2 + r1‖c2‖2 + r1r2

≤ ‖c1‖2‖c2‖2 + r2‖c1‖2 + r1‖c2‖2 + r1r2

= |a||b|.

We also get

|a ◦B,r b| = |〈c1 ◦ c2 + r2c1 + r1c2; r1r2〉|
= ‖c1 ◦ c2 + r2c1 + r1c2‖2 + r1r2

≤ ‖c1 ◦ c2‖2 + r2‖c1‖2 + r1‖c2‖2 + r1r2,

|a ◦B,c b| = |〈c1 ◦ c2; r2‖c1‖∞ + r1‖c2‖∞ + r1r2〉|
= ‖c1 ◦ c2‖2 + r2‖c1‖∞ + r1‖c2‖∞ + r1r2

≤ ‖c1 ◦ c2‖2 + r2‖c1‖2 + r1‖c2‖2 + r1r2.

As, for some c1, c2 ∈ R
n, ‖c1 ◦ c2‖2 ≥ ‖c1‖2‖c2‖2, then (4) does not hold for

∗ ∈ {◦B,r, ◦B,c}.

Corollary 2.12. The function | · | : B → R, defined by a 7→ |a|, is a norm
on B.

Proof. A consequence of Theorem 2.11 (1)-(3).

Notice that the function q : B × B → R, defined by

(a, b) 7→ q(a, b) = |a−B b|,

is the metric associated with the norm | · |, which turns B into a metric space.

We now consider one more metric concept for closed balls, and the cor-
responding notation.

7



Definition 2.13. Let a = 〈c1; r1〉 ∈ B. The width of a is d(a) = 2r1.

Properties of the width of a closed ball are presented in the following
results.

Theorem 2.14. Let a, b ∈ B. Let α ∈ R. Then:

d(a) ≥ 0; (5)

d(a±B b) ≤ d(a) + d(b); (6)

d(α ·B a) = |α|d(a); (7)

for ∗B ∈ {×B,r,×B,c, ◦B,r, ◦B,c}\{×B,c, ◦B,c},
d(a ∗B b) ≤ d(a)|b|. (8)

Proof. Properties (5)-(7) are straightforward. Now let a = 〈c1; r1〉, b =
〈c2; r2〉 ∈ B. Concerning (8), observe that

d(a)|b| = 2r1(‖c2‖2 + r2)

and
d(a×B,r b) = d(a ◦B,r b) = 2r1r2 ≤ d(a)|b|,

d(a×B,c b) = 2(r2‖c1‖2 + r1‖c2‖2 + r1r2) ≥ d(a)|b|,
d(a ◦B,c b) = 2(r2‖c1‖∞ + r1‖c2‖∞ + r1r2) ≤ 2r2‖c1‖2 + d(a)|b|.

Corollary 2.15. The function d : B → R, defined by a 7→ d(a), is a semi-
norm on B.
Proof. Although we have (5)-(7) from Theorem 2.14, observe that d(a) = 0
for a = 〈c1; 0〉 6= o.

We now recall the (right) powers of a closed ball relative to ×B,r, ◦B,r and
◦B,c, these defined except for ×B,c due to the lack of neutral element.

Definition 2.16. [5] Let a = 〈c1; r1〉 ∈ B. Let us denote (1, . . . , 1) by c◦01
and c

◦(k−1)
1 ◦ c1 by c◦k1 for k ∈ N.

The powers of a relative to ×B,r are defined by

a
×B,r0 = 〈0; 1〉 and a

×B,rk = a
×B,r(k−1) ×B,r a for k ∈ N.

The powers of a relative to ◦B,r are defined by

a
◦B,r0 = 〈0; 1〉 and a

◦B,rk = a
◦B,r(k−1) ◦B,r a for k ∈ N.

The powers of a relative to ◦B,c are defined by

a
◦B,c0 = 〈(1, . . . , 1); 0〉 and a

◦B,ck = a
◦B,c(k−1) ◦B,c a for k ∈ N.
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Next new notion requires the powers of a closed ball relative to ×B,r, ◦B,r
and ◦B,c.

Definition 2.17. Let a = 〈c1; r1〉 ∈ B. For each ∗B ∈ {×B,r, ◦B,r, ◦B,c}, a is
∗B-convergent (to zero) if the sequence

{a∗Bk}∞k=0 = {< c
∗B{k}
1 ; r

∗B{k}
1 >}∞k=0

of the powers of a relative to ∗B converges to the closed ball o = 〈0; 0〉 with

respect to the norm | · |, that is, lim
k→∞

c
∗B{k}
1 = 0 and lim

k→∞
r
∗B{k}
1 = 0. When a

is not ∗B-convergent, a is said to be ∗B-divergent.

We finish the present section with the subsequent example, which will be
useful at the end of the forthcoming section.

Example 2.18. Let b = 〈(1
2
, . . . , 1

2
); 2

3
〉 ∈ B. From [5, Theorem 3.10], for

k ∈ N,

b
×B,rk =

〈

k

(

2

3

)k−1(
1

2
, . . . ,

1

2

)

;

(

2

3

)k
〉

.

As lim
k→+∞

(

2

3

)k

= 0 = lim
k→+∞

(

k

(

2

3

)k−1
1

2

)

, b is ×B,r-convergent.

3 Ball matrices, visited

The present section is devoted to operations on ball matrices, and their prop-
erties.

Consider the set Mm×n = Mm×n(R) of m× n matrices over R. Consider
also the set Mm×n = Mm×n(B) of m × n matrices over B, where each ele-
ment is hereinafter called matrix of closed balls or, simply, ball matrix. The
notation M is used when we refer to ball matrices of appropriate sizes.

Definition 3.1. Let A = [aij ],B = [bij ] ∈ Mm×n. The ball matrices A and
B are equal (A = B) if, for all i ∈ {1, . . . ,m} and for all j ∈ {1, . . . , n},
aij = bij. The ball matrix A is contained in B (A ⊆ B) if, for all i ∈
{1, . . . ,m} and for all j ∈ {1, . . . , n}, aij ⊆ bij.

We now introduce, through the operations previously defined on closed
balls, operations on ball matrices.

Definition 3.2. The binary operations ±M : Mm×n × Mm×n → Mm×n,
hereinafter respectively called addition +M and subtraction −M, are given by
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A±M B = [aij ]±M [bij ] := [aij ±B bij ], i = 1, . . . ,m, j = 1, . . . , n.

The following result shows that the addition +M is inclusion monotonic.

Theorem 3.3. Let A(t),B(t) ∈ Mm×n, t ∈ {1, 2}. If A(t) ⊆ B(t), t ∈ {1, 2},
then

A
(1) +M B

(1) ⊆ A
(2) +M B

(2).

Proof. Let A(t) = [a
(t)
ij ],B

(t) = [b
(t)
ij ] ∈ Mm×n such that A(t) ⊆ B(t), t ∈

{1, 2}. By [5, Theorem 3.4], +B is inclusion monotonic. Hence,

A
(1) +M B

(1) = [a
(1)
ij +B b

(1)
ij ] ⊆ [a

(2)
ij +B b

(2)
ij ] = A

(2) +M B
(2).

We continue with some more properties of the addition +M.

Theorem 3.4. Let A,B,C ∈ Mm×n. Then

A+M B = B +M A, (9)

(A+M B) +M C = A+M (B +M C), (10)

A+M 0 = A = 0+M A, where 0 = [oij] with oij = o = 〈0; 0〉. (11)

Proof. From [5, Theorem 3.1], +B is commutative, associative and o = 〈0; 0〉
is the neutral element of (B,+B), properties from where (9)-(11) follow in an
entrywise manner.

We now introduce one more operation on ball matrices, a multiplication
by a scalar.

Definition 3.5. The binary operation ·M : R×Mm×n → Mm×n, hereinafter
called scalar multiplication ·M, is given by

α ·M A = α ·M [aij ] := [α ·B aij ], i = 1, . . . ,m, j = 1, . . . , n.

Next result gives an alternative description of a ball matrix obtained by
scalar multiplication.

Theorem 3.6. Let A = [aij] ∈ Mm×n, and let α ∈ R. Then α ·M A

= [{αx : x ∈ aij}].

Proof. A straightforward consequence of Theorem 2.5.

Through the multiplications on closed balls, we define multiplications on
ball matrices.

10



Definition 3.7. For each ∗B ∈ {×B,r,×B,c, ◦B,r, ◦B,c}, the binary operation
∗M,∗B : Mm×r ×Mr×n → Mm×n, hereinafter called multiplication ∗M,∗B , is
given by

A∗M,∗B B = [aij ]∗M,∗B [bij ] :=

[

r
∑

k=1

aik ∗B bkj

]

, i = 1, . . . ,m, j = 1, . . . , n.

Before presenting properties of the multiplications ∗M,∗B , we define ma-
trices that depend on the neutral element 1∗B , in [5], relative to ∗B.
Definition 3.8. Let

1∗B =

{

〈0; 1〉 if ∗B ∈ {×B,r, ◦B,r}
〈(1, . . . , 1); 0〉 if ∗B = ◦B,c .

For ∗B ∈ {×B,r, ◦B,r, ◦B,c}, the identity matrix of order t relative to ∗B is
It,∗B ∈ Mt×t given by

(It,∗B)ij =

{

1∗B if i = j

o if i 6= j
, where o = 〈0; 0〉.

Theorem 3.9. Let ∗B ∈ {×B,r, ◦B,r, ◦B,c}. Let A,B,C ∈ M. Then

(A ∗M,◦B,r
B) ∗M,◦B,r

C = A ∗M,◦B,r
(B ∗M,◦B,r

C); (12)

A ∗M,∗B In,∗B = A = Im,∗B ∗M,∗B A if A ∈ Mm×n; (13)

for ∗B ∈ {×B,r, ◦B,r},
A ∗M,∗B (B +M C) = A ∗M,∗B B +M A ∗M,∗B C, (14)

(B +M C) ∗M,∗B A = B ∗M,∗B A+M C ∗M,∗B A; (15)

for ∗B ∈ {×B,c, ◦B,c},
A ∗M,∗B (B +M C) ⊆ A ∗M,∗B B +M A ∗M,∗B C, (16)

(B +M C) ∗M,∗B A ⊆ B ∗M,∗B A+M C ∗M,∗B A. (17)

Proof. Let A ∈ Mm×n,B ∈ Mn×p,C ∈ Mp×q. As, by [5, Theorem 3.16],
◦B,r is associative, then, for (12), we get

(A ∗M,◦B,r
B) ∗M,◦B,r

C =

[

p
∑

k=1

n
∑

s=1

(ais ◦B,r bsk) ◦B,r ckj
]

=

[

p
∑

k=1

n
∑

s=1

ais ◦B,r (bsk ◦B,r ckj)
]

=

[

n
∑

s=1

ais ◦B,r
(

p
∑

k=1

bsk ◦B,r ckj
)]

= A ∗M,◦B,r
(B ∗M,◦B,r

C).
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LetA ∈ Mm×n. From [5, Theorem 3.6, Theorem 3.16, Theorem 3.22], for
∗B ∈ {×B,r, ◦B,r, ◦B,c}, 1∗B in Definition 3.8 is the neutral element of (B, ∗B).
Then, for (13), we obtain

(A ∗M,∗B In,∗B)ij =
n
∑

k=1

aik ∗B (In,∗B)kj = aij ∗B (In,∗B)jj = aij ∗B 1∗B = aij .

An analogous reasoning provides the proof of Im,∗B ∗M,∗B A = A.
Now letA,B,C ∈ M. By [5, Theorem 3.12, Theorem 3.21], ×B,r and ◦B,r

are distributive relative to +B, and, from [5, Theorem 3.1], +B is commutative
and associative. Hence, for ∗B ∈ {×B,r, ◦B,r}, we obtain

A ∗M,∗B (B +M C) =

[

r
∑

k=1

aik ∗B (bkj +B ckj)

]

=

[

r
∑

k=1

aik ∗B bkj +B

r
∑

k=1

aik ∗B ckj

]

= A ∗M,∗B B +M A ∗M,∗B C,

and (14) holds. Property (15) follows in the same way. As, by [5, Theorem
3.15, Theorem 3.28], ×B,c and ◦B,c are subdistributive relative to +B, and,
by [5, Theorem 3.4], +B is inclusion monotonic, then, for ∗B ∈ {×B,c, ◦B,c}
we get

(B +M C) ∗M,∗B A =

[

r
∑

k=1

(bik +B cik) ∗B akj

]

⊆
[

r
∑

k=1

bik ∗B akj +B

r
∑

k=1

cik ∗B akj

]

= B ∗M,∗B A+M C ∗M,∗B A,

and (17) is valid. Property (16) follows in a similar way.

The following result shows for which ∗B the multiplication ∗M,∗B is inclu-
sion monotonic.

Theorem 3.10. Let A(t),B(t) ∈ M, t ∈ {1, 2}. If A(t) ⊆ B(t), t ∈ {1, 2},
then, for ∗M,∗B with ∗B ∈ {×B,c, ◦B,c},

A
(1) ∗M,∗B B

(1) ⊆ A
(2) ∗M,∗B B

(2).
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Proof. Let A(t) = [a
(t)
ij ],B

(t) = [b
(t)
ij ] ∈ M such that A(t) ⊆ B(t), t ∈ {1, 2}.

By [5, Theorem 3.4, Theorem 3.14, Theorem 3.27], +B, ×B,c and ◦B,c are
inclusion monotonic. Thus, for ∗M,∗B with ∗B ∈ {×B,c, ◦B,c}, we get

A
(1) ∗M B

(1) =

[

r
∑

k=1

a
(1)
ik ∗B b

(1)
kj

]

⊆
[

r
∑

k=1

a
(2)
ik ∗B b

(2)
kj

]

= A
(2) ∗M B

(2).

We now consider a metric concept for ball matrices, and the corresponding
notation.

Definition 3.11. Let A = [aij ] ∈ Mm×n. The absolute value (matrix) of A
is |A| = [|aij |] ∈ Mm×n.

Next result gives an alternative description for the absolute value of a
ball matrix.

Theorem 3.12. Let A = [aij ] ∈ Mm×n. Then |A| = [max{‖x‖2 : x ∈ aij}].

Proof. A direct consequence of Theorem 2.10.

Let X = [xij], Y = [yij] ∈ Mm×n and recall the partial order relation ≤
defined on Mm×n by writing X ≤ Y iff xij ≤ yij.

Theorem 3.13. Let A,B ∈ M. Let α ∈ R. Then:

|A| ≥ 0m×n, |A| = 0m×n iff A = 0, where 0 = [oij ] with oij = o = 〈0; 0〉;
(18)

|A±M B| ≤ |A|+ |B|; (19)

|α ·M A| = |α||A|; (20)

for ∗M,∗B ∈ {∗M,×B,r
, ∗M,×B,c

},

|A ∗M B| ≤ |A||B|. (21)

Proof. The proof follows in an entrytwise manner from Theorem 2.11.

In the case of square matrices, the absolute value of a matrix is a norm,
as can be seen in the following result.

Corollary 3.14. For ∗M,∗B ∈ {∗M,×B,r
, ∗M,×B,c

}, the function | · | : Mn×n →
Mn×n, defined by A 7→ |A| = [|aij |], is a matricial norm on Mn×n.

Proof. A consequence of Theorem 3.13 (18)-(21).
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We now consider one more metric concept for ball matrices, and the
corresponding notation.

Definition 3.15. Let A = [aij ] ∈ Mm×n. The width (matrix) of A is
d(A) = [d(aij)] ∈ Mm×n.

Properties of the width of a ball matrix are collected in the following
result.

Theorem 3.16. Let A,B ∈ M. Then:

d(A) ≥ 0m×n; (22)

d(A±M B) ≤ d(A) + d(B); (23)

d(α ·M A) = |α|d(A); (24)

for ∗M,∗B ∈ {∗M,×B,r
∗M,◦B,r

},

d(A ∗M,∗B B) ≤ d(A)|B|. (25)

Proof. The proof follows in an entrywise manner from Theorem 2.14.

We now define the (right) powers of a ball matrix relative to ∗M,∗B except,
due to the lack of neutral element, for ∗B = ×B,c.

Definition 3.17. Let A ∈ Mn×n. For ∗B ∈ {×B,r, ◦B,r, ◦B,c}, the powers of
A relative to ∗M,∗B are defined by

A
∗M,∗B

0 = In,∗B and A
∗M,∗B

k = A
∗M,∗B

(k−1) ∗M,∗B A.

Next new notion requires the powers of a ball matrix relative to ∗M,∗B ,
with ∗B ∈ {×B,r, ◦B,r, ◦B,c}.

Definition 3.18. Let A ∈ Mn×n. For each ∗B ∈ {×B,r, ◦B,r, ◦B,c}, A is
∗M,∗B-convergent (to zero) if the sequence

{A∗M,∗B
k}∞k=0 =

{[

a
∗M,∗B

{k}

ij

]}∞

k=0

of the powers of A relative to ∗M,∗B converges to the ball matrix 0 with respect
to the matricial norm | · |, where 0 = [oij] with oij = o = 〈0; 0〉, that is, for
each k and for i, j ∈ {1, . . . , n}, a∗M,∗B

{k}

ij is ∗B-convergent (to zero). When
A is not ∗M,∗B-convergent, A is said to be ∗M,∗B-divergent.

For the following theorem, using standard notation, let ρ(·) denote the
spectral radius of a certain matrix.

14



Lemma 3.19. For k ∈ N, |A×B,rk| ≤ |A|k.
Proof. We proceed by induction on k. The inequality clearly holds for k = 1,
and, by Theorem 3.13 (21), it is also valid for k = 2. As for the induction
step, invoking again Theorem 3.13 (21), we have

|A×B,r(k+1)| = |A×B,rk ∗M,×B,r
A| ≤ |A×B,rk||A| ≤ |A|k|A| = |A|k+1.

Theorem 3.20. Let A ∈ Mn×n. If ρ(|A|) < 1 then A is ×B,r-convergent.

Proof. Let A ∈ Mn×n. Suppose that ρ(|A|) < 1. From [17, Theorem 1.4],

|A| is convergent (to zero),

that is, the sequence {|A|k}∞k=1 of the powers of |A| converges to the null
matrix 0n×n. By Lemma 3.19,

|A×B,rk| ≤ |A|k.

Hence, A is ×B,r-convergent.

A natural question is whether Theorem 3.20 is reversible; the following
example shows that the answer is negative.

Example 3.21. Let

B =

[

b o

o o

]

∈ M2×2,

where b = 〈(1
2
, . . . , 1

2
); 2

3
〉. We get

B×B,rk =

[

b×B,rk o

o o

]

,

and, from Example 2.18, b is ×B,r-convergent. Hence, B is ×B,r-convergent
too. However, ρ(|B|) = 1

2

√
n+ 2

3
> 1 since

|B| =
[

|b| |o|
|o| |o|

]

=

[

1
2

√
n+ 2

3
0

0 0

]

.

Another natural question is whether Theorem 3.20 is reversible adding
some assumption(s), as done by Mayer, in [13, Theorem 2], for an interval
matrix. In this sense, one might think of irreducibility ofA and d(A) 6= 0n×n,
but the following result sheds light on why this does not seem to be the case.
Similarly to [13], we would need, for all k ∈ N and for all A ∈ Mn×n,
d(A×B,r(k+1)) ≥ d(A)|A|k, but this does not hold. In fact, from Theorem
3.16 (25), for all A ∈ Mn×n, d(A

×B,r2) ≤ d(A)|A|.
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[3] Beites, P. D., Córdova-Mart́ınez, A. S., Cunha, I., Elduque, A., Short
(SL2×SL2)-structures on Lie algebras, Rev. Real Acad. Cienc. Exactas
Fis. Nat. Ser. A-Mat. 118 (2024), Article 45.

[4] Beites, P. D., Nicolás, A. P., Saraiva, P., Vitória, J., Vector cross product
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