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Abstract. We consider the canonical pseudodistributive law between various free limit comple-

tion pseudomonads and the free coproduct completion pseudomonad. When the class of limits

includes pullbacks, we show that this consideration leads to notions of extensive categories. More

precisely, we show that extensive categories with pullbacks and infinitary lextensive categories

are the pseudoalgebras for the pseudomonads resulting from two of these pseudodistributive

laws. Moreover, we introduce the notion of doubly-infinitary lextensive category, and we estab-

lish that the freely generated ones are cartesian closed. From this result, we further deduce that,

in freely generated infinitary lextensive categories, the objects with a finite number of connected

components are exponentiable. We conclude our work with remarks on examples, descent the-

oretical aspects of this work, results concerning non-canonical isomorphisms, and relationship

with other work.

Introduction

Two-dimensional monad theory [5, 7, 28, 31] is the categorical approach to bidimen-

sional universal algebra, which mainly deals with the problem of understanding alge-

braic structures, in a suitable sense, over objects in a 2-category.

Focusing on the case where the base 2-category is the 2-category of categories

CAT, this leads to the systematic study of categories with additional (algebraic) struc-

tures (or properties) [5,26,31]. The 2-categories of interest usually arise as 2-categories

of pseudoalgebras or lax algebras of a given pseudomonad – we refer, for instance,

to [29, 32] for the definitions of these concepts.

There are many well-known examples of such 2-categories of interest, namely:

– the 2-category of monoidal categories, monoidal functors and monoidal natural

transformations is the 2-category of pseudoalgebras for the free monoid 2-monad

(also known as the list 2-monad) on CAT, e.g. [5, 21, 35];
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– the 2-category of monads is given by the 2-category of lax algebras w.r.t. the iden-

tity 2-monad on CAT, e.g. [34, pag. 33] and [32];

– 2-categories of pseudofunctors and pseudonatural transformations between two

suitable 2-categories with weighted bicolimits is given by the 2-category of pseu-

doalgebras w.r.t. a pseudomonad induced by a suitable pseudo-Kan extension, e.g.

[31, 33];

– the 2-category of categories withΦ-(co)limits andΦ-(co)limit preserving functors

is the 2-category of pseudoalgebras and pseudomorphisms w.r.t. a suitable free

(co)limit completion pseudomonad on CAT, e.g. [26, 35, 40, 45].

The framework of two-dimensional monad theory is well-suited for studying the

age-old problem of distributivity between limits and colimits of a given category.

Specifically, our focus lies on the canonical pseudodistributive law [41, 42] between

various sorts of free limit completion pseudomonads and the free coproduct comple-

tion pseudomonad. Previous considerations of such distributivity properties include

(infinitary) distributive categories [9], completely distributive categories [43], and

doubly-infinitary distributive categories [39]. In this paper, we show that a similar

analysis gives rise to well-known and novel notions of extensive categories.

Recall that, if C has (in)finite coproducts, C is said to be an (infinitary) extensive

category [9] if the canonical functor

∏

𝑖∈𝐼

C ↓ 𝑋𝑖 C ↓
∐

𝑖∈𝐼

𝑋𝑖

∐

is an equivalence of categories for every (in)finite family (𝑋𝑖)𝑖∈𝐼 of objects in C. It has

been observed in [10] and [48, Section 7] that “(infinitary) extensivity” can be viewed

as a distributivity condition of pullbacks over (infinitary) coproducts.

The present work, which is a sequel to [39], aims to study categories with a given

class of limits, small coproducts, and a (pseudo)distributive law between them. More

precisely, given a class Φ of diagrams, we remark that there is a canonical pseudodis-

tributive law between the freeΦ-limit completion pseudomonad and the free coproduct

completion, denoted by Fam [27, 40, 54]. We show that the pseudoalgebras for the

composite pseudomonad can be easily described; namely, they can be given as the

categories with Φ-limits and coproducts such that the coproduct functor

∐
: Fam(C) → C (0.1)

preserves Φ-limits.

Our key contribution is the observation that various flavors of infinitary extensive

categories are pseudoalgebras for such composites of pseudomonads. More precisely,

assuming that C is a category with coproducts:



Free extensivity via distributivity 3

– if C has pullbacks, and (0.1) preserves them, then C is infinitary extensive with

pullbacks;

– if C has finite limits, and (0.1) preserves them, then C is infinitary lextensive;

– ifC has small limits, and (0.1) preserves them, we say that the categoryC is doubly-

infinitary lextensive. We observe that C satisfies such properties if and only if C is

simultaneously a doubly-infinitary distributive category [39] as well as a lextensive

category.

The observations presented above, coupled with the findings of [38], contribute

to the understanding of extensive categories and distributive categories through the

prism of 2-dimensional universal algebra, adding to the comparison of these notions

originally started in [9].

In [39], it was demonstrated that freely generated doubly-infinitary distributive cat-

egories are cartesian closed. Furthermore, this investigation extended to encompass

the study of exponentials in freely generated infinitary distributive categories. More

generally, in [37], a comprehensive analysis was conducted, yielding general results

concerning exponentiability and cartesian closedness of Grothendieck constructions.

Notably, these results are applicable to a wide array of contexts, including freely gen-

erated categorical structures.

Motivated by [37,38], we further study the exponentiable objects of the free pseu-

doalgebras for the pseudomonads we considered; namely, we find that:

– in a freely generated infinitary lextensive category, objects with a finite number of

connected components are exponentiable;

– freely generated doubly-infinitary extensive categories are cartesian closed.

Outline: We revisit the notion of free Φ-colimit completions for a class Φ of dia-

grams (small categories) in Section 1. Several authors have worked on free (co)limit

completions; namely, we have [1, 20, 52] for ordinary categories, and [3, 25] in the

context of enriched category theory. We also have the accounts [27, 40, 45, 54] which

study free Φ-(co)limit completions from the perspective of 2-dimensional monad the-

ory [5, 31, 32, 35], which is the approach we employ, so some familiarity with these

methods is assumed. We focus specifically on four classes of free (co)limit comple-

tions:

– the free coproduct completion, denoted Fam,

– the free finite limit completion, denoted Lfin,

– the free pullback completion, denoted Lpb,

– the free small limit completion, denoted L.
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In Section 2, we study the distributivity of Φ-limits over coproducts. Similar work

has been carried out in [2,18,43] and in the prequel [39]. After recalling the necessary

concepts pertaining to pseudodistributive laws [41, 42, 53], we confirm that there is

a pseudodistributive law between any free Φ-limit completion pseudomonad and the

free coproduct completion pseudomonad Fam (Lemma 2.4). Instantiating this result

with each of the aforementioned free limit completions, we obtain the composite pseu-

domonads Fam ◦ Lfin, Fam ◦ Lpb, and Fam ◦ L.

The study of these pseudomonads and their pseudoalgebras have given us novel

characterizations of (infinitary) extensivity. More specifically, we prove that:

– (Fam ◦ Lfin)-pseudoalgebras are precisely the lextensive categories (Theorem 2.6),

– (Fam ◦ Lpb)-pseudoalgebras are precisely the extensive categories with pullbacks

(Theorem 2.8).

Moreover, in Section 2.3, we introduce the notion of doubly-infinitary lextensive

categories: these are the (Fam ◦ L)-pseudoalgebras. Finally, we prove in Theorem 2.9

that doubly-infinitary lextensive categories correspond to lextensive categories that are

also doubly-infinitary distributive as introduced in [39].

Mainly motivated by [37,39], in the present work, our study exponentiable objects

in freely generated categorical structures is the content of Section 3. This includes our

main results, which respectively state that:

– freely generated doubly-infinitary lextensive categories are cartesian closed (The-

orem 3.4),

– in freely generated infinitary lextensive categories, finite coproducts of connected

objects are exponentiable (Theorem 3.7).

In Section 4, we discuss examples of (doubly)-infinitary lextensive categories.

Finally, in Section 5, we show that analogous results also hold for the free finite coprod-

uct completion pseudomonad, leading to similar characterisations of (finitely) exten-

sive categories. Further, we discuss possible avenues for future work, descent theoreti-

cal considerations of our findings, and we note a result on non-canonical isomorphisms,

as a direct consequence of the work of [35].

1. Free colimit completions

Let CAT be the 2-category of locally small (Set-enriched) categories. Any other cat-

egory considered in this work is assumed to be an object of CAT.

Let Φ be a class of small categories. We say that a category C has Φ-colimits if

any functor 𝐷 : J→ C with J ∈ Φ has a colimit in C. Moreover, if 𝐹 : C → D is a
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functor between categories with Φ-colimits, we have a morphism

colim 𝐹𝐷 → 𝐹 (colim𝐷) (1.1)

which is natural in 𝐷 : J→ C for J ∈ Φ. We say that 𝐹 preserves Φ-colimits if (1.1)

is a natural isomorphism.

We let Φ-Colim be the 2-category of categories with Φ-colimits, Φ-colimit pre-

serving functors and natural transformations. We have a forgetful 2-functor

Φ-Colim CAT (1.2)

which is pseudomonadic – we letPΦ be the left biadjoint to (1.2), as well as the induced

pseudomonad by the biadjunction – the free Φ-colimit completion pseudomonad. We

can justify this abuse of notation, by noting that a category C has Φ-colimits if and

only if the (fully faithful) unit of PΦ atC, denoted by 𝔶: C→PΦ(C), has a left adjoint

[3]. Thus, being a PΦ-pseudoalgebra is a property of the category C, as opposed to

structure [26]. In other words, PΦ is a lax idempotent pseudomonad [13, 27, 30, 40,

45] (also known as Kock-Zöberlein pseudomonad), and, hence, a property-like pseu-

domonad [26, 33].

Dually, we say that a category C has Φ-limits whenever Cop has Φ-colimits, and

we say that a functor 𝐹 : C→ D between categories with Φ-limits preserves Φ-limits

if 𝐹op
: C

op → D
op preserves Φ-colimits. We denote by Φ-Lim the 2-category of

categories with Φ-limits, Φ-limit preserving functors and natural transformations. We

also have a pseudomonadic 2-functor

Φ-Lim CAT (1.3)

whose left biadjoint and induced pseudomonad are denoted by LΦ, so that we have

a biequivalence LΦ-PsAlg ≃ Φ-Lim. In fact, we note that LΦ(C) = PΦ(C
op)op. We

likewise denote the (fully faithful) unit at a category C by 𝔶 : C→ LΦ(C). This unit

has a right adjoint if and only if C has Φ-limits.

Remark 1.1. In [3, 25], the notions of Φ-colimits and Φ-colimit completions were

worked out in the more general setting of enriched category theory, where Φ is taken

to be a class of small weights instead (that is, functors Jop → V with J small), where

V is the base monoidal category.

In our setting, the notions we provided correspond to the classes Φ of weights that

are constant functors to the terminal object. We leave the consideration of our results

in an enriched setting for future work.

As argued in [3, 25], the free Φ-colimit completion PΦ(C) of a category C is

most succinctly described as the smallest full subcategory of CAT(Cop, Set) that has

Φ-colimits. Dually, LΦ(C) is the smallest full subcategory of CAT(C, Set)op that
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has Φ-limits. With this, we can obtain an expression for the hom-sets of Φ-(co)limit

completions:

Lemma 1.2. Let Φ be a class of small categories, let 𝐶 be an object of C, and let

𝐸 : K → PΦ(C) be a diagram with K ∈ Φ. We have a natural isomorphism

PΦ(C)
(
𝔶(𝐶), colim

𝑘∈K
𝐸𝑘

)
� colim

𝑘∈K
PΦ(C)

(
𝔶(𝐶), 𝐸𝑘

)
, (1.4)

and dually, for a diagram 𝐹 : K → LΦ(C),

LΦ(C)
(

lim
𝑘∈K

𝐹𝑘, 𝔶(𝐶)
)
� colim

𝑘∈K
LΦ(C)

(
𝐹𝑘, 𝔶(𝐶)

)
. (1.5)

Proof. We have

PΦ(C)
(
𝔶(𝐶), colim

𝑘∈K
𝐸𝑘

)

� CAT(Cop, Set)
(
C(−, 𝐶), colim

𝑘∈K
𝐸𝑘

)

�

(
colim
𝑘∈K

𝐸𝑘
)
(𝐶) Yoneda lemma,

� colim
𝑘∈K

(
(𝐸𝑘)𝐶

)
componentwise colimits,

� colim
𝑘∈K

CAT(Cop, Set)
(
C(−, 𝐶), 𝐸𝑘

)
Yoneda lemma,

� colim
𝑘∈K

PΦ(C)
(
𝔶(𝐶), 𝐸𝑘

)
.

This leads to the following formulas for the sets of morphisms (hom-sets), based

on the observation that representable functors preserve limits.

Corollary 1.3. Let Φ be a class of small categories. If J, K ∈ Φ, and 𝐹 : J → C,

𝐺 : K → PΦ(C), then

PΦ(C)
(
colim
𝑗∈J

𝐹 𝑗, colim
𝑘∈K

𝐺𝑘
)
� lim
𝑗∈J

colim
𝑘∈K

PΦ(C) (𝐹 𝑗, 𝐺𝑘), (1.6)

and dually, if 𝐻 : K → LΦ(C), then

LΦ(C)
(

lim
𝑘∈K

𝐻𝑘, lim
𝑗∈J

𝐹 𝑗
)
� lim
𝑗∈J

colim
𝑘∈K

LΦ(C) (𝐻𝑘, 𝐹 𝑗), (1.7)

where we identify an object of C with its image in PΦ(C) and LΦ(C).

Alternatively, one may constuct PΦ(C) , and, dually,LΦ(C), via transfinite induc-

tion [3,25], by iteratively adjoining (co)limits of diagrams with domain inΦ, and taking

unions at limit ordinals. In certain important cases, such as those of small (or finite)



Free extensivity via distributivity 7

(co)limit or (co)product completions (see below), the induction stabilises after only

one step.

Therefore, if Φ is a class of small categories such that the transfinite construction

converges in one step, every object in PΦ(C) is obtained as the Φ-colimit of a dia-

gram in C, from which we obtain the following characterisation of the Φ-(co)limit

completion of C; PΦ(C) consists of

– diagrams 𝐹 : J→ C with J ∈ Φ as objects,

– hom-sets given by the formula1

PΦ(C) (𝐹, 𝐺) = lim
𝑗∈J

colim
𝑘∈K

C(𝐹 𝑗, 𝐺𝑘) (1.8)

for diagrams 𝐹 : J→ C, 𝐺 : K → C with J,K ∈ Φ.

Dually, in case every object in LΦ(C) is obtained as the Φ-limit of a diagram in C,

the free limit completion of a category C is given by LΦ(C) = PΦ(C
op)op. Explicitly,

it consists of

– diagrams 𝐹 : J→ C with J ∈ Φ as objects,

– hom-sets given by the formula

LΦ(C) (𝐹, 𝐺) = lim
𝑘∈K

colim
𝑗∈J

C(𝐹 𝑗, 𝐺𝑘) (1.9)

for diagrams 𝐹 : J→ C, 𝐺 : K → C with J,K ∈ Φ.

Such a characterisation is appropriate, for example, when Φ consists of the class

of all small (resp. finite) discrete categories, yielding small (resp. finite) coproduct and

product completions, or if Φ consists of the class of all small (resp. finite) categories,

yielding small (resp. finite) colimit and limit completions.

Free coproduct completion: If Φ is the class of discrete small categories (sets), then

Φ-Colim is the 2-category of categories with coproducts, coproduct-preserving func-

tors and all natural transformations. In this case, we write Fam = PΦ.

We can explicitly describe the objects of Fam(C) – these are given by set-indexed

families of objects (𝑋𝑖)𝑖∈𝐼 , with 𝑋𝑖 ∈ C. Using the representation coming out of Corol-

lary 1.3, we can also describe the hom-sets of morphisms from (𝑋𝑖)𝑖∈𝐼 to (𝑌 𝑗) 𝑗∈𝐽 as

∏

𝑖∈𝐼

∐

𝑗∈𝐽

C(𝑋𝑖 , 𝑌 𝑗).

There is a wealth of literature studying free coproduct completions and their properties.

For instance, we refer the reader to [1, 9], [6, Chapter 6], [48, Section 7], and [37].

1See [52, Section 1], and compare with (1.6).
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Free (co)limit completion: When Φ consists of all small categories, Φ-Colim is the

2-category of categories with small colimits and small-colimit preserving functors.

Given a category C, its free colimit completion P(C) is the full subcategory of

CAT(Cop, Set) consisting of the essentially small or accessible functors [25]. When

C is itself essentially small, we have P(C) ≃ CAT(Cop, Set).

Alternatively, as noted above, we can characterise P(C) as the category with dia-

grams 𝐹 : J→ C with J small as objects and homsets

P(C) (𝐹, 𝐺) = lim
𝑗∈J

colim
𝑘∈K

C(𝐹 𝑗, 𝐺𝑘)

for diagrams 𝐹 : J→ C, 𝐺 : K → C with J,K small.

Free finite limit completion: We consider the class Φ = fin of all finite categories, in

which case Φ-Lim is the 2-category of categories with finite limits and the functors

that preserve them. We denote the free finite limit completion pseudomonad by Lfin.

For any given category C, the category Lfin(C) also admits a description as a

category of diagrams, similar to L(C).

Free pullback completion: We consider the class Φ = pb consisting of a single ele-

ment, the cospan category: · → · ← ·

The 2-category Φ-Lim is the 2-category of categories with pullbacks and pull-

back preserving functors between them, and we denote the free pullback completion

pseudomonad by Lpb.

Unlike previous examples, not every object inLpb(C) can be obtained by taking the

pullback of a diagram in Lpb(C) of objects in the essential image of 𝔶 : C→Lpb(C),

so we cannot recover any formulae analogous to (1.9); we refer the interested reader

to [3, Section 7] for further details.

2. Three pseudomonads

Let T be a pseudomonad on CAT. We consider the following instance of the main

result from [53]:

Lemma 2.1. The following are equivalent:

(i) Fam lifts to a (lax idempotent) pseudomonad FamT on T -PsAlg.

(ii) There exists a pseudodistributive law 𝛿 : T ◦ Fam→ Fam ◦ T .

Proof. Since Fam is a lax idempotent pseudomonad [27], we may instantiate [53,

Theorem 35] with P = Fam.
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In the presence of a pseudodistributive law 𝛿 : T ◦Fam→ Fam ◦ T , the composite

Fam ◦ T also has the structure of a pseudomonad on CAT [41, Section 5]. We also

recall the following result from [42, Section 6]:

Lemma 2.2. We have a biequivalence FamT-PsAlg ≃ (Fam ◦ T )-PsAlg.

In [42] we also find a description of the FamT-pseudoalgebras; they are the cate-

gories C together with

– a T -pseudoalgebra structure Λ : T (C) → C on C,

– a Fam-pseudoalgebra structure
∐

: Fam(C) → C on C – in other words, C is a

category with coproducts,

– The coproduct functor
∐

: Fam(C) → C lifts to a T -pseudomorphism.

Moreover, a FamT-pseudomorphism 𝐹 : C → D is a functor 𝐹 that preserves

coproducts and is a T -pseudomorphism in a compatible way (up to natural isomor-

phism).

Our work focuses on pseudomonads T that are freeΦ-limit completions for a class

Φ of small categories. For simplicity, we introduce the following terminology:

Definition 2.3. For a classΦof small categories, we say that the (Fam ◦ LΦ)-pseudoalgebras

are the Φ-coproduct distributive categories.

In this setting, we have the following result.

Lemma 2.4. For a class Φ of small categories, Fam lifts to a pseudomonad FamLΦ

on Φ-Lim. Consequently, FamLΦ
-PsAlg is biequivalent to (Fam ◦ LΦ)-PsAlg.

Proof. Since Fam(C) has whichever Φ-limits that C has and Fam(𝐹) is Φ-limit pre-

serving whenever 𝐹 is [19, Section 4], we conclude that Fam lifts to an endo-2-functor

on Φ-Lim, and 𝔶 : C→ Fam(C) preserves Φ-limits. Moreover, since we have a fully

faithful adjoint string

Fam · 𝔶 ⊣ 𝔪 ⊣ 𝔶 · Fam,

we note that, in particular, 𝔪 is a right adjoint, and therefore preserves Φ-limits.

In [39], we study the pseudodistributive laws of the free product completion pseu-

domonad LSet = Fam
(
(−)op

)op
and the free finite product completion pseudomonad

LfinSet = FinFam
(
(−)op

)op
over Fam, taking Set (finSet) to be the class of small

(finite), discrete categories. The composite pseudomonads Dist = Fam ◦ LSet and

Fam ◦ LfinSet are the pseudomonads whose pseudoalgebras are the doubly-infinitary

distributive categories and infinitary distributive categories, respectively. Under the ter-

minology we introduced, these are the product-coproduct distributive categories and

the finite product-coproduct distributive categories. In the current work, we shall see

that:
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• Φ-coproduct distributive categories are infinitary lextensive categories, for the

class Φ of finite categories (which corresponds to distributivity of finite limits

over coproducts);

• Φ-coproduct distributive categories are the infinitary extensive categories with

pullbacks, for the singleton class Φ consisting of the cospan category · → · ← ·

(which corresponds to distributivity of pullbacks over coproducts);

• Φ-coproduct distributive categories are the infinitary lextensive categories that are

doubly-infinitary distributive as well, for the class Φ of all small categories (which

corresponds to distributivity of limits over coproducts).

2.1. Infinitary lextensive categories

We recall that a category with small coproducts C is infinitary extensive if it has

pullbacks along coproduct inclusions, and if the coproducts are disjoint and pullback-

stable. This can be expressed in three conditions:

(a) for every pair of objects 𝐴, 𝐵 ∈ C, we have a pullback diagram:

0 𝐴

𝐵 𝐴 + 𝐵

⌜

(b) for each morphism 𝑓 : 𝑌 →
∐
𝑖∈𝐼 𝑋𝑖 , if we take pullbacks along the coproduct

inclusions 𝑋𝑖
𝜄𝑖
−→

∐
𝑖∈𝐼 𝑋𝑖 ,

𝑌𝑖 𝑌

𝑋𝑖
∐
𝑖∈𝐼 𝑋𝑖

𝜄𝑖

⌜
𝑓

𝜄𝑖

we have that 𝑌𝑖
𝜄𝑖
−→ 𝑌 form a coproduct diagram as well, and

(c) for every family ( 𝑓𝑖 : 𝑌𝑖 → 𝑋𝑖)𝑖∈𝐼 of morphisms, the following commutative

square

𝑌𝑖
∐
𝑖∈𝐼 𝑌𝑖

𝑋𝑖
∐
𝑖∈𝐼 𝑋𝑖

𝜄𝑖

𝑓𝑖

⌜

∐
𝑖∈𝐼 𝑓𝑖

𝜄𝑖

is a pullback diagram.

We also make use of the following notation: ifC is a category with coproducts and a

terminal object1, we let− ∗ 1: Set→C be the functor left adjoint toC(1,−) : C→ Set.
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We highlight that if C has a terminal object 1, then so does Fam(C), so we have a

functor − ∗ 1 : Set→ Fam(C).

The following result, appearing in [10] and [48], is an important step in the char-

acterization of the FamLfin
-pseudoalgebras:

Lemma 2.5. Let C be a category with finite limits and coproducts. Then the following

are equivalent:

(i) C is infinitary lextensive;

(ii)
∐

: Fam(C) → C preserves finite limits.

Proof. For an infinitary lextensive C, [48, Lemma 7.1] guarantees that we have an

equivalence Fam(C) ≃
(
C ↓ (− ∗ 1)

)
, and that the projection

(
C ↓ (− ∗ 1)

)
→ C pre-

serves finite limits. Moreover, we also establish that the composite

Fam(C)
(
C ↓ (− ∗ 1)

)
C

≃

corresponds to the coproduct functor Fam(C) → C. This shows that (i) =⇒ (ii).

Now, if we assume (ii), it follows in particular that
∐

preserves pullbacks. So, we

consider the following pullback diagrams in Fam(C)

∅ 𝐴0

𝐴1 (𝐴𝑖)𝑖∈{0,1}

⌜ (𝑌𝑖)𝑖∈𝐼 𝑌

(𝑋𝑖)𝑖∈𝐼
∐
𝑖∈𝐼 𝑋𝑖

⌜

𝑓

𝑉 𝑗 (𝑉 𝑗) 𝑗∈𝐽

𝑊 𝑗 (𝑊 𝑗) 𝑗∈𝐽

⌜

(2.1)

for objects 𝐴0, 𝐴1 ∈ C, a morphism 𝑓 : 𝑌 →
∐
𝑖∈𝐼 𝑋𝑖 in C, and a family of morphisms

(𝑔 𝑗 : 𝑉 𝑗 → 𝑊 𝑗) 𝑗∈𝐽 in C.

Since the coproduct functor preserves pullbacks, it can be composed with each

diagram (2.1) to respectively obtain the pullback diagrams in (a), (b) and (c). Hence,

we witness the infinitary extensivity of C, thereby confirming that (ii) =⇒ (i).

Now, by Lemma 2.2 and the description for FamLfin
-pseudoalgebras, we conclude,

as a corollary, that:

Theorem 2.6. The 2-category (Fam ◦ Lfin)-PsAlg consists of infinitary lextensive

categories, and functors preserving coproducts and finite limits.

2.2. Infinitary extensive categories with pullbacks

We can still obtain results analogous to Lemma 2.5 even in the absence of terminal

objects.
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Lemma 2.7. Let C be a category with coproducts and pullbacks. The following are

equivalent:

(i) The coproduct functor
∐

: Fam(C) → C preserves pullbacks.

(ii) C is infinitary extensive.

Proof. IfC is infinitary extensive and has pullbacks, thenC ↓ 𝑋 is infinitary lextensive

for all objects 𝑋 . Thus, we may apply Lemma 2.5 to conclude that

Fam(C) ↓ 𝑋 ≃ Fam(C ↓ 𝑋) C ↓ 𝑋

∐

preserves finite limits. Since Fam(C) is infinitary extensive, we have

Fam(C) ↓ (𝑋𝑖)𝑖∈𝐼 ≃
∏

𝑖∈𝐼

Fam(C) ↓ 𝑋𝑖 ,

and a product of finite limit preserving functors preserves finite limits as well. Thus,

we deduce that
∐

: Fam(C) → C preserves pullbacks, confirming that (ii) =⇒ (i).

Conversely, if
∐

: Fam(C) →C preserves pullbacks, we follow the same argument

used for Lemma 2.5: we compose the coproduct functor with each of the diagrams (2.1)

to respectively obtain (a), (b) and (c), exhibiting infinitary extensiveness. This proves

that (i) =⇒ (ii).

As a consequence, by Lemma 2.2 and the description of FamLpb
-pseudoalgebras,

we conclude that:

Theorem 2.8. The 2-category (Fam ◦ Lpb)-PsAlg consists of infinitary extensive cat-

egories with pullbacks, and functors which preserve coproducts and pullbacks.

2.3. Doubly infinitary lextensive categories

Inspired by the terminology of [39], we call the (Fam ◦ L)-pseudoalgebras doubly-

infinitary lextensive categories.

Theorem 2.9. LetC be a category with coproducts and limits. The following are equiv-

alent:

(i) The coproduct functor
∐

: Fam(C) → C preserves limits;

(ii) C is doubly infinitary extensive;

(iii) C is lextensive and doubly infinitary distributive.

Proof. We have the equivalence (i) ⇐⇒ (ii) by definition.



Free extensivity via distributivity 13

The equivalence (iii) ⇐⇒ (ii) follows by Lemma 2.7 and [39, Lemma 3.1]. We

use the basic facts that any limit can be obtained via pullbacks and arbitrary prod-

ucts, and that infinitary extensive categories with products are, in particular, infinitary

distributive (see [9, Proposition 4.5]).

3. Exponentiability in freely generated structures

The purpose of this section is to study the exponentiable objects of the free completions

Fam
(
Lfin(C)

)
and Fam

(
L(C)

)
, which constitute the main results of this work. Aiming

for a self-contained account of exponentiability, we begin by recalling the definition

of exponentiable object, as well as some elementary properties.

In order to fix notation, we recall that an object 𝐸 in a category C with finite prod-

ucts is exponentiable at 𝑋 if there exists an object 𝐸 ⇒ 𝑋 and a natural isomorphism

C(− × 𝐸, 𝑋) � C(−, 𝐸 ⇒ 𝑋). (3.1)

We say that 𝐸 is exponentiable if (3.1) holds naturally for every object 𝑋 in C.

We revisit the following elementary observation about exponentiable objects used

in [39, Remark 1]:

Lemma 3.1. LetC be a category with finite products and J-limits for a small category

J. If 𝐹 : J→ C is a diagram, and 𝐸 is an object such that 𝐸 is exponentiable at 𝐹 𝑗

for each 𝑗 in J, then 𝐸 is exponentiable at lim 𝑗∈J 𝐹 and

𝐸 ⇒ lim
𝑗∈J

𝐹 𝑗 � lim
𝑗∈J
(𝐸 ⇒ 𝐹 𝑗)

Proof. For each object 𝐴, we have a natural isomorphism

C(𝐴 × 𝐸, lim
𝑗∈J

𝐹 𝑗) � lim
𝑗∈J

C(𝐴 × 𝐸, 𝐹𝑗) � lim
𝑗∈J

C(𝐴, 𝐸 ⇒ 𝐹𝑗) � C
(
𝐴, lim

𝑗∈J
(𝐸 ⇒ 𝐹𝑗)

)

as desired.

We recall from [6, Definition 6.1.3] that an object 𝐴 of a category C is connected

if the hom-functor C(𝐴, −) preserves coproducts. It is an immediate consequence of

Lemma 1.2 that the objects in the essential image of 𝔶 : C → Fam(C) are precisely

the connected objects in Fam(C). We confirm that an analogous characterization is

available for the internal hom-functor:

Lemma 3.2. If C is a category with finite products, and 𝐶 is an exponentiable object

in Fam(C), then the following are equivalent:

(i) 𝐶 is connected.
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(ii) 𝐶 ⇒ − preserves coproducts.

Proof. Let (𝐴𝑖)𝑖∈𝐼 be a family of objects in C, and let (𝑋 𝑗) 𝑗∈𝐽 be a family of objects

in Fam(C). If C is connected, then we have natural isomorphisms

Fam(C)
(
(𝐴𝑖)𝑖∈𝐼 × 𝐶,

∐

𝑗∈𝐽

𝑋 𝑗

)

� Fam(C)
(
(𝐴𝑖 × 𝐶)𝑖∈𝐼 ,

∐

𝑗∈𝐽

𝑋 𝑗

)
products in Fam(C),

�

∏

𝑖∈𝐼

∐

𝑗∈𝐽

Fam(C) (𝐴𝑖 × 𝐶, 𝑋 𝑗) (1.6),

�

∏

𝑖∈𝐼

∐

𝑗∈𝐽

Fam(C) (𝐴𝑖 , 𝐶 ⇒ 𝑋 𝑗) 𝐶 exponentiable,

� Fam(C)
(
(𝐴𝑖)𝑖∈𝐼 ,

∐

𝑗∈𝐽

(𝐶 ⇒ 𝑋 𝑗)
)

(1.6).

Hence, we conclude that
∐

𝑗∈𝐽

(𝐶 ⇒ 𝑋 𝑗) � 𝐶 ⇒
∐

𝑗∈𝐽

𝑋 𝑗 ,

which confirms that (i) =⇒ (ii).

Conversely, if 𝐶 ⇒ − preserves coproducts, then for a family (𝑋 𝑗) 𝑗∈𝐽 of objects

in Fam(C), we have

Fam(C)
(
𝐶,

∐

𝑗∈𝐽

𝑋 𝑗

)
� Fam(C)

(
1, 𝐶 ⇒

∐

𝑗∈𝐽

𝑋 𝑗

)
𝐶 exponentiable,

� Fam(C)
(
1,
∐

𝑗∈𝐽

𝐶 ⇒ 𝑋 𝑗

)
by hypothesis (ii),

�

∐

𝑗∈𝐽

Fam(C) (1, 𝐶 ⇒ 𝑋 𝑗) terminal connected,

�

∐

𝑗∈𝐽

Fam(C) (𝐶, 𝑋 𝑗),

hence, we conclude that (ii) =⇒ (i).

Let Φ be a class of small categories that includes all finite, discrete categories,

so that every LΦ-pseudoalgebra has finite products. For the sake of succinctness, we

say that an object of Fam(LΦ(C)) is a generator if it is in the essential image of the

inclusion C→ Fam(LΦ(C)).

We will give an inductive perspective on exponentials in Fam
(
LΦ(C)

)
, and the

following result is the cornerstone for our development (see [39, Remark 1]):
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Lemma 3.3. If 𝑋 is a generator and 𝐷 is connected in Fam
(
LΦ(C)

)
, then 𝐷 is expo-

nentiable at 𝑋 and we have

𝐷 ⇒ 𝑋 � 𝑋 + Ĉ(𝐷, 𝑋) ∗ 1

where Ĉ = Fam
(
LΦ(C)

)
.

Proof. Let (𝐸𝑖)𝑖∈𝐼 be a family of objects in LΦ(C). We have natural isomorphisms

Ĉ
(
(𝐸𝑖)𝑖∈𝐼 × 𝐷, 𝑋

)

� Ĉ
(
(𝐸𝑖 × 𝐷)𝑖∈𝐼 , 𝑋

)
products in Ĉ

�

∏

𝑖∈𝐼

Ĉ(𝐸𝑖 × 𝐷, 𝑋) Ĉ(−, 𝑋) preserves products,

�

∏

𝑖∈𝐼

Lfin(C) (𝐸𝑖 × 𝐷, 𝑋) full faithfulness,

�

∏

𝑖∈𝐼

Lfin(C) (𝐸𝑖 , 𝑋) + Lfin(C) (𝐷, 𝑋) (1.7),

�

∏

𝑖∈𝐼

Ĉ(𝐸𝑖 , 𝑋) + Ĉ(𝐷, 𝑋) full faithfulness,

� Ĉ
(
(𝐸𝑖)𝑖∈𝐼 , 𝑋 + Ĉ(𝐷, 𝑋) ∗ 1

)
(1.6)

3.1. Exponentials for free doubly infinitary lextensive categories

Having reviewed the elementary properties of exponentiable objects, we proceed to

prove our main result on exponentiability of the objects of freely generated doubly-

infinitary lextensive categories:

Theorem 3.4. The category Fam
(
L(C)

)
is cartesian closed.

Proof. First, we note that connected objects are exponentiable:

– By Lemma 3.3, we have that any connected object in Fam
(
L(C)

)
is exponentiable

at the generators.

– Any connected object is a limit of generators, so by Lemma 3.1 we conclude that

connected objects are exponentiable at any connected object in Fam
(
L(C)

)
.

– Since any object in Fam
(
L(C)

)
is a coproduct of connected objects, we simply

apply Lemma 3.2 to deduce our claim.
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Now, let (𝐸𝑖)𝑖∈𝐼 and (𝐷 𝑗) 𝑗∈𝐽 be families of objects in L(C), and 𝑋 any object in

Ĉ. We have natural isomorphisms

Ĉ
(
(𝐸𝑖)𝑖∈𝐼 × (𝐷 𝑗) 𝑗∈𝐽 , 𝑋

)

� Ĉ
(
(𝐸𝑖 × 𝐷 𝑗) (𝑖, 𝑗 ) ∈𝐼×𝐽 , 𝑋

)
binary products in Ĉ,

�

∏

𝑖∈𝐼

∏

𝑗∈𝐽

Ĉ(𝐸𝑖 × 𝐷 𝑗 , 𝑋) Ĉ(−, 𝑋) preserves limits,

�

∏

𝑖∈𝐼

∏

𝑗∈𝐽

Ĉ(𝐸𝑖 , 𝐷 𝑗 ⇒ 𝑋) 𝐷 𝑗 connected (exponentiable),

�

∏

𝑖∈𝐼

Ĉ

(
𝐸𝑖 ,

∏

𝑗∈𝐽

(𝐷 𝑗 ⇒ 𝑋)
)

� Ĉ

(
(𝐸𝑖)𝑖∈𝐼 ,

∏

𝑗∈𝐽

(𝐷 𝑗 ⇒ 𝑋)
)

Thus, we obtain

(𝐷 𝑗) 𝑗∈𝐽 ⇒ 𝑋 �
∏

𝑗∈𝐽

(𝐷 𝑗 ⇒ 𝑋),

confirming that coproducts of connected objects are exponentiable. But every object

in Fam(L(C)) is a coproduct of connected objects, hence the result follows.

3.2. Explicit descriptions of the exponentials

Let (𝐷 𝑗) 𝑗∈𝐽 and (𝐸𝑘 : A𝑘 → C)𝑘∈𝐾 be families of objects in L, where A𝑘 is a small

category for each 𝑘 ∈ 𝐾 .

The results of the previous subsection can be used to calculate an explicit expres-

sion for the exponential (𝐷 𝑗) 𝑗∈𝐽 ⇒ (𝐸𝑘)𝑘∈𝐾 in Fam
(
L(C)

)
: via Lemmas 3.1–3.3,

one of Theorems 3.7 or 3.4, and the key ideas of the proof of [39, Theorem 2.3], we

obtain

(𝐷 𝑗) 𝑗∈𝐽 ⇒ (𝐸𝑘)𝑘∈𝐾 �
(∏

𝑗∈𝐽

lim
𝑙∈A

𝑓 𝐾
𝑗

Δ 𝑓 , 𝑗 ,𝑙

)

𝑓 ∈Ω
(3.2)

where

Ω =
∏

𝑗∈𝐽

∐

𝑘∈𝐾

lim
𝑙∈A𝑘

(
1 + L(C) (𝐷 𝑗 , 𝐸𝑘,𝑙)

)
,

Δ 𝑓 , 𝑗 ,𝑙 =




𝐸 𝑓 𝐾
𝑗
,𝑙 if 𝑓 𝑗 (𝑙) ∈ 1

1 if 𝑓 𝑗 (𝑙) ∈ L(C) (𝐷 𝑗 , 𝐸 𝑓 𝐾
𝑗
,𝑙)

and 𝑓 𝐾𝑗 is the projection of 𝑓 𝑗 onto 𝐾 for each 𝑓 ∈ Ω, 𝑗 ∈ 𝐽.
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Remark 3.5. As long as C has an initial object 0, the exponentials may be given

explicitly by

(𝐷 𝑗) 𝑗∈𝐽 ⇒ (𝐸𝑘)𝑘∈𝐾 �

(∏

𝑗∈𝐽

𝔡𝑐
(
𝜋2

(
𝑓 ( 𝑗)

) )
)

𝑓 ∈Ω

where

Ω =
∏

𝑗∈𝐽

∐

𝑘∈𝐾

(
Lfin(C)

)
(𝐷 𝑗 × 0, 𝐸𝑘),

and 𝔡𝑐 (𝑔) is defined via the following pushout in Lfin(C), by co-extensivity:

𝐷𝑖 × 0 𝐸𝜋1 ( 𝑓 (𝑖) )

0 𝔡𝑐 (𝑔).

𝑔

𝜋2

⌜

3.3. Exponentials for free infinitary lextensive categories

As we remarked in Section 1, we have a fully faithful, finite limit preserving functor

𝔲 : Lfin(C) → L(C)

for every category C. By studying the fully faithful functor

𝔲 = Fam(𝔲) : Fam
(
Lfin(C)

)
→ Fam

(
L(C)

)
,

we can deduce results about exponentiability of objects in Fam
(
Lfin(C)

)
. More pre-

cisely, we have

Lemma 3.6. The functor 𝔲 reflects exponentials of finite coproducts of connected

objects.

Proof. Let (𝐷 𝑗) 𝑗∈𝐽 be a finite family of objects inLfin(C), and let (𝐸𝑘 : A𝑘 → C)𝑘∈𝐾

be a family of objects in Lfin(C), where A𝑘 is a finite category for each 𝑘 ∈ 𝐾 . Given

any object 𝑋 in Fam
(
Lfin(C)

)
, we have

Fam
(
Lfin(C)

) (
𝑋 × (𝐷 𝑗) 𝑗∈𝐽 , (𝐸𝑘)𝑘∈𝐾

)

� Ĉ

(
𝔲
(
𝑋 × (𝐷 𝑗) 𝑗∈𝐽

)
, 𝔲((𝐸𝑘)𝑘∈𝐾 )

)
𝔲 fully faithful,

� Ĉ

(
𝔲(𝑋) × 𝔲

(
(𝐷 𝑗) 𝑗∈𝐽

)
, 𝔲

(
(𝐸𝑘)𝑘∈𝐾

) )
𝔲 preserves binary products

� Ĉ

(
𝔲(𝑋), 𝔲

(
(𝐷 𝑗) 𝑗∈𝐽

)
⇒ 𝔲

(
(𝐸𝑘)𝑘∈𝐾

) )
Fam

(
L(C)

)
is cartesian closed,

where Ĉ = Fam
(
L(C)

)
. Moreover, we have

𝔲
(
(𝐷 𝑗) 𝑗∈𝐽

)
⇒ 𝔲

(
(𝐸𝑘)𝑘∈𝐾

)
�

(
𝔲(𝐷 𝑗)

)
𝑗∈𝐽
⇒

(
𝔲(𝐸𝑘)

)
𝑘∈𝐾

,
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and calculating the exponential as in (3.2), we obtain

(
𝔲(𝐷 𝑗)

)
𝑗∈𝐽
⇒

(
𝔲(𝐸𝑘)

)
𝑘∈𝐾
�

(∏

𝑗∈𝐽

lim
𝑙∈L

𝑓 𝐾
𝑗

𝔲(Γ 𝑓 , 𝑗 ,𝑙)
)

𝑓 ∈Ξ

where

Ξ =
∏

𝑗∈𝐽

∐

𝑘∈𝐾

lim
𝑙∈L𝑘

(
1 + Lfin(C) (𝐷 𝑗 , 𝐸𝑘,𝑙)

)
,

Γ 𝑓 , 𝑗 ,𝑙 =





𝐸 𝑓 𝐾
𝑗
,𝑙 if 𝑓 𝑗 (𝑙) ∈ 1

1 if 𝑓 𝑗 (𝑙) ∈ Lfin(C) (𝐷 𝑗 , 𝐸 𝑓 𝐾
𝑗
,𝑙),

and 𝑓 𝐾𝑗 is the projection of 𝑓 𝑗 onto 𝐾 for each 𝑓 ∈ Ξ, 𝑗 ∈ 𝐽.

Now, since 𝔲 is fully faithful and preserves finite limits, it must reflect them as

well. Since we are given that 𝐽 is finite, as well as A𝑘 for all 𝑘 ∈ 𝐾 , we have

∏

𝑗∈𝐽

lim
𝑙∈A

𝑓 𝐾
𝑗

𝔲(Γ 𝑓 , 𝑗 ,𝑙) � 𝔲

(∏

𝑗∈𝐽

lim
𝑙∈A

𝑓 𝐾
𝑗

Γ 𝑓 , 𝑗 ,𝑙

)
.

and thus

𝔲
(
(𝐷 𝑗) 𝑗∈𝐽

)
⇒ 𝔲

(
(𝐸𝑘)𝑘∈𝐾

)
� 𝔲

(∏

𝑗∈𝐽

lim
𝑙∈L

𝑓 𝐾
𝑗

Γ 𝑓 , 𝑗 ,𝑙

)

𝑓 ∈Ξ

so, since 𝔲 is fully faithful, we conclude that the exponential (𝐷 𝑗) 𝑗∈𝐽 ⇒ (𝐸𝑘)𝑘∈𝐾 in

Fam(Lfin(C)) exists and

(𝐷 𝑗) 𝑗∈𝐽 ⇒ (𝐸𝑘)𝑘∈𝐾 �
(∏

𝑗∈𝐽

lim
𝑙∈L

𝑓 𝐾
𝑗

Γ 𝑓 , 𝑗 ,𝑙

)

𝑓 ∈Ξ
,

as desired.

As an immediate corollary, we obtain our second main result:

Theorem 3.7. Finite coproducts of connected objects in Fam(Lfin(C)) are exponen-

tiable.

4. Examples

In this section, we intend to give a brief discussion on examples of the various notions of

(l)extensive categories arising from the Φ-coproduct distributive categories discussed

herein. More interestingly, we discuss examples of the doubly-infinitary lextensive cat-

egories introduced in 2.3.
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Recall that we consider the notion of doubly-infinitary distributive categories intro-

duced in [39], and the 2-functor Dist = Fam
(
Fam (−)op)op

. By Theorem 2.9, doubly-

infinitary lextensive categories are precisely the doubly-infinitary distributive cate-

gories which are also lextensive. With this in mind, we refer the reader to the examples

discussed in [39], and we make some considerations tailored to our setting.

4.1. Fundamental examples

Let 1 be the terminal category (the category with precisely one object and the identity

morphism), and ∅ the initial category (the empty category).

Let Φ be a class of small categories containing ∅. The category of sets

Set ≃ Fam(1) ≃ Fam(LΦ(∅))

is the free Φ-coproduct distributive category on the empty category. Hence, it is the

initial object in the 2-category of Φ-coproduct distributive categories.

Let Φ be a class of small categories containing all discrete categories. Then the

category

Fam(Setop) ≃ Fam
(
L(1)

)
≃ Dist(1)

is the free Φ-coproduct distributive category on the terminal category 1. As such,

Fam(Setop) is both the free doubly-infinitary lextensive category, and the free doubly-

infinitary distributive category on 1. By Theorem 3.4 (or [39, Theorem 2.3]), we

conclude that Fam(Setop) (also known as the category of polynomials) is cartesian

closed – recovering the result of [4].

4.2. Monadicity and presheaves

Let Φ be a class of categories. The “Φ-coproduct distributivity” properties can be

lifted through functors that create Φ-limits and coproducts. To be precise, we have the

following elementary result:

Lemma 4.1. Let 𝐺 : D→ C be a functor that creates coproducts and Φ-limits. If C

is a Φ-coproduct distributive category, then so is D.

Since pseudomonadic pseudofunctors create bicategorical products (see, for instance,

[31, 32] for lifting results on the pseudomonad setting, and [50, 51] and [33, 3.8] for

bilimits), we find that:

Lemma 4.2. The 2-categories Φ-Lim and (Fam ◦ LΦ)-PsAlg have bicategorical

products, given by the product of the underlying categories.
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More specifically, if (𝐶𝑖)𝑖∈𝐼 is a family of Φ-limit complete (Φ-coproduct distribu-

tive) categories, then ∏

𝑖∈𝐼

C𝑖

is Φ-limit complete (Φ-coproduct distributive).

By applying Corollary 4.1, we conclude that:

Theorem 4.3. Let J be a small category. If C is a Φ-coproduct distributive category,

then the functor category CAT(J,C) is Φ-coproduct distributive as well.

Proof. The result follows from the fact that the restriction/forgetful functor

CAT(J,C) → CAT(obJ,C) �
∏

𝑗∈obJ

C

creates limits and colimits that exist in C, and Lemma 4.2.

As a consequence, if A is a small category, the presheaf category CAT(Aop, Set)

is Φ-coproduct distributive, provided that Φ contains ∅. In particular, CAT(Aop, Set)

is doubly-infinitary extensive.

4.3. Finite and small bicategorical biproducts

As remarked in [39, 4.3], the 2-category of categories with products is bicategorically

semi-additive. This observation also extends to our setting.

Let Φ be a class of small categories containing the finite discrete categories. We

note that the 2-category Φ-Lim of Φ-limit complete categories is naturally enriched

over the 2-category of symmetric monoidal categories with the multilinear multicate-

gorical structure. Together with Lemma 4.2, we conclude that the 2-category Φ-Lim

has finite bicategorical coproducts, which are equivalent to the finite bicategorical

products. In other words:

Lemma 4.4. The 2-category Φ-Lim has finite bicategorical biproducts.

Moreover, it is clear that the hom-categories in the 2-category Φ-Lim are them-

selves Φ-limit complete – moreover, noting that composition of Φ-limit preserving

functors preserve Φ-limits componentwise, we conclude that:

Lemma 4.5. The 2-category ofΦ-limit complete categories is naturally enriched over

itself, with the multilinear multicategorical structure.

If Φ contains all (small) discrete categories, then by Lemmas 4.2 and 4.5, we con-

clude that the 2-category of Φ-limit complete categories has bicategorical coproducts,

which are equivalent to the bicategorical products. This is given as:
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Lemma 4.6. IfΦ is a class of small categories containing the discrete categories, then

the 2-category of Φ-limit complete categories has infinite bicategorical biproducts.

This allows us to understand freely generated Φ-coproduct distributive categories

over coproducts of categories, as we, for instance, show in Subsection 4.4.

4.4. Freely generated categorical structures on discrete categories

Now, we assume Φ be a class of small categories that contains all the small (respec-

tively, finite) discrete categories.

IfC is a small (finite) discrete category, we haveC≃
∐
𝑐∈obC 1. SinceLΦ preserves

small (finite) bicategorical biproducts and LΦ(1) ≃ Setop, we have that

LΦ(C) ≃ LΦ

( ∐

𝑐∈obC

1

)
≃

∏

𝑐∈obC

LΦ(1) ≃
∏

𝑐∈obC

Setop

by Lemma 4.6. Therefore:

Theorem 4.7. If C is a small discrete category, then

Fam(LΦ(C)) ≃ Fam
( ∏

𝑐∈obC

Setop
)
.

In particular, this result describes the free doubly-infinitary distributive categories,

and free doubly-infinitary lextensive categories on a small, discrete category C.

4.5. More on doubly-infinitary lextensive categories via free coproduct

completions

As we showed in Lemma 2.4, Fam lifts to a pseudomonad FamLΦ
onLΦ-PsAlg. Thus,

if a category C has Φ-limits, then Fam(C) has Φ-limits as well, which are preserved

by the coproduct 𝔪 : Fam(Fam(C)) → Fam(C). In particular,

– if C has pullbacks, then Fam(C) is infinitary extensive with pullbacks,

– if C has finite limits, then Fam(C) is infinitary lextensive,

– if C has small limits, then Fam(C) is doubly-infinitary lextensive,

– ifC has products, then Fam(C) is doubly-infinitary distributive by [39, Example 1].

So, even if a category C with products does not have small limits, we can still

establish that the category Fam(C) is doubly-infinitary distributive, and it is extensive

[9] by virtue of being a free coproduct completion. Hence, if Fam(C) has small limits,

we conclude that it is doubly-infinitary lextensive, by Theorem 2.9.

Before discussing our examples, we let Conn(C) be the full subcategory of a cat-

egory C with coproducts consisting of the connected objects [6, Definition 6.1.3].
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We begin by noting that the category Cat ≃ Fam(Conn(Cat)) of small categories

is doubly-infinitary lextensive, as it is both doubly-infinitary distributive and exten-

sive, and Cat has small limits. Likewise, we can prove that the category 𝜔-CPO ≃

Fam(Conn(𝜔-CPO)) of 𝜔-complete partial orders is also a doubly-infinitary lexten-

sive category.

Again similarly, the category LocConTop of locally connected topological spaces

and continuous functions is doubly-infinitary lextensive. Indeed, from [39, Example 8],

we learn that LocConTop ≃ Fam(Conn(LocConTop)) is both doubly-infinitary dis-

tributive and extensive, as the free coproduct completion of a category with products.

Moreover, LocConTop is a coreflective subcategory of Top [17], therefore, LocConTop

has small limits, letting us conclude that LocConTop is doubly-infinitary lextensive.

4.6. Doubly-infinitary distributive categories that are not extensive

As observed in [39], a distributive lattice D (seen as a distributive, thin category) is

extensive if and only if D ≃ 1, so any non-trivial example of a completely distributive

lattice D will be doubly-infinitary distributive, but not extensive.

Another example is the full subcategory Set2

• of Set × Set consisting of those pairs

of sets that are either both empty, or both non-empty. Since coproducts and products

are calculated componentwise in Set2

•, this category is doubly-infinitary distributive as

well, but it is not extensive.

4.7. Cartesian closedness vs. doubly-infinitary lextensivity

The category Fam(Top) is an example of a doubly-infinitary lextensive category that

is not cartesian closed. We note that the category Top of topological spaces is infini-

tary distributive, but not cartesian closed. So, by [39, Theorem 4.2], we conclude that

Fam(Top) is not cartesian closed as well. However, Fam(Top) is doubly-infinitary

lextensive, since Top has small limits.

An example of a cartesian closed category with all coproducts and limits, but not

doubly-infinitary lextensive, is given in [39, Counter-example 2], the category of Quasi-

Borel spaces.

5. Epilogue

Motivated particularly by the insights from [37, 39], the present work explores the

distributive properties of limits over coproducts through the lens of two-dimensional

monad theory [5, 31].
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We have demonstrated that the canonical (pseudo)distributivity of pullbacks over

coproducts leads to a pseudomonad whose pseudoalgebras are precisely the infini-

tary extensive categories equipped with pullbacks. Similarly, the distributivity of finite

limits over coproducts leads to the notion of a pseudomonad whose 2-category of

pseudoalgebras is precisely the 2-category of infinitary lextensive categories. Finally,

we showed that the distributivity of limits over coproducts leads to the concept of

doubly-infinitary lextensivity, characterized as infinitary extensive categories that are

also doubly-infinitary distributive as introduced in [39].

We also studied the exponentiable objects of the free completions Fam(Lfin(C))

and Fam(L(C)), confirming that the latter is a cartesian closed category for any cate-

goryC. These free completions enjoy various other known properties since they end up

being the free coproduct completion of a well-behaved category – we refer the reader

to [1, 9, 37–39] for further results.

Free finite coproduct completion

By replacing the free coproduct pseudomonad Fam with its finite counterpart FinFam,

we recover nearly all of our results, provided we make some adaptations to be finitary

setting. Namely, we obtain a pseudodistributive law

LΦ ◦ FinFam→ FinFam ◦ L𝜙,

for any class Φ of finite categories, by reworking the proof of Lemma 2.4. We then

obtain two more characterizations:

– the (FinFam ◦ Lpb)-pseudoalgebras are precisely the extensive categories with

pullbacks,

– the (FinFam ◦ Lfin)-pseudoalgebras are precisely the lextensive categories.

Most consequentially, an adaptation of our exponentiability results will confirm that

FinFam(Lfin(C)) is a cartesian closed category whenever C is locally finite.

Descent theory

Effective descent morphisms [16, 23] (see also [36, Sections 3 and 4]) are the back-

bone of Grothendieck’s descent theory [22, 33], which has significant consequences

in various fields [8,44,49]. Besides their wide range of applications, effective descent

morphisms hold intrinsic interest, as their purpose is the reconstruction of data over the

codomain from given data over the domain, plus some additional algebraic structure.

Of particular relevance to the present work are effective descent morphisms of

freely generated categorical structures. For instance, [46, Section 4] studied categories

of descent data for families of morphisms 𝜙 : (𝑋𝑖)𝑖∈𝐼 → 𝑌 , as well as conditions under
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which 𝜙 is an effective descent morphism in Fam(C), provided that C has finite limits.

Namely, it was shown that all such descent data is a coproduct of connected descent

data, which provided simpler conditions for a morphism 𝜙 : (𝑋𝑖)𝑖∈𝐼 →𝑌 to be of effec-

tive descent – this gives evidence that Fam(C) is a good proxy for the study effective

descent morphisms of C. This perspective was useful in the study of effective descent

functors between enriched categories, establishing precise connections between the

work of [15], [33, Theorem 9.11], [47], and the work of [11, 12, 49].

Since the free completions Dist(C) and Fam(L(C)) are even better behaved cate-

gories, enjoying properties such as cartesian closedness, an inquiry on whether study-

ing effective descent morphisms in such free completions seems to be a reasonable

avenue for future work.

Non-canonical isomorphisms

In analogy with [39, Subsection 5.2], we may use the results of [35] to prove that a

category C is Φ-coproduct distributive if it has coproducts, Φ-limits, and there exists

a(ny) invertible natural isomorphism

∐

𝑥∈ lim
𝑗∈J
𝑈𝐹

lim
𝑗∈J

𝐹𝑗 ,𝑥 𝑗 lim
𝑗∈J

∐

𝑥∈𝑈𝐹 𝑗

𝐹𝑗 ,𝑥
�

for every functor 𝐹 : J→ Fam(C) with J ∈ Φ, where we let 𝑈 : Fam(C) → Set be

the functor that outputs the underlying indexing set.

More generally, if we have a pseudomonadT on CAT and a pseudodistributive law

𝛿 : T ◦ Fam→ Fam ◦ T , then for any category C with coproducts and the structure

of a T -pseudoalgebra, the coproduct functor

∐
: Fam(C) → C

is an oplax T -morphism by doctrinal adjunction [24, 34]. The (codual version of the)

techniques of non-canonical isomorphisms from [35] can be applied just as well to this

setting.

Comparison to Cockett and Lack [14]

In [14], the authors address the extensive completion Bool(C) of a distributive cate-

gory C, whereas our work concerns, among others, the free lextensive category on any

(possibly non-distributive) category C.

If C is already distributive, this raises the question of whether our completion

coincides with Cockett and Lack’s construction. The answer is “no”. In our setting, the
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canonical inclusion

𝔶 : C→ FinFam(Lfin(C)) (5.1)

does not preserve finite coproducts nor finite limits, as we are dealing with a free com-

pletion. In contrast, the embedding constructed in [14]

𝐼 : C→ Bool(C)

preserves coproducts and products, so this is not a free completion. In fact, if C is

extensive to begin with, we obtain an equivalence 𝐼 : C ≃ Bool(C), but this is far from

the case for the embedding (5.1).

This distinction between free and non-free completions is encompassed by the

difference between lax idempotent monads and pseudo-idempotent monads, which is

a topic we plan to discuss in future work.

Acknowledgments. We acknowledge the community for the prompt reactions to our

work. In particular, we thank Robin Kaarsgaard for useful queries, which brought forth

the final topic of Section 5. We are grateful to the anonymous referees for their infor-

mative reports.

The first author wishes to extend a special thanks to Tim Van der Linden for his

warm hospitality at Université catholique de Louvain during a brief stay in May 2024,

for the UCLouvain-ULB-VUB Category Theory Seminar. The inspiring environment

and their kindness nurtured a much needed peace of mind, which aided the advance-

ment of this work.

Funding. This project has received funding via NWO Veni grant number VI.Veni.201.124.

The first two named authors acknowledge partial financial support by Centro de

Matemática da Universidade de Coimbra (CMUC), funded by the Portuguese Gov-

ernment through FCT/MCTES, DOI 10.54499/UIDB/00324/2020.

References

[1] J. Adámek and J. Rosický. How nice are free completions of categories? Topology Appl.,

273(24), 2020.

[2] J. Adámek, J. Rosický, and E. Vitale. On algebraically exact categories and essential

localizations of varieties. J. Algebra, 244:450–477, 2001.

[3] M.H. Albert and G.M. Kelly. The closure of a class of colimits. J. Pure Appl. Algebra,

51:1–17, 1988.



26 F. Lucatelli Nunes, R. Prezado, and M. Vákár

[4] T. Altenkirch, P. B. Levy, and S. Staton. Higher-order containers. In F. Ferreira, B. Lowe,

E. Mayordomo, and L. M. Gomes, editors, Programs, Proofs, Processes, 6th Conference

on Computability in Europe, CiE 2010, Ponta Delgada, Azores, Portugal, June 30 - July

4, 2010. Proceedings, volume 6158 of Lecture Notes in Computer Science, pages 11–20.

Springer, 2010.

[5] R. Blackwell, G.M. Kelly, and A.J. Power. Two-dimensional monad theory. J. Pure Appl.

Algebra, 59:1–41, 1989.

[6] F. Borceux and G. Janelidze. Galois Theories, volume 72 of Cambridge studies in

advanced mathematics. Cambridge University Press, Cambridge, 2001.

[7] J. Bourke. Two-dimensional monadicity. Adv. Math., 252:708–747, 2014.

[8] R. Brown and G. Janelidze. Van Kampen theorems for categories of covering morphisms

in lextensive categories. J. Pure Appl. Algebra, 119(3):255–263, 1997.

[9] A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and distributive cate-

gories. J. Pure Appl. Algebra, 84(2):145–158, 1993.

[10] C. Centazzo and E.M. Vitale. Sheaf theory. In Categorical Foundations, volume 97

of Encyclopedia Math. Appl., pages 311–357. Cambridge University Press, Cambridge,

2004.

[11] M.M. Clementino and D. Hofmann. Effective descent morphisms in categories of lax

algebras. Appl. Categor. Structures, 12(5):413–425, 2004.

[12] M.M. Clementino and D. Hofmann. The rise and fall of V-functors. Fuzzy Sets and

Systems, 321:29–49, 2017.

[13] M.M. Clementino and F. Lucatelli Nunes. Lax comma 2-categories and admissible 2-

functors. Theory Appl. Categ., 40(6):180–226, 2024.

[14] J.R.B. Cockett and S. Lack. The extensive completion of a distributive category. Theory

Appl. Categ., 8(22):541–554, 2001.

[15] I. Le Creurer. Descent of Internal Categories. PhD thesis, Université Catholique de

Louvain, 1999.

[16] J. Giraud. Methode de la descente. Bull. Soc. Math. France Memoire, 2, 1964.

[17] A.M. Gleason. Universal locally connected refinements. Illinois J. Math., 7(3):521–531,

1963.

[18] T. von Glehn. Polynomials, fibrations and distributive laws. Theory Appl. Categ.,

33(36):1111–1144, 2018.

[19] J.W. Gray. Fibred and cofibred categories. In Proceedings of the Conference on Cate-

gorical Algebra, pages 21–83, Berlin, Heidelberg, 1966. Springer.

[20] A. Grothendieck and J.L. Verdier. Prefaisceaux. In Théorie des topos et cohomologie

étale des schémas (Séminaire de Géométrie Algébrique du Bois Marie 1963/64 (SGA 4),

volume 269, pages 1–21. Springer, Berlin, 1972.

[21] C. Hermida. Representable multicategories Adv. Math., 151:164–225, 2000.

[22] G. Janelidze and W. Tholen. Facets of descent, I. Appl. Categ. Structures, 2(3):245–281,

1994.

[23] G. Janelidze and W. Tholen. Facets of descent, I. Appl. Categ. Structures, 5(3):229–248,

1997.



Free extensivity via distributivity 27

[24] G.M. Kelly. Doctrinal adjunction. In G.M. Kelly, editor, Category Seminar, volume 420

of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1974.

[25] G.M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of London Math-

ematical Society Lecture Notes. Cambridge University Press, Cambridge, 1982.

[26] G.M. Kelly and S. Lack. On property-like structures. Theory Appl. Categ., 3(9):213–250,

1997.

[27] A. Kock. Monads for which structures are adjoint to units. J. Pure Appl. Algebra, 104:41–

59, 1995.

[28] S. Lack. A coherent approach to pseudomonads. Adv. Math., 152(2):179–202, 2000.

[29] S. Lack. Codescent objects and coherence. J. Pure Appl. Algebra, 175:223–241, 2002.

[30] I. Di Liberti, G. Lobbia and L. Sousa KZ-pseudomonads and Kan Injectivity. Theory

Appl. Categ., 40(16):430–478, 2024.

[31] F. Lucatelli Nunes. On biadjoint triangles. Theory Appl. Categ., 31(9):217–256, 2016.

[32] F. Lucatelli Nunes. On lifting of biadjoints and lax algebras. Categ. Gen. Algebr. Struct.

Appl., 9(1):29–58, 2018.

[33] F. Lucatelli Nunes. Pseudo-Kan extensions and descent theory. Theory Appl. Categ.,

33(15):390–444, 2018.

[34] F. Lucatelli Nunes. Pseudomonads and Descent. PhD thesis, Universidade de Coimbra,

2018.

[35] F. Lucatelli Nunes. Pseudoalgebras and non-canonical isomorphisms. Appl. Categor.

Structures, 27:55–63, 2019.

[36] F. Lucatelli Nunes. Descent data and absolute Kan extensions. Theory Appl. Categ.,

37(18):530–561, 2021.

[37] F. Lucatelli Nunes and M. Vákár. Monoidal closure of Grothendieck constructions via

Σ-tractable monoidal structures and Dialectica formulas. arXiv:2405.07724, 2024.

[38] F. Lucatelli Nunes and M. Vákár. CHAD for expressive total languages. Math. Structures

Comput. Sci., 33(4–5):311–426, 2023.

[39] F. Lucatelli Nunes and M. Vákár. Free doubly-infinitary distributive categories are carte-

sian closed. arXiv:2403.10447v3, 2024.

[40] F. Marmolejo. Doctrines whose structure forms a fully faithful adjoint string. Theory

Appl. Categ., 3(2):22–42, 1997.

[41] F. Marmolejo. Distributive laws for pseudomonads. Theory Appl. Categ., 5(5):91–147,

1999.

[42] F. Marmolejo. Distributive laws for pseudomonads II. J. Pure. Appl. Algebra, 194:169–

182, 2004.

[43] F. Marmolejo, R. Rosebrugh, and R. Wood. Completely and totally distributive categories

I. J. Pure Appl. Algebra, 216(8–9):1775–1790, 2012.

[44] I. Moerdijk. Descent theory for toposes. Bull. Soc. Math. Belgique, 41:373–391, 1989.

[45] A.J. Power, G.L. Cattani, and G. Winskel. A representation result for free cocompletions.

J. Pure Appl. Algebra, 151(3):273–286, 2000.

[46] R Prezado. On effective descent V-functors and familial descent morphisms. J. Pure

Appl. Algebra, 228(5), 2024. Id/No 107597.



28 F. Lucatelli Nunes, R. Prezado, and M. Vákár

[47] R. Prezado and F. Lucatelli Nunes. Descent for internal multicategory functors. Appl.

Categor. Structures, 31(11), 2023.

[48] R. Prezado and F. Lucatelli Nunes. Generalized multicategories: change-of-base, embed-

ding and descent. Appl. Categor. Structures, 2024. To appear.

[49] J. Reiterman and W. Tholen. Effective descent maps of topological spaces. Topology

Appl., 57:53–69, 1994.

[50] R. Street. Fibrations in bicategories. Cah. Topol. Géom. Différ., 21:111–159, 1980.

[51] R. Street. Correction to “Fibrations in bicategories”. Cah. Topol. Géom. Différ., 28(1):53–

56, 1987.

[52] W. Tholen. Pro-categories and multiadjoint functors. Can. J. Math., XXXVI(1):144–155,

1984.

[53] C. Walker. Distributive laws via admissibility. Appl. Categor. Structures, 27:567–617,

2019.

[54] V. Zöberlein. Doctrines on 2-categories. Math. Z., 148:267–279, 1976.

Fernando Lucatelli Nunes

Department of Information and Computing Sciences, Utrecht University, Utrecht, The

Netherlands; Department of Mathematics, University of Coimbra, Coimbra, Portugal;

f.lucatellinunes@uu.nl

Rui Prezado

Department of Mathematics, University of Coimbra, Coimbra, Portugal;

ruiprezado@gmail.com

Matthijs Vákár

Department of Information and Computing Sciences, Utrecht University, Utrecht, The

Netherlands; matthijsvakar@gmail.com


