
MONOIDAL CLOSURE OF GROTHENDIECK CONSTRUCTIONS VIA

Σ-TRACTABLE MONOIDAL STRUCTURES AND DIALECTICA FORMULAS

FERNANDO LUCATELLI NUNES AND MATTHIJS VÁKÁR

Abstract. We study the categorical structure of the Grothendieck construction of an indexed category
L : Cop → CAT, starting with the study of fibred limits, colimits, and monoidal structures. Next, we give

sufficient conditions for the monoidal closure of the total category ΣCL of a Grothendieck construction of
an indexed category L : Cop → CAT. Our analysis is a generalization of Gödel’s Dialectica interpretation,
and it relies on a novel notion of Σ-tractable monoidal structure. As we will see, Σ-tractable coproducts
simultaneously generalize cocartesian coclosed structures, biproducts and extensive coproducts. We analyse
when the closed structure is fibred – usually it is not.

1. Introduction

Similarly to how we can represent an indexed family S(−) : I → Set of sets equivalently as a pair
of sets Σi∈ISi and I with a projection function π1 : Σi∈ISi → I, we can represent an indexed category
L(−) : C

op → CAT equivalently as a pair of categories ΣCL and C with a projection functor π1 : ΣCL → C

that is a cloven fibration1. This construction relating indexed categories and (cloven) fibrations is known as
the Grothendieck construction or the Σ-type of categories [Grothendieck and Raynaud(1971)].

Given the fundamental role that this construction plays in category theory, it is important to understand
the categorical structure (e.g., limits, colimits, closure) of such categories ΣCL. In fact, the construction also
plays a fundamental role in computer science, where various special cases have been reinvented several times
under the names of “polynomials” (see e.g., [Gambino and Kock(2013)]), “containers” (see e.g., [Abbott
et al.(2003)]), and “lenses” (see e.g., [Foster et al.(2007)]). The basic idea is that objects in ΣCL (pairs
(C,L) of an object C of C and an object L of L(C)) get interpreted as a pair of a type of shapes C and
a corresponding dependent type L of values of shape C. This can lead to convenient representations of
data types. A typical example is given by types of arrays that have a shape (rank and size, for example)
and a dependent type that specifies a type for each of the values stored in each position in the shape (e.g.,
a Boolean or integer). Understanding the categorical structure of categories ΣCL

op is important in this
case, as it gives us guidance on what are principled programming idioms when manipulating data in such a
polynomial/container/lens representation.

The structure of products in ΣCL has long been known [Gray(1966)] and the structure of coproducts and
initial algebras and terminal coalgebras in ΣCL was recently analysed by [Lucatelli Nunes and Vákár(2023)].
The structure of equalizers and coequalizers is entirely analogous to that of products and coproducts, and, as
such, is not unexpected. Essentially, the limit of J : E → ΣCL can be constructed as the limit of π1 ◦ J in C
and the limit of π2 ◦ J in the fibre categories of L, as long as the change-of-base functors preserve the latter;
the colimit of J in ΣCL arises from the colimit of π1 ◦J in C if L(λ) has a left adjoint for the coprojections λ
corresponding to the colimit (so in particular if L : Cop → CAT preserves the limit of (π1 ◦J)

op). In fact, as
we show, these are precisely necessary and sufficient conditions for fibred limits and colimits in Grothendieck
constructions.

However, the basic question of when ΣCL has exponentials has not been studied much in literature, except
for some special cases [Hyland(2002), Shulman(2008), Altenkirch et al.(2010), Moss and von Glehn(2018),

Date: June 12, 2024.
Key words and phrases. Grothendieck constructions, limits, colimits, exponentials, cartesian closed categories, monoidal

closed categories, free coproduct completion, lax comma categories.
1The fact that we consider Cop here rather than C is merely to adhere to the convention in the literature to phrase results

in terms of fibrations rather than opfibrations. When considering Cop-indexed categories (i.e., functors L : C → CAT), we can
construct an equivalent opfibration π1 : (ΣCopLop)op → C over C.

1

D
M

U
C

 P
re

pr
in

t 2
4-

30
, 1

2
Ju

n
20

24

[v1] Wed, 12 Jun 2024

https://www.mat.uc.pt/preprints/eng_2024.html

Lucatelli Nunes and Vákár(2023)]. This surprisingly challenging question is the focus of the present paper,
as well as its generalisation to non-cartesian monoidal closed structures. We provide an answer that arises
as a generalisation of Gödel’s Dialectica interpretation of exponentials.
Contributions. Briefly, this paper makes the following contributions:

• a proof of necessary and sufficient conditions for the existence of fibred limits and colimits in a
Grothendieck construction ΣCL → C (Lemmas 1 and 2); while similar results (particularly for limits)
were known [Gray(1966)], we believe our particular phrasing does not appear in the literature yet;

• a proof of necessary and sufficient conditions for fibred monoidal closure of a Grothendieck construc-
tion ΣCL → C (Lemma 5);

• a definition of the notion of Σ-(co)tractable monoidal structures and demonstration that many ex-
amples of monoidal categories that arise in practice are Σ-(co)tractable (Section 3);

• a proof that Σ-cotractability combined with the existence of Π-types (fibred products) yield sufficient
conditions for a Grothendieck construction over a nice2 base category to be (non-fibred) monoidal
closed, via a generalised Dialectica formula for exponentials (Theorem 1);

• a demonstration that many interesting examples of such non-fibred monoidal closed and cartesian
closed structures arise in practice (Section 4).

A remark about size and set-theoretic concerns. We work with a standard Von Neumann–Bernays–
Gödel set theory as a basis for our constructions. In particular, we assume the existence of a predicative
hierarchy of universes of which we will only use the first three levels. We refer to sets at those three levels
as small sets, large sets and very large sets. As a convention, all of our categories, unless stated otherwise,
can be large, but are locally small (meaning that each of their homsets is a small set). We write Set, Cat
and 2Cat for the large, locally small (2-)categories of small sets, small categories and small 2-categories,
respectively. We will only consider three very large categories: SET, CAT, 2CAT, the very large, locally
large (2-)categories of large sets, large categories and large 2-categories, respectively.

2. Grothendieck construction basics

2.1. Basic definition. Here, we recall some basics about the Grothendieck construction [Grothendieck and
Raynaud(1971)].

Let C be a category and let L be a C-indexed category in the sense of a pseudofunctor L : Cop → CAT to
the 2-category CAT of (large) categories, functors and natural transformations.

Definition 1 (Indexed category). A (large) C-indexed category L consists of the following data:

• for each object C of C, a (large) category L(C);
• for each morphism c : C ′ → C of C, a functor L(c) : L(C)→ L(C ′);

• natural isomorphisms ηC : idL(C) → L(idC) (for C in C) and µc′,c : L(c′) ◦ L(c) → L(c ◦ c′) (for

C ′′ c′

−→ C ′ c
−→ C in C);

• coherence conditions, for all C ′′′ c′′

−→ C ′′ c′

−→ C ′ c
−→ C in C,

L(c′)

L(idC′′) ◦ L(c′) L(c′) L(c′) ◦ L(idC′)

ηC′′
L(c′) L(c′)ηC′

µ
id

C′′ ,c
′

µ
c′,id

C′

L(c′′) ◦ L(c′) ◦ L(c) L(c′′) ◦ L(c ◦ c′)

L(c′ ◦ c′′) ◦ L(c) L(c ◦ c′ ◦ c′′).

L(c′′)µc′,c

µc′′,c′L(c) µc′′,c◦c′

µc′◦c′′,c

In many but not all interesting examples, L will be a strict functor Cop → CAT (i.e., η = id and µ = id),
which we call a strict indexed category3.

2A model of dependent type theory with Π-types and strong Σ-types.
3By the classical strictification constructions due to Giraud and Bénabou (see [Lumsdaine and Warren(2015), Section 2.2]

for a good discussion), any indexed category is equivalent to a strict one (in two different ways, corresponding to left and
right 2-adjoints to the inclusion of the category of strictly indexed categories into the category of indexed categories). This
observation follows from the more recent general coherence theorem for pseudoalgebras, where indexed categories can be seen
as pseudocoalgebras and pseudoalgebras as the forgetful 2-functor from the 2-category of indexed categories to the 2-category
of families is 2-monadic and 2-comonadic [Blackwell et al.(1989), Lack(2002), Lucatelli Nunes(2016)].

2

Definition 2 (Morphisms of indexed categories). We consider the following three notions of morphisms
between indexed categories (C,L : Cop → CAT) and (C′,L′ : C′op → CAT):

• colax morphisms: a pair of a functor F : C → C′ and a colax natural transformations, i.e. for all
objects C of C a functor λC : L(C) → L′(F op(C)) together with {αc : λC′ ◦ L(c) → L′(F op(c)) ◦
λC}C′,C∈obC,c∈C(C′,C) making up a colax natural transformation:

C L(C) L′(F op(C))

C ′ L(C ′) L′(F op(C ′))

L(c)

λC

L′(F op(c))c

λC′

αc + the usual coherence conditions for αc.

• pseudomorphisms: colax morphisms for which the 2-cell α is an isomorphism;
• strict morphisms: pseudomorphisms for which the 2-cell α is the identity.

We can further consider modifications between the morphisms to obtain a 2-categories of (strict) indexed
categories colax/pseudo/strict morphisms and modifications.

We define the Grothendieck construction ΣCL as follows.

Definition 3 (Grothendieck construction). For a C-indexed category, we define the Grothendieck construc-
tion ΣCL to be the following category

• objects are dependent pairs (C,L) of an object C in C and an object L in L(C); i.e., obΣCL
def
=

ΣC∈ob CobL(C);
• morphisms (C,L) → (C ′, L′) are dependent pairs (c, l) of a morphism c : C → C ′ in C and a

morphism l : L→ L(c)(L′) in L(C); i.e., ΣCL((C,L), (C
′, L′))

def
= Σc∈C(C,C′)L(C)(L,L(f)(L′));

• identities are defined as id(C,L)
def
= (idC , η

C
L);

• composition of (C ′′, L′′)
(c′,l′)
−−−→ (C ′, L′)

(c,l)
−−−→ (C,L) is defined as (c, l)◦(c′, l′)

def
= (c◦c′, µc′,c

L ◦L(c′)(l)◦
l′).

Then, we have a functor π1 : ΣCL → C that projects to the first component of the dependent pairs:
π1(c, l) = c. π1 has the interesting property that it is a fibration. In fact, up to some choices of representatives
of equivalence classes (of a cleavage, see below), fibrations are equivalent to indexed categories. In particular,
this means that the fibration π1 : ΣCL → C contains almost all the information present in the original
category. We note that ΣCL is (locally) small (resp., large) if C and the fiber categories L(C) are (locally)
small (resp., large).

We recall the basic definitions of Grothendieck fibrations.

Definition 4 (Cartesian lift). Let p : E → B be some functor and let b : B′ → B be a morphism in B. We
call a morphism e : E′ → E a cartesian lift of b if pe = b and for any other b′ : B′′ → B′ in B and e : E′′ → E
such that pe = b ◦ b′, there is a unique e′ : E′′ → E′ such that pe′ = b′ and e ◦ e′ = e:

E′′

B′′ E′ E

B′ B

e

e′

b′

e

b

Given a functor p : E → B, a morphism b : B′ → B and an object E, we easily see that all cartesian lifts
eb,E of b with codomain E are isomorphic. In that sense, cartesian lifts are unique up to isomorphism. They
are not always guaranteed to exist, however.

Definition 5 ((Grothendieck) fibration). We call a functor p : E → B a (Grothendieck) fibration if for every
morphism b : B′ → B and E in E such that pE = B, there exists a cartesian lift eb,E of b with codomain E.

We call a functor p : E → B for which pop : Eop → B is a fibration an opfibration. A functor that is both
a fibration and an opfibration is commonly called a bifibration.

3

Definition 6 (Cleavage). Given a fibration p : E → B, we call a choice eb,E of representatives of the
isomorphism class of cartesian liftings of b along p with codmain E a cleavage of p. We call a fibration with
a chosen cleavage a cloven fibration.

Definition 7 (Split fibration). We a cloven fibration split if the cleavage has the property that eidB ,E = idE
and eb,E ◦ eb′,E′ = eb◦b′,E , where we write E′ for the domain of eb,E .

Definition 8 (Morphisms of Fibrations). Given two fibrations p : E → B and p′ : E ′ → B′, we consider the
following two notions of morphisms:

• colax morphisms: simply commutative squares of functors

E E ′

B B′

F1

p p′

F0

• pseudomorphisms (sometimes called fibred functors): colax morphisms for which F1 sends cartesian
liftings along p of morphisms b in B to cartesian liftings along p′ of F0(b).

If we have further chosen cleavages e−,− and e′−,− for both fibrations p and p′, we can also consider the
following:

• strict morphisms (sometimes called split functors): pseudomorphisms that respect the cleavages in
the sense that F1(eb,E) = e′F0(b),F1(E).

Definition 9 (Fibred natural transformation). Given two (colax) morphisms (p : E → B)→ (p′ : E ′ → B′)
of fibrations (F1, F0) and (G1, G0), then we consider fibred natural transformations as 2-cells: pairs of natural
transformations α1 : F1 → G1 and α0 : F0 → G0 such that p′α1 = α0p.

That gives us 2-categories of general/cloven/split fibrations, colax/pseudo/strict morphisms and fibred
natural transformations.

The classic result relating fibrations and indexed categories is as follows. See for example [Shulman(2008),
Proposition 3.8] or [Johnstone(2002), Proposition B1.3.6] for details.

Proposition 1. The Grothendieck construction defines an equivalence of 2-categories between

• indexed categories, colax morphisms of indexed categories, modifications;
• cloven fibrations, colax morphisms of fibrations, fibred natural transformations.

Further, these equivalences restrict in the following way:

• pseudomorphisms of indexed categories correspond to pseudomorphisms of fibrations;
• strict morphisms of indexed categories correspond to strict morphisms of cloven fibrations;
• strict indexed categories correspond to split fibrations;
• cloven bifibrations correspond precisely to indexed categories that factor over the category CatAdj

of categories and adjunctions (i.e., cloven bifibrations are equivalent to indexed categories for which
L(f) always has a left adjoint L!(f)) (see [Jacobs(1999), Lemma 9.1.2] for this result).

Proof sketch. We only sketch a very limited part of the proof that we will use and refer the reader to the cited
references for more details. Given an colax (resp. pseudo, resp. strict) morphism (F, λ, α) : (C,L)→ (C′,L′)
of indexed categories, we can define a functor ΣFλ : ΣCL → ΣC′L′ such that (F,ΣFλ) is an colax (resp.
pseudo, resp. strict) morphism of fibrations. Indeed, we define (ΣFλ)(C,L) = (FC, λC(L)) on objects and
(ΣFλ)(c, l) = (Fc, ((αC)L ◦ −) ◦ λC′(l) on morphisms (c, l) : (C ′, L′)→ (C,L). □

Assuming the axiom of choice, we can equip any fibration with a cleavage, showing precisely how fibrations
generalize indexed categories.

From now on, we shall work with indexed categories (equivalently, cloven fibrations) and pseudomor-
phisms, unless explicitly stated otherwise. If we talk about indexed structures (such as indexed monoidal
structures), we shall mean structures on indexed categories built out of pseudomorphisms of indexed cat-
egories. Similarly, if we talk about fibred structures (such as fibred monoidal structures), we shall mean
structures on fibrations built out of pseudomorphisms of fibrations.

4

Example 1 (Pullback). Given an indexed category L : Cop → CAT and a (pseudo)functor F : D → C, we
obtain a new indexed category L ◦ F op : Dop → CAT. By choosing some cleavage, this immediately shows
that for fibrations p : E → C, the pullback F ∗p in CAT is also a fibration.

Example 2 (Composition). The functor composition of two fibrations is another fibration. In the language
of indexed categories, this tells us that given an indexed category L : Cop → CAT and an indexed category
L′ : (ΣCL)

op → CAT, we can take the indexed Grothendieck construction to obtain an indexed category
(ΣLL

′) : Cop → CAT with fibres (ΣLL
′)(C) = ΣL(C)L

′(C,−).

Example 3 (Dual). Postcomposition with the functor op : CAT → CAT lets us construct an indexed
category Lop : Cop → CAT from an existing indexed category L : Cop → CAT.

Example 4 (Domain fibration). For any category C, using function composition, the undercategories define
an indexed category L : Cop → C: L(C) = C/C. The corresponding fibration is the domain functor from the
arrow category dom : C→ → C (Note that the overcategories always define an opfibration for this reason.)

Example 5 (Codomain fibration). For any category C with pullbacks, the codomain functor from the arrow
category cod : C→ → C is a fibration. Using the axiom of choice, we can choose a cleavage and turn this into
an indexed category with the overcategories of C as fiber categories.

Definition 10 (Locally indexed category). We sometimes call a CAT(Cop,Set)-enriched category a locally
indexed category (terminology introduced by [Levy(2012)]). The reason is that they can equivalently ax-
iomatised as indexed categories L : Cop → CAT for which obL(C) does not depend on C and for which
L(c) acts as the identity on objects, for any c : C ′ → C.

Example 6 (C-enriched category). Any C-enriched category D for a cartesian monoidal category C is in
particular CAT(Cop,Set)-enriched, via the Yoneda embedding, so it defines a locally C-indexed category.

Example 7 (Product self-indexing). Given a category C with (chosen) finite products, we can define a locally
indexed category self(C) : Cop → CAT by ob self(C)(C) = ob C and self(C)(C)(C ′, C ′′) = C(C × C ′, C ′′).
Observe that for c : C ′ → C, we get an identity on objects functor self(C)(C) → self(C)(C ′) that acts on
morphisms f : C × C1 → C2 as f ◦ (c× idC1

).

Example 8 (Scone). Combining Examples 1 and 5, we get that for a functor F : D → C to a category with
pullbacks C, we get a D-indexed category L with L(D) = C/FD. This indexed category is commonly known
as the Scone or Artin gluing of F . It is commonly used in programming languages theory to structure logical
relations arguments over a denotational semantics in D as a denotational semantics valued in ΣDL [Mitchell
and Scedrov(1992)].

Example 9 (Lax comma). Given a 2-category C, we can take theCAT-enriched Yoneda embedding to obtain
a strict indexed category 2CAT(−op, C) : Catop → CAT of functors and colax natural transformations. The
corresponding Grothendieck construction ΣCat2CAT(−op, C) is commonly known as the lax comma over
C. Similarly, we can take C to be the 2-category Cat of small categories, we get a large indexed category
2CAT(−op,Cat) : Catop → CAT of small strict indexed categories and colax natural transformations.

Example 10 (Families construction). We can precompose the indexed category of Example 9 with the
embedding Set →֒ Cat as discrete categories, to obtain an indexed category Cat(−, C) : Setop → CAT.
The Grothendieck construction ΣSetCat(−, C) is commonly known as Fam(C) and is the free coproduct
completion of C.

2.2. Limits in Grothendieck constructions. We have the following general characterisation of fibred
limits in a Grothendieck construction π1 : ΣCL → C, in the sense of limits that are preserved by π1. (A
variation of this result appears as [Gray(1966), Theorem 4.2], but we are not aware of this precise phrasing
appearing in the literature.)

Lemma 1 (Fibred limits in a Grothendieck construction). A functor J = (J1, J2) : E → ΣCL has a
fibred limit iff J1 : E → C has a limit (L, λ) and L(λ)(J2) : E → L(L) has a limit that is preserved by
L(u) : L(L)→ L(K) for any u : K → L.

5

Proof. First, we need to explain what we mean by L(λ)(J2) : E → L(L). Observe that, for e : E → E′ in
E , J2(e) : J2(E) → L(J1(e))(J2(E

′)) is a morphism in L(J1(E)). Further, λE : L → J1(E). Therefore, by
naturality of λ,

L(λE)(J2(e)) ∈L(L)(L(λE)(J2(E)),L(λE)(L(J1(e))(J2(E
′)))) ∼=

L(L)(L(λE)(J2(E)),L(J1(e) ◦ λE)(J2(E
′))) =

L(L)(L(λE)(J2(E)),L(λE′)(J2(E
′)))).

As a consequence of the functoriality of J , this gives us a functor L(λ)(J2) : E → L(L).
Then, observe that we have natural isomorphisms of homsets

CAT(E ,ΣCL)(E 7→ (C1, C2), (J1, J2))

= Σf∈CAT(E,C)(E 7→C1,J1)CAT(E ,L(C1))(E 7→ C2, E 7→ L(fE)(J2(E)))
∼= Σu∈C(C1,limEJ1(E))CAT(E ,L(C1))(E 7→ C2, E 7→ L(λE ◦ u)(J2(E))) { limit in C }
∼= Σu∈C(C1,limEJ1(E))L(C1)(C2, limEL(λ ◦ u)(J2)(E)) { limit in L(C1) }
∼= Σu∈C(C1,limEJ1(E))L(C1)(C2, limEL(u)(L(λ)(J2)(E))) { pseudofunctoriality L }
∼= Σu∈C(C1,limEJ1(E))L(C1)(C2,L(u)(limEL(λ)(J2)(E))) { L(u) preserves limit }

= ΣCL((C1, C2), (limEJ1(E), limEL(λ)(J2)(E))).

□

[Lucatelli Nunes and Vákár(2023), Theorem 52] shows that a similar construction relates fibred terminal
coalgebras of fibred endofunctors on ΣCL → C to pairs of a terminal coalgebra L in C and a terminal coalgebra
in L(L) that is preserved by change of base.

2.3. Colimits in Grothendieck constructions. By duality (and as noted in [Gray(1966), Theorem 4.2]),
Lemma 1 also tells us how to compute fibred colimits in an op-fibration. In particular, it applies to colimits
in bifibrations π1 : ΣCL → C in the sense of a fibration such that all L(f) have a left adjoint L!(f). Indeed,
in that case, (ΣCL)

op ∼= ΣCopLop
! → C

op, which lets us construct fibred colimits in ΣCL out of colimits in C
and colimits in L that are preserved by change of base in L!. However, there are also other cases of colimits
in ΣCL that we are interested in. In general, we have the following result. (We imagine that it is known,
but have not found a reference to it in the literature.)

Lemma 2 (Fibred colimits in a Grothendieck construction). A functor J = (J1, J2) : E → ΣCL has a
fibred colimit iff J1 : E → C has a colimit (L, λ) and the functor L(λ) : L(L) → CAT(E ,L ◦ Jop

1) given by
C2 7→ E 7→ L(λE)(C2) has a left adjoint L(λ)!. The colimit of J is then given by (L,L(λ)!(J2)).

Proof. Indeed, we have the following natural isomorphisms of homsets

CAT(E ,ΣCL)(J1, J2), E 7→ (C1, C2))

= Σf∈CAT(E,C)(J1,E 7→C1)CAT(E ,L ◦ Jop
1)(J2, E 7→ L(fE)(C2))

∼= Σg∈C(colimEJ1(E),C1)CAT(E ,L ◦ Jop
1)(J2, E 7→ L(g ◦ λE)(C2))) { colimit in C }

∼= Σg∈C(colimEJ1(E),C1)CAT(E ,L ◦ Jop
1)(J2, E 7→ L(λE)(L(g)(C2))) { pseudofunctoriality L }

∼= Σg∈C(colimEJ1(E),C1)L(colimEJ1(E))(L(λ)!(J2),L(g)(C2)) { L(λ)! ⊣ L(λ) }

= ΣCL((colimEJ1(E),L(λ)!(J2)), (C1, C2)).

□

We call an indexed category L : Cop → CAT E-extensive if L preserves all limits of shape E . In particular,
in case E ranges over small discrete categories (sets), we obtain the notion of an extensive indexed category of
[Lucatelli Nunes and Vákár(2023), Section 6.5]: a pseudofunctor L : Cop → CAT that preserves products. If
further, L corresponds to the codomain fibration of C (with a chosen cleavage), then we retrieve the classical
notion of (infinitary) extensive category.

Corollary 1 (Colimits in extensive fibrations). For E-extensive indexed categories L : Cop → CAT, ΣCL
has colimits of shape E .

6

Proof. In that case, we have an equivalence L(colim C
EJ1(E)) ≃ limCat

E L(J1(E)) ≃ CAT(E ,L ◦ Jop
1), so in

particular have the left adjoint required by Lemma 2. □

In particular, we recover the results of [Lucatelli Nunes and Vákár(2023), Section 6.5] that show that
extensive indexed categories have coproducts in their Grothendieck construction.

Further, [Lucatelli Nunes and Vákár(2023), Corollary 49] shows that a similar construction relates fibred
initial algebras of fibred endofunctors on ΣCL → C to pairs of an initial algebra L in C and initial an algebra
in L(L) that is preserved by change-of-base.

2.4. Monoidal structures on Grothendieck constructions. Lemma 1 tells us, in particular, that
given a cartesian monoidal category C, we have an equivalence between indexed cartesian monoidal struc-
tures on L : Cop → CAT (in the sense of monoidal structures on all fibres L(C) that are preserved by
change-of-base functors L(f)) and fibred cartesian monoidal structures (in the sense of being a fibred func-
tor/pseudomorphism of fibrations) on ΣCL by taking 1ΣCL = (1C , 1L(1C)) and (C,L)×ΣCL (C ′, L′) = (C ×C

C ′,L(π1)(L)×L(C×CC′)L(π2)(L
′)), where we write π1 and π2 for the product projections C

π1←− C×C ′ π2−→ C ′

in C. As shown by Shulman, this correspondence works more generally for monoidal structures, braided
monoidal structures, and symmetric monoidal structures on ΣCL, as long as we make sure the monoidal
structure on C is cartesian.

Lemma 3 (Monoidal structures on a Grothendieck construction, [Shulman(2008), Theorem 12.7]). As long
as C is a cartesian monoidal category, the following definitions for the monoidal unit I and product ⊗ define
an equivalence between fibred monoidal structures on ΣCL and indexed monoidal structures on L:

IΣCL = (1C , IL(1C)) and (C,L)⊗ΣCL (C ′, L′) = (C ×C C ′,L(π1)(L)⊗L(C×CC′) L(π2)(L
′))

IL(C) = L(!C)(π2(IΣCL)) and L⊗L(C) L
′ = L(⟨idC , idC⟩)(π2((C,L)⊗ΣCL (C,L′)))

Further, fibred braidings for ⊗ΣCL are in 1-1 correspondence with indexed braidings for ⊗L, and a braiding
for ⊗ΣCL is symmetric precisely if the corresponding one for ⊗L is.

(For the corresponding definitions for the associators, unitors and braidings, see [Shulman(2008)].)

2.5. Monoidal closed structures on Grothendieck constructions. A natural question is whether
monoidal closure of π1 : ΣCL → C is related to monoidal closure of (the fibre categories of) L, and how. We
dedicate the rest of this paper primarily to that question.

The closest existing result in this direction that we are aware of is the following result.

Lemma 4 ([Shulman(2008), Proposition 13.25]). Suppose that L is a indexed monoidal category over a
cartesian monoidal category C, such that L(f) : L(C ′)→ (C) has a right adjoint L∗(f) for any f : C → C ′

in C, satisfying the right Beck-Chevalley condition. Then,

• the functors (−)⊗ΣCL (C2, L2) : L(C1)→ L(C1 ×C2) have right adjoints if and only if the functors
(−)⊗L(C) L : L(C)→ L(C) have a right adjoint;

• the functors (C1, L1)⊗ΣCL (−) : L(C2)→ L(C1 ×C2) have right adjoints if and only if the functors
L⊗L(C) (−) : L(C)→ L(C) have a right adjoint.

As observed in [Shulman(2008), Remark 13.12], this result does not imply monoidal closure of ΣCL.
Interestingly, many naturally occurring monoidal closed structures on total categories ΣCL of fibrations
are not fibred, and sufficient conditions for their construction are involved. In particular, the sufficient
conditions we present in this paper will involve a technical condition on the monoidal structure that we call
Σ, C-cotractability.

This condition is, in particular, implied by indexed monoidal closure of L, but is far more general. For
the particular case of fibred monoidal closed structures, we can easily prove a variation on Shulman’s result.

Lemma 5 (Fibred monoidal closure). Suppose that L is a indexed monoidal category over a cartesian
monoidal category C.

• Assume that L(π2) : L(C ′) → (C × C ′) has a right adjoint4 L∗(π2) for any product projection
π2 : C ×C ′ → C ′ in C, satisfying the right Beck-Chevalley condition in the sense that the canonical

4In terms of type theory, we can think of such a right adjoint as a kind of dependent function type ΠC .

7

map L(g)◦L∗(π2)→ L∗(π2)◦L(id× g) is an isomorphism. Then, ΣCL is fibred monoidal left-closed
(resp., right-closed) if C is cartesian closed and L is indexed monoidal left-closed (resp., right-closed):

(C,L) ⊸ΣCL (C ′, L′) = (C ⇒C C ′,L∗(π2)(L(π1)(L) ⊸L(C×(C⇒CC′)) L(ev)(L
′)))

where π1 and π2 are the first and second product projection and ev : C ×C (C ⇒C C ′) → C ′ is the
co-unit of the exponential adjunction in C, and

• Assume that L(⟨idC , idC⟩) : L(C × C) → (C) has a right adjoint5L∗(⟨idC , idC⟩) for any object
C in C, satisfying the right Beck-Chevalley condition in the sense that the canonical map6 L(f) ◦
L∗(⟨id, id⟩)→ L∗(f

∗⟨id, id⟩) ◦ L(⟨id, id⟩∗f) is an isomorphism (for any f : C ′ → C ×C). Then, C is
cartesian closed and L is indexed monoidal left-closed (resp., right-closed) if ΣCL is fibred monoidal
left-closed (resp., right-closed):

L ⊸L(C) L
′ = L(Λ(idC×C))(π2((C,L) ⊸ΣCL (C ×C C,L∗(⟨idC , idC⟩)(L

′′))))),

where Λ(idC×C) : C → C ⇒C (C×CC) corresponds to idC×C : C×C → C×C under the exponential
adjunction in C.

In case L(⟨id, id⟩) and L(π2) both have right adjoints satisfying the right Beck-Chevalley condition, we have
an equivalence between indexed monoidal left-closed (resp. right-closed) structures on L and fibred monoidal
left-closed (resp. right-closed) structures on ΣCL → C.

Proof. Suppose that C is cartesian closed and that L is indexed monoidal left-closed. Then, we have the
following natural isomorphisms

5As far as we are aware, right adjoints to L(⟨id, id⟩) are not so commonly considered in type theory. More popular are left
adjoints L!(⟨id, id⟩), which correspond to identity types. In fact, we can define this right adjoint in terms of the left adjoints

to change of base and a biclosed monoidal structure. That is, a common type theoretic interpretation of L∗(⟨idC , idC⟩)(L) is
a type depending on two copies of C that is equal to L(π1)(L) (or equivalently L(π2)(L)) if both copies of C are equal (i.e.,
above the diagonal) and equal to the terminal type 1 otherwise. Indeed, then we have the following natural isomorphisms:

L(C)(L(⟨id, id⟩)(L), L′) ∼= { monoidal structure }

L(C)(I ⊗ L(⟨id, id⟩)(L), L′) ∼= { monoidal right-closure }

L(C)(I,L(⟨id, id⟩)(L) ⊸r L′) ∼= { pseudofunctoriality L }

L(C)(I,L(⟨id, id⟩)(L) ⊸r L(id)(L′)) ∼= { Cartesian monoidal C }

L(C)(I,L(⟨id, id⟩)(L) ⊸r L(π2 ◦ ⟨id, id⟩)(L′)) ∼= { pseudofunctor L }

L(C)(I,L(⟨id, id⟩)(L) ⊸r L(⟨id, id⟩)(L(π2)(L
′))) ∼= { ⊸

r
indexed }

L(C)(I,L(⟨id, id⟩)(L ⊸
r L(π2)(L

′))) ∼= { L!(⟨id, id⟩) ⊣ L(⟨id, id⟩) }

L(C)(L!(⟨id, id⟩)(I), L ⊸
r L(π2)(L

′)) ∼= { monoidal right-closure }

L(C)(L!(⟨id, id⟩)(I)⊗ L,L(π2)(L
′)) ∼= { monoidal left-closure }

L(C)(L,L!(⟨id, id⟩)(I) ⊸
l L(π2)(L

′))

6Here, we use the following notational convention for pullback squares:

A B

C D

g∗f

f∗g g

f

8

ΣCL((C1, L1)⊗ (C2, L2), (C3, L3)) =

Σf∈C(C1×C2,C3)L(C1 × C2)(L(π1)(L1)⊗ L(π2)(L2),L(f)(L3)) ∼= { monoidal left-closure of L }

Σf∈C(C1×C2,C3)L(C1 × C2)(L(π2)(L2),L(π1)(L1) ⊸ L(f)(L3)) ∼= { L(π2) ⊣ L∗(π2) }

Σf∈C(C1×C2,C3)L(C2)(L2,L∗(π2)(L(π1)(L1) ⊸ L(f)(L3))) = { cartesian closure of C }

Σg∈C(C2,C1⇒C3)L(C2)(L2,L∗(π2)(L(π1)(L1) ⊸ L(ev ◦ (C1 × g))(L3))) = { cartesian monoidal structure C }

Σg∈C(C2,C1⇒C3)L(C2)(L2,L∗(π2)(L(π1 ◦ (C1 × g))(L1) ⊸ L(ev ◦ (C1 × g))(L3))) ∼= { pseudofunctoriality of L }

Σg∈C(C2,C1⇒C3)L(C2)(L2,L∗(π2)(L(C1 × g)(L(π1))(L1) ⊸ L(C1 × g)(L(ev)(L3)))) ∼= { ⊸ indexed }

Σg∈C(C2,C1⇒C3)L(C2)(L2,L∗(π2)(L(C1 × g)(L(π1)(L1) ⊸ L(ev)(L3)))) ∼= { Beck-Chevalley }

Σg∈C(C2,C1⇒C3)L(C2)(L2,L(g)(L∗(π2)(L(π1)(L1) ⊸ L(ev)(L3)))) =

ΣCL((C2, L2), (C1 ⇒ C3,L∗(π2)(L(π1)(L1) ⊸ L(ev)(L3)))) =

ΣCL((C2, L2), (C1, L1) ⊸ (C3, L3)).

So, our formula defines a left-exponential for ΣCL.
Conversely, suppose that ΣCL → C is fibred monoidal left-closed. Observe that by definition of ΣCL, for

any c : C → C ′, we have (∗):

L(C)(L,L(c′)(L′)) ∼= {(c, l) ∈ (ΣCL)((C,L), (C
′, L′)) | c = c′}.

Therefore, we have the following string of isomorphisms (natural in L,L′, L′′):

L(C)(L⊗ L′, L′′) = { Lemma 3 }

L(C)(L(⟨id, id⟩)(π2((C,L)⊗ (C,L′′))), L′′) = { L(⟨id, id⟩) ⊣ L∗(⟨id, id⟩) }

L(C × C)(π2((C,L)⊗ (C,L′′)),L∗(⟨id, id⟩)L
′′) ∼= { L pseudofunctor }

L(C × C)(π2((C,L)⊗ (C,L′′)),L(idC×C)(L∗(⟨id, id⟩)L
′′)) ∼= { (∗) }

{(c, l) ∈ (ΣCL)((C × C, π2((C,L)⊗ (C,L′′))), (C × C,L∗(⟨id, id⟩)L
′′)) | c = idC×C} = { ΣCL → C fibred monoidal }

{(c, l) ∈ (ΣCL)((C,L)⊗ (C,L′), (C × C,L∗(⟨id, id⟩)L
′′)) | c = idC×C} ∼= { ΣCL → C fibred monoidal left-closed }

{(c′, l′) ∈ (ΣCL)((C,L
′), (C,L) ⊸ (C × C,L∗(⟨id, id⟩L

′′)) | c′ = Λ(idC×C)} ∼= { (*) }

L(C)(L′, L(Λ(idC×C))(π2((C,L) ⊸ (C × C,L∗(⟨id, id⟩L
′′)))).

We get naturality in C (hence indexedness of ⊸) from the Beck-Chevalley condition.
Finally, our formulas are easily seen to be pseudoinverse to each other, hence define an equivalence between

indexed monoidal closed and fibred monoidal closed structures. □

Next, we turn to the more general case of closed structures on ΣCL that might not be fibred.

3. Σ-(co)tractable monoidal structures

3.1. Σ-(co)tractability. Next, we want to give more general sufficient conditions for fibred monoidal struc-
tures on ΣCL to be closed. To do so, we restrict our attention to a particularly well-behaved sort of monoidal
structure on L, which we call Σ-tractable. Essentially, they are monoidal structures for which we can de-
compose morphisms A → B ⊗ C into a component that does not involve C and a residual morphism into
C.

Definition 11 (Σ, C-tractable monoidal structure). Given a category C with a terminal object, we call a
monoidal category (L, I,⊗, a, l, r) Σ, C-tractable if we have

• a functor (−) ⊸ T (−) : Lop × L → C;
• a functor d

c : 1 ↓ ((−) ⊸ T (−)) → L, from the comma category of 1 : 1 → C and (−) ⊸ T (−) :
Lop × L → C;

• a natural isomorphism between functors Lop × L× L → Set:

L(A,B ⊗ C) ∼= Σf ∈ C(1, A ⊸ TB).L(dc(A,B, f), C)

Dually, we say that (L, I,⊗, a, l, r) is Σ, C-cotractable if (Lop, I,⊗op, a−1, l−1, r−1) is Σ, C-tractable.

Most of the time, Σ, C-tractable monoidal categories L arise from Σ-tractable monoidal categories in the
following sense.

9

Definition 12 (Σ-tractable monoidal structure). We call a monoidal category (L, I,⊗, a, l, r) Σ-tractable if
we have

• a functor T : L → L;
• a functor d

c : L ↓ T → L, from the comma category L ↓ T of the functors idL : L → L and
T : L → L;

• a natural isomorphism

L(A,B ⊗ C) ∼= Σf ∈ L(A, TB).L(dc(A,B, f), C)

between functors
Lop × L× L → Set.

Dually, we say that (L, I,⊗, a, l, r) is Σ-cotractable if (Lop, I,⊗op, a−1, l−1, r−1) is Σ-tractable.

Lemma 6 (Σ-tractable, C-enriched ⇒ Σ, C-tractable). Suppose that

• L is a Σ-tractable monoidal category;
• L(−,−) : Lop × L → Set factors over C(1,−) : C → Set for some category C with a terminal object

1 (for example because L is enriched over C).

Then, L is Σ, C-tractable.

Proof. Write (−) ⊸ (−) for the functor Lop × L → C, such that C(1, A ⊸ B) ∼= L(A,B). Then, using
T : L → L and (−) ⊸ (−), we have a composite functor (−) ⊸ T (−) : Lop ×L → C. Observe that we have
an equivalence of comma categories 1 ↓ ((−) ⊸ T (−)) ≃ L ↓ T to get our desired d

c. We get the desired
natural isomorphism by definition of (−) ⊸ (−). □

Corollary 2. Any Σ-tractable monoidal category L is, in particular, Σ,Set-tractable.

We will be most interested in such Σ-tractable monoidal structures as they give us the vast majority of
our examples of Σ, C-tractable monoidal structures.

Given a Σ-tractable monoidal structure, observe that we have a natural transformation L(A,B ⊗ C) →
L(A, TB), hence, by the Yoneda lemma, a natural transformation B ⊗ C → TB.

Lemma 7. In case L has a terminal object 1 and a Σ-tractable monoidal structure, then T ∼= (−)⊗ 1.

Proof. Take C = 1 in the definition of Σ-tractable monoidal structure:

L(A,B ⊗ 1) ∼= Σf ∈ L(A, TB).L(dc(A,B, f), 1) ∼= Σf ∈ L(A, TB).1 ∼= L(A, TB).

Then use that the Yoneda embedding is fully faithful. □

The basic example of Σ-(co)tractable monoidal structures are given by products and coproducts.

Example 11 (Products and coproducts). A cartesian (resp., cocartesian) monoidal structure on L is always
Σ-tractable (resp., Σ-cotractable) with T = idL and d

c(A,B, f) = A.

In Section 3.2, we study examples of categories for which the coproducts are Σ-tractable or the products
are Σ-cotractable, which is not always guaranteed.

Example 12 (Monoidal closure). Suppose that L has a left-closed monoidal structure. Then, L is Σ, C-
cotractable for any category C with a terminal object:

• we take T (−) ⊸ (−) : Lop × L → C to be the constantly 1 functor ∆1;
• we take d

c = (π1 ⊸ π2) : 1 ↓ ∆1
∼= (Lop × L)→ L to be the functor (B,A, id : 1→ 1) 7→ B ⊸ A);

• we have the natural isomorphism

L(B ⊗ C,A) ∼= L(C,B ⊸ A) ∼= Σf ∈ C(1, 1).L(C, (π1 ⊸ π2)(B,A, f))

because B ⊸ (−) is right adjoint to B ⊗ (−).

In case L further has an initial object 0, we can define T : L → L to be the constantly 0 functor ∆0, to
obtain the functor T (−) ⊸ (−) = ∆1. We see that L is Σ-cotractable in that case.

Concrete examples of such L are given by any cartesian closed category such as Set, Pos, or Cat. Another
large class of examples of such L arises from Eilenberg-Moore categories S-Alg(C) for a commutative monad S
on a symmetric monoidal closed category C with equalizers and coequalizers. We believe that [Keigher(1978)]

10

is the original reference for the induced symmetric monoidal structure on S-Alg(C) and [Kock(1971)] is the
original reference for the construction of the closed structure; a concise account is given in [Vákár(2017),
Theorem 2.3.3]. Other typical sources of monoidal closed categories (that are therefore Σ-tractable monoidal
structures) are given by categories V-CAT(Cop,V) of V-enriched presheaves on C, equipped with the Day
convolution [Day(1970)].

Example 13 (Product categories). Observe that any product
d

i∈I Vi of categories Vi with Σ-tractable
(resp., Σ-cotractable) monoidal structures has a Σ-tractable (resp., Σ-cotractable) monoidal structure. Sim-
ilarly, if C has products, then any product

d
i∈I Vi of categories Vi with Σ, C-tractable (resp., Σ, C-cotractable)

monoidal structures has a Σ, C-tractable (resp., Σ, C-cotractable) monoidal structure.

3.2. Σ-tractable coproducts and Σ-cotractable products. Recall that coproducts B ⊔C in a category

L (like all colimits and left adjoints) are defined via a mapping-out property: morphisms B ⊔C
a
−→ A out of

the coproduct are easy to analyse. Such a always correspond precisely to pairs of B
aB−−→ A and C

aC−−→ A.
Put differently, we have a natural isomorphism

L(B ⊔ C,A) ∼= L(B,A)× L(C,A).

We can convert between both representations using coprojections and copairing. Indeed, that is precisely
the universal property of coproducts. In particular, coproducts are always Σ-cotractable.

Problematically, however, we might not have any tools for analysing morphisms A → B ⊔ C into a
coproduct. To be able to say anything about such morphisms, we need to impose extra axioms. The same
goes for analysing morphisms B × C → A out of a product.

Interestingly, large classes of coproducts (resp., products) we encounter in practice are Σ-tractable (resp.,
Σ-cotractable). We give some important classes of examples.

Example 14 (Biproducts). Suppose that L has binary products and binary coproducts that coincide (for
example, because L has biproducts/has finite products and is CMon-enriched). Then, these are Σ-tractable
coproducts, and, by duality, Σ-cotractable products, by Example 11.

Concrete examples are the categories CMon of commutative monoids and homomorphisms and Vect of
vector spaces and linear functions.

Example 15 (Cartesian closure). By Example 12, products are Σ, C-cotractable in a cartesian closed cat-
egory L (for any C with a terminal object). Further, they are Σ-cotractable if L additionally has an initial
object.

Example 16 (Extensive category). Recall that a (finitely) extensive category L is a category with finite
coproducts such that

(−) ⊔ (−) : L/B × L/C → L/(B ⊔ C)

defines an equivalence. (That is, if the codomain fibration is extensive.) As a consequence, the equivalence
inverse is given by the pullbacks g 7→ (ι∗1g, ι

∗
2g).

Assuming that L is extensive, let us write ∂g ↣ A ↢ ∂cg for the coproduct diagram that is obtained as
the pullback along g : A→ B ⊔ C of the coproduct diagram B ↣ B ⊔ C ↢ C.

Then, if L further has a terminal object, its coproducts are Σ-tractable:

• we have coproducts by assumption;
• we take T = (−) ⊔ 1 : L → L to be the functor that takes the coproduct with the terminal object;
• we take d

c : L ↓ (−)⊔ 1→ L to be the functor that takes (A,B, f : A→ B ⊔ 1) to the pullback ∂cf ;
• we have the natural isomorphism

L(A,B ⊔ C) ∼= Σf ∈ L(A,B ⊔ 1).L(∂cf, C)

g 7→ ((B⊔!C) ◦ g, ι
∗
2g)

[ι1 ◦ (ι
∗
1f), ι2 ◦ f

′] ←[(f, f ′).

11

because in the following diagram all commutative rectangles are pullbacks and all horizontal and
diagonal arrows are coproduct inclusions

∂g ⊔ ∂cg

∂g A ∂cg

B B ⊔ C C

B B ⊔ 1 1

ι∗1g

ι1

g=[ι∗1g,ι
∗
2g] ι∗2g

ι2

ι1

B⊔!C

ι2

!C

ι1
ι2

Some concrete examples are the categories Set of sets and functions and Top of topological spaces and
continuous functions.

Example 17 (Free coproduct completions). Consider the free coproduct completion Fam(C) of C. Recall
that Fam(C) has objects that are a pair of a set I and an I-indexed family [Ci | i ∈ I] of C-objects Ci. The
homset Fam(C)([Ci | i ∈ I], [C ′

i′ | i
′ ∈ I ′]) is Πi∈IΣi′∈I′C(Ci, C

′
i′).

In case C has a terminal object, then Fam(C) is an extensive category with a terminal object, so by
Example 16, it is has Σ-tractable coproducts. However, even if C does not have a terminal object, Fam(C)
always has Σ,Set-tractable coproducts. Indeed, while we cannot define the monad (−) ⊔ 1 on Fam(C),
unless C has a terminal object, we can always define the functor

(−) ⊸ (−) ⊔ 1 : Fam(C)op × Fam(C)→ Set

by
([C ′

i′ | i
′ ∈ I ′], [Ci | i ∈ I]) 7→ Πi′∈I′Σi∈I⊔{⊥}C(Ci, C

′
i′) if i ̸= ⊥ else {⊥}.

Further, we can define

d
c([C ′

i′ | i
′ ∈ I ′], [Ci | i ∈ I], f) = [C ′

i′ | i
′ ∈ I ′, f(i′) = ⟨⊥,⊥⟩].

Then,

Fam(C)([C ′′
i′′ | i

′′ ∈ I ′′], [C ′
i′ | i

′ ∈ I ′] ⊔ [Ci | i ∈ I]) ∼=

Fam(C)([C ′′
i′′ | i

′′ ∈ I ′′], [
C ′

k if k ∈ I ′

Ck if k ∈ I
| k ∈ I ′ ⊔ I]) =

Πi′′∈I′′Σk∈I′⊔IC

(

C ′′
i′′ ,

C ′
k if k ∈ I ′

Ck if k ∈ I

)

∼=

Σf∈Πi′′∈I′′Σk∈I′⊔{⊥}C(C
′′
i′′

,C′
i′
) if k ̸= ⊥ else {⊥}Πi′′∈I′′,f(i′′)=⟨⊥,⊥⟩Σi∈IC(C

′′
i′′ , Ci) =

Σf ∈ Set(1, [C ′′
i′′ | i

′′ ∈ I ′′] ⊸ [C ′
i′ | i

′ ∈ I ′] ⊔ 1).Fam(C)(dc([C ′′
i′′ | i

′′ ∈ I ′′], [C ′
i′ | i

′ ∈ I ′], f), [Ci | i ∈ I]).

By duality, products are always Σ,Set-cotractable in a free product completion Fam(Cop)op of C.

Example 18 (Product categories). Specialising Example 13, observe that any product of categories with
Σ-tractable coproducts has Σ-tractable coproducts. This gives us examples of Σ-tractable coproducts that
do not arise from our Examples 14, 15, and 16, like Setop × Set, which has Σ-tractable coproducts, but
does not have biproducts (as Set does not have biproducts), is not (co)-cartesian (co)-closed (as Setop is
not cartesian closed), and is not extensive (as coproducts in Setop are not disjoint). By a similar argument
(as a self-dual category) Setop × Set has Σ-cotractable products.

Example 19 (Partial functions). Consider the category pSet of sets and partial functions. The coproduct
S ⊔S′ is the usual disjoint union of sets while the product S×p S

′ is given by S×S′⊔S ⊔S′, where we write
×p for the product in pSet and × for the usual product in Set. Obviously, pSet does not have biproducts.
Clearly, pSet is not distributive hence not extensive:

X ×p (Y ⊔ Z) ∼= X × (Y ⊔ Z) ⊔X ⊔ (Y ⊔ Z)
∼= X × Y ⊔X × Z ⊔X ⊔ Y ⊔ Z

12

̸∼= X × Y ⊔X × Z ⊔X ⊔ Y ⊔ Z ⊔X
∼= X × Y ⊔X ⊔ Y ⊔X × Z ⊔X ⊔ Z ∼= X ×p Y ⊔X ×p Z.

Moreover, pSet with the cocartesian monoidal structure is not monoidal coclosed as X ⊔ (−) does not
preserve products:

X ⊔ (Y ×p Z) ∼= X ⊔ Y × Z ⊔ Y ⊔ Z

̸∼= X ⊔ Y × Z ⊔ Y ⊔ Z ⊔X ×X ⊔X × Z ⊔ Y ×X ⊔X
∼= X ×X ⊔X × Z ⊔ Y ×X ⊔ Y × Z ⊔X ⊔ Y ⊔X ⊔ Z

∼= (X ⊔ Y)× (X ⊔ Z) ⊔X ⊔ Y ⊔X ⊔ Z

∼= (X ⊔ Y)×p (X ⊔ Z)

However, pSet does have Σ-tractable coproducts, for T = id and d
c(A,B, f) = A \ f−1(B). Indeed,

pSet(A,B ⊔ C) ∼= Σf ∈ pSet(A,B).pSet(A \ f−1(B), C).

This shows that the cocartesian structure on pSet is a Σ-tractable coproduct that does not arise from our
Examples 14, 15, and 16.

Example 20 (Σ-tractable posets). Let X be a poset with Σ-tractable coproducts. Observe that we have
a natural transformation X(x, y ∨ z) → X(x, Ty). Therefore, by the full and faithfulness of the Yoneda
embedding, we get a morphism y ∨ z ≤ Ty and, in particular, a morphism z ≤ Ty. We see that Ty is the
terminal object ⊤ of X. Therefore, the condition for Σ-tractability is that

X(x, y ∨ z) ∼= Σf ∈ X(x, Ty).X(dc(x, y, f), z) ∼= X(x, Ty)×X(dc(x, y), z)

∼= X(x,⊤)×X(dc(x, y), z) ∼= 1×X(dc(x, y), z) ∼= X(dc(x, y), z).

That is, X having finite coproducts that are Σ-tractable is equivalent to Xop being cartesian closed with an
initial object (Example 15).

As an aside, note that posets with biproducts are trivial (a ∧ b ≤ a, b ≤ a ∨ b implies that a ∧ b = a ∨ b
iff a = b) and extensive posets are trivial (extensive posets are distributive lattices, by definition, and
disjointness of coproducts implies that a ∧ b = ⊥ if a ̸= b; in particular if a < b, a = a ∧ b = ⊥).

The following is a counter example.

Counter example 1 (Non-distributive lattices). From Example 20, we see that for any non-distributive
lattice X (the typical examples being M3 and N5), X

op has coproducts that are not Σ-tractable. To make
this counter example very concrete, consider the lattice M3:

⊤

a b c

⊥
Then, X ∼= Xop is not distributive as a ∧ (b ∨ c) = a ∧ ⊤ = a while (a ∧ b) ∨ (a ∧ c) = ⊥ ∨ ⊥ = ⊥. In
particular, X ∼= Xop is not cartesian closed (not a Heyting algebra), as a∧ (−) does not preserve coproducts.
Therefore, the coproducts in X are not all Σ-tractable.

4. A Dialectica-like formula for the monoidal closure of Grothendieck constructions,
based on Σ-cotractability

Now we turn to consider our novel sufficient conditions for monoidal closure of the Grothendieck construc-
tion. Our formula for the closed structure is a generalization of Gödel’s Dialectica construction [Gödel(1958)],
and it requires certain dependent types (Σ- and Π-types) to phrase. While the intuitions behind these de-
pendent types are quite natural from a type-theoretic or proof-theoretic point of view, they are a bit verbose
to phrase in terms of category theory. We formulate these precise conditions now.

4.1. Sufficient conditions for the monoidal closure of ΣCL.
13

Amodel of (cartesian) dependent type theory C′ : Cop → CAT. Let C′ : Cop → CAT be a model of (cartesian)
dependent type theory with Π-types and strong Σ-types. That is, C′ is an indexed category satisfying full
and faithful democratic comprehension in the sense of [Vákár(2017), Definition 2.1.4]) or, equivalently,
a full, cloven, democratic comprehension category (with unit) in the sense of [Jacobs(1999), Definitions
10.4.2, 10.4.7]) with Π-types, 1-types, and strong Σ-types ([Vákár(2017), Theorem 2.1.7] or, equivalently,
([Jacobs(1999), Definitions 10.5.1, 10.5.2(i)]). We spell out all the details here to be self-contained.

Definition 13 (Model of dependent type theory with Π-types and strong Σ-types). We consider the following
data when we speak of a model of dependent type theory:

• an indexed category C′ : Cop → CAT over a category C with a terminal object 1;
• indexed terminal objects in the sense of a right adjoint 1 : C → ΣCC

′ to the projection π1 : ΣCC
′ → C;

• a further right adjoint (.) : ΣCC
′ → C to the indexed terminal object functor, such that the induced

comprehension functor p : ΣCC
′ → C→; pW,w

def
= π1(ϵ(W,w)) is full and faithful and restricts to an

equivalence C′(1) ≃ C, where we write ϵ for the co-unit of the adjunction 1 ⊣ (−.−); given W ∈ ob C
and w ∈ ob C′(W), we think of W.w ∈ ob C as a Σ-type and pW,w ∈ C(W.w,W) as a projection that
sends dependent pairs to their first component;

• Σ-types in the sense of left adjoint functors Σw : C′(W.w)→ C′(W) to C′(pW,w) that satisfy the left
Beck-Chevalley condition, i.e., the canonical natural transformations ΣC′(f)(w)◦C

′(qf,w)→ C
′(f)◦Σw

are an isomorphism, where qf,w is the unique morphism making the following square a pullback

W ′.C′(f)(w) W.w

W ′ W ;

qf,w

pW ′,C′(f)(w) pW,w

f

in particular, C′ has indexed binary products given by w×w′ = ΣwC
′(pW,w)(w

′) if w,w′ ∈ ob C′(W);
• Π-types in the sense of Σ-types in C′op; that is, right adjoint functors Πw : C′(W.w) → C′(W) to
C′(pW,w) that satisfy the right Beck-Chevalley condition, i.e., the canonical natural transformations
C′(f) ◦Πw → ΠC′(f)(w) ◦ C

′(qf,w) are an isomorphism;
in particular, C′ has indexed exponentials given by w ⇒ w′ = ΠwC

′(pW,w)(w
′) if w,w′ ∈ ob C′(W);

in fact, for our purposes, the weaker assumption of non-indexed Π-types in the sense of right adjoint
functors Πw : C′(1.w)→ C′(1) to C′(p1,w) are enough (i.e., the case of W = 1);

• a strong (or dependent) elimination rule for the Σ-types in the sense that the canonical maps pW,w ◦
pW.w,w′ → pW,Σww′ are isomorphisms;

Example 21 (Families of sets). For example, C could be Set and C′(S)
def
= CAT(S,Set), in which case

ΣCC
′ = Fam(Set), the category of families of sets (the free coproduct completion of Set). Then, the

comprehension (−.−) : Fam(Set) → Set is given by the disjoint union. The Σ-types are given by disjoint
unions and Π-types are given by products. See, for example, [Hofmann and Hofmann(1997)] for more details.

Example 22 (Continuous families of ω-cpos). Another typical example is to take C to be the category ωCPO
of ω-cocomplete partial orders and ω-cocontinuous functors and to take C′(X) = ωContFunc(X,ωCPOep)
to be the category of ω-cocontinuous functors from X into the cateogry of ω-cpos and embedding-projection
pairs and lax natural transformations. For more details on this model of ω-continuous families of ω-cpos,
see, for example, [Palmgren and Stoltenberg-Hansen(1990), Ahman et al.(2016)].

Example 23 (Locally cartesian closed categories). Another large source of examples is given by the codomain
fibrations cod : C→ → C (with some choice of pullbacks to obtain a cleavage) of locally cartesian closed cate-
gories [Seely(1984), Clairambault and Dybjer(2014)]. In that case, we define C′(C) = C/C. Comprehension
(−.−) : C→ → C is given by the domain functor dom : C→ → C. Σ-types are then given by composition and
Π-types are given by the right adjoints to pullback functors.

Example 24 (Product self-indexing). Given a cartesian closed category C, we can form the locally indexed
category self(C) : Cop → CAT (see Example 7). Then, self(C) is a model of dependent type theory. Indeed,
the comprehension (. − .) : ΣCself(C) → C is defined as (C,C ′) 7→ C × C ′ on objects and (f : C1 →
C2, g : C1 × C ′

1 → C ′
2) 7→ (⟨f ◦ π1, g⟩ : C1 × C ′

1 → C2 × C ′
2) on morphisms. Strong Σ-types are defined as

ΣCC
′ = C × C and Π-types are defined as ΠCC

′ = C ⇒ C ′.
14

Example 25 (Indexed category of indexed categories). This example categorifies the families construc-
tion of Example 21 and replaces Set with Cat and CAT with 2CAT. We have a model of dependent
type theory: C = Cat and C′(C) = 2CAT(Cop,Cat)colax is the category of (strict) C-indexed cate-
gories and colax natural transformations. This indexed category satisfies the comprehension axiom with
(−.−) : ΣCat2CAT(Cop,Cat)colax → Cat given by the Grothendieck construction [North(2019)]. It has
(strong) Σ-types ΣCL given by the colax colimit, which exists as a functor ΣD : 2CAT((C.D)op,Cat)colax →
2CAT(Cop,Cat)colax and is precisely the Grothendieck construction (as should be clear from Proposition
1; see [Gray(1974)] for the original reference and details – note that Gray calls these colax (co)limits quasi-
(co)limits). It also has non-parameterised Π-types ΠCL given by the colax limit, which exists as a functor
ΠD : 2CAT(Dop,Cat)colax ∼= 2CAT((1.D)op,Cat)colax → 2CAT(1op,Cat)colax ∼= Cat and is given by
the category of sections of the Grothendieck construction (i.e., functors F : C → ΣCL such that π1F = idC
and natural transformations α : F → G such that π1α = ididC

) [Gray(1974)].

Example 26 (Indexed groupoids). [Hofmann and Streicher(1998)] restricts Example 25 to indexed groupoids
indexed by another groupoid. That gives us another model of dependent type theory and it is the starting
point for homotopy type theory, where people consider variants of this model based on ∞-groupoids rather
than 1-groupoids [Kapulkin and Lumsdaine(2021)].

Needless to say, many other models exist, such as ones based on polynomials [Moss and von Glehn(2018)].
A Σ-cotractable indexed monoidal category L : Cop → CAT with Π-types. Further, assume that we have a
model L of linear dependent type theory [Vákár(2017), Chapter 2] over the same base category C, with a
Σ-tractable monoidal structure, in the following sense:

• an indexed category L : Cop → CAT;
• L has Π-types in the sense of right adjoints Πw : L(W.w)→ L(W) to L(pW,w) that satisfy the right

Beck-Chevalley condition, i.e., the canonical natural transformations L(f)◦Πw → ΠC′(f)(w)◦L(qf,w)
are an isomorphism; in fact, for our purposes, the weaker assumption of non-dependent Π-types in the
sense of right adjoint functors to L(π1) for (non-dependent) product projections π1 : W ×W ′ →W
suffice;

• L has an indexed Σ, C′-cotractable monoidal structure7 in the sense of an indexed monoidal structure
on L such that on each fibre L(C) the monoidal structure is Σ, C′(C)-cotractable and T (−) ⊸ (−)
and d

c are C-indexed functors.

For example, the fibre categories of L could have Σ-cotractable monoidal structure because they are monoidal
closed with an initial object, because they have biproducts, or because they are co-extensive with an initial
object).

Example 27 (L = C′). Take L = C′ : Cop → CAT to be any model of dependent type theory with Π-types
and strong Σ-types. Then, L is an indexed cartesian closed category and C has a terminal object. By
Example 12, products in L are Σ, C′-cotractable. Observe that ΣCL = ΣCC

′.

Example 28 (L = C′op, extensive). Take C′ : Cop → CAT to be any model of dependent type theory with
Π-types and strong Σ-types. Further, assume that C′ has indexed coproducts and that the categories C′(C)
are extensive. Then, by Example 16, L = C′op has indexed Σ-cotractable products. Further, it has Π-types,
given by the Σ-types of C′. Observe that ΣCL = ΣCC

′op.

Example 29 (Coproducts/biproducts). Let C′ : Cop → CAT be a model of dependent type theory with Π-
types and strong Σ-types. Let L : Cop → CAT be any indexed category with finite indexed coproducts, such
that the hom-functor of L factors over C′. (For example, we can take L = C′op.) Seeing that coproducts always
form a Σ-cotractable monoidal structure, it follows that they are a Σ, C′-cotractable monoidal structure.

7Observe that this last condition is, in particular, implied by the following pair of conditions that often holds in practice:

– L is enriched over C′, or more weakly, we have L− ⊸-types in C′ in the sense of that we have an indexed functor
(−) ⊸ (−) : Lop × L → C′ and a natural isomorphism

L(W)(A,B) ∼= C′(W)(1, A ⊸ B);

– L has an indexed Σ-cotractable monoidal structure in the sense of an indexed monoidal structure on L such that on each
fibre L(C) the monoidal structure is Σ-cotractable and T and d

c are C-indexed functors.

15

Observe that the case where L has indexed biproducts is of particular interest as, in that case, L has
Σ, C′-cotractable products.

Example 30 (Locally indexed categories). This Example builds on the choice C′ = self(C) of Example
24. Suppose that D is a C-enriched category. Then, it, in particular, defines a locally C-indexed category
L(C)(D,D′) = C(C,D(D,D′)). If D is L is C-powered in the sense that C(C,D(D,D′)) ∼= D(D,C ⇒ D′),
then L has Π-types: ΠCD = C ⇒ D. If D has a Σ-cotractable monoidal structure, then it meets our
conditions.

Example 31 (Dual product self-indexed). This Example builds on the choice C′ = self(C) for a cartesian
closed category C of Example 24, and it specialises Example 29. Observe that self(C)op is a (locally) C-
indexed category with indexed coproducts (products in C). Further, it has Π-types given by ΠCC

′ = C×C ′

products in C. Seeing that coproducts are always Σ-tractable and seeing that self(C)op is self(C) enriched, it
follows that self(C)op has a Σ, self(C)-cotractable monoidal structure.

Example 32 (Families). Building on the choice of C′ of Example 21, for any category D with a Σ,Set-
cotractable monoidal structure (for example, D monoidal closed, a free product completion, co-extensive
with an initial object, or a category with biproducts) and small products, L : Setop → CAT with L(S) =
CAT(S,D) meets our conditions. The Π-types are given by products in D (see [Vákár(2015)]).

For example, we may take D to be a product-complete monoidal closed category such as a category of
algebras for a commutative algebraic theory on Set. Observe that ΣCL = Fam(D).

Example 33 (ω-Continuous families). This Example builds on the choice of C′ of Example 22. Given an
ωCPO-enriched Lawvere theory, we may take D to be its category of algebras in ωCPO and L(X) =
ωContFunc(X,Dep) to be the ωCPO-indexed category of ω-cocontinuous functors into the category of D-
objects and embedding-projection pairs. Then, L is an indexed monoidal closed category, hence an indexed
Σ, C′-cotractable monoidal category. Details are discussed in [Ahman et al.(2016), Section 6]. Observe that
ΣCL = ωContFam(D) is the category ω-continuous families of D-objects.

Example 34 (Lextensive locally cartesian closed categories). This example specializes Examples 23 and
28. Assume that C is a lextensive locally cartesian closed category category (for example, C an elementary
topos). Consider the codomain fibration C′(C) = C/C, which we can turn into an indexed category by
making use of the axiom of choice to choose pullbacks. Observe that C/C is also lextensive (lextensive
categories are locally lextensive [Carboni et al.(1993), Proposition 4.8]) with a terminal object hence has
Σ-tractable coproducts. Define L = C′op. Then, L has Σ-cotractable products and Π-types (Σ-types in C′).
Observe that ΣCL = ΣC(C/−)

op is a kind of generalised category of polynomials (or containers).

Example 35 (Lax comma). This Example takes C′ to be defined as in Example 25. Let D be some 2-
category with colax limits. (For example, we already obtain many interesting examples for D a 1-category
with limits.) We have a Cat-indexed category L(C) = 2CAT(Cop,D)colax. Its non-dependent Π-types are
simply given by colax limits (ordinary limits, if D is a 1-category). If D has a Σ,Cat-cotractable monoidal
structure (such as a Σ,Set-cotractable one), then L meets our conditions. Observe that ΣCL = Cat//D
is the lax comma category of D in Cat. Some important subcases of this example are worked out in more
detail in [Clementino et al.(2024)], where the structure of exponentials is presented in terms of ends.

4.2. Monoidal closure of ΣCL. We can now phrase our main theorem.

Theorem 1 (Monoidal closure of ΣCL via a Dialectica formula). Assuming the conditions of Section 4.1,
ΣCL is monoidal left-closed with

(X,x) ⊸ (Y, y)
def
= (ΠXΣY Tx ⊸ y,ΠXL(ζ)(d

cṽ))

for two morphisms ṽ and ζ that we define below. By co-duality, we obtain monoidal right-closure if Lco is
Σ, C′-cotractable instead.

Proof. By Lemma 3, (1, I) is the monoidal unit of ΣCL and (X × Y,L(π1)(x) ⊗ L(π2)(y)) is the monoidal
product of (X,x) and (Y, y) in ΣCL.

The novel part is the existence of exponentials, which we turn to next. We have (natural) bijections
(where, to aid legibility, we abuse notations a bit by leaving implicit: (1) some weakening functors L(pW,w)

16

and C′(pW,w), (2) the equivalence C
′(1) ≃ C, and (3) isomorphisms X.ΣY Z ∼= X.Y.Z where they are obvious

from the context):

ΣCL((X,x)⊗ (W,w), (Y, y)) =

= ΣCL((X ×W,L(π1)(x)⊗ L(π2)(w)), (Y, y))

= Σf∈C(X×W,Y)L(X ×W)(L(π1)(x)⊗ L(π2)(w),L(f)(y))
∼= Σf∈C(X×W,Y)Σg∈C′(X×W)(1,TL(π1)(x)⊸L(f)(y))L(X ×W)(L(π2)(w), d

cg) { ⊗ Σ, C
′
-cotractable }

∼= Σf∈C′(X×W)(1,Y)Σg∈C′(X×W)(1,TL(π1)(x)⊸L(f)(y))L(X ×W)(L(π2)(w), d
cg) { comprehension C

′ }
∼= Σ(f,g)∈Σf∈C′(X×W)(1,Y)C

′(X×W)(1,TL(π1)(x)⊸L(f)(y))L(X ×W)(L(π2)(w), d
cg) { strong Σ-types in Set }

∼= Σ(f,g)∈Σf∈C′(X×W)(1,Y)C
′(X×W)(1,TL(π1)(x)⊸L(f)(y))L(W)(w,ΠXd

cg) { Π-types in L }

= Σ(f,g)∈Σf∈C′(X×W)(1,Y)C
′(X×W)(1,Tx⊸L(f)(y))L(W)(w,ΠXd

cg) { implicit L(π1) for legibility }

= Σ(f,g)∈Σf∈C′(X×W)(1,Y)C
′(X×W)(1,Tx⊸L(f)(y))L(W)(w,ΠXd

cL((π1, f, g))(v)) { definition v }

∼= Σ(f,g)∈Σf∈C′(X×W)(1,Y)C
′(X×W)(1,Tx⊸L(f)(y))L(W)(w,ΠXL((π1, f, g))(d

cv)) { d
c
indexed functor }

= Σ(f,g)∈Σf∈C′(X×W)(1,Y)C
′(X×W)(1,Tx⊸L(f)(y))L(W)(w,ΠXL(ζ ◦ (Λ(f, g), π1))(d

cv))) { definition ζ }

∼= Σ(f,g)∈Σf∈C′(X×W)(1,Y)C
′(X×W)(1,Tx⊸L(f)(y))L(W)(w,ΠXL((Λ(f, g), π1))(L(ζ)(d

cv))) { L pseudofunctor }

∼= Σ(f,g)∈Σf∈C′(X×W)(1,Y)C
′(X×W)(1,Tx⊸L(f)(y))L(W)(w,L(Λ(f, g))(ΠXL(ζ)(d

cv))) { Beck-Chevalley for Π }

∼= Σh∈C′(X×W)(1,ΣY Tx⊸y))L(W)(w,L(Λ(h))(ΠXL(ζ)(d
cv))) { strong Σ-types in C

′ }
∼= Σh∈C′(X×W)(L(π1)(1),ΣY Tx⊸y))L(W)(w,L(Λ(h))(ΠXL(ζ)(d

cv))) { indexed 1 in C
′ }

∼= Σk∈C′(W)(1,ΠXΣY Tx⊸y))L(W)(w,L(k)(ΠXL(ζ)(d
cv))) { Π-types in C

′ }
∼= Σk∈C(W,ΠXΣY Tx⊸y)L(W)(w,L(k)(ΠXL(ζ)(d

cv))) { comprehension C
′ }

= ΣCL((W,w), (ΠXΣY Tx ⊸ y,ΠXL(ζ)(d
cv))).

Here, we have used the obvious morphisms (again leaving weakening / change of base along projections im-
plicit, for legibility):

v ∈ C′(X.Y.Tx ⊸ y)(1, Tx ⊸ y) { representing element of the comprehension }

7→ d
cv ∈ L(X.Y.Tx ⊸ y) { d

c
: 1 ↓ T (−) ⊸ (−) → L }

7→ L(ζ)(dcv) ∈ L(ΠXΣY Tx ⊸ y.X) { change of base along ζ }

7→ ΠXL(ζ)(d
cv) ∈ L(ΠXΣY Tx ⊸ y) { Π-types in L }

and

ζ = (π2, π1 ◦ ev, π2 ◦ ev) : ΠXΣY Z.X → X.Y.Z.

□

Observe that any of the Examples from Section 4.1 now give us monoidal closed Grothendieck construc-
tions. We would like to highlight just a few concrete Examples, because they show up a lot in practice.

Example 36 (Monoidal closure of Fam(−)-constructions). By Examples 12, 14, 16, 17, and 19, we have
that

• Fam(D) is monoidal left-closed (resp., right-closed) for any monoidal left-closed (resp., right-closed)
category D; in this case, the monoidal-closed structure on Fam(D) is fibred over the cartesian closed
structure on Set:

[Di | i ∈ I]⇒ [D′
i′ | i

′ ∈ I ′] =

[

l

i∈I

Di ⇒ Df(i) | f ∈ I ⇒ I ′

]

;

• Fam(D) is (non-fibred) cartesian closed for a category D with biproducts and small products (such
as D = CMon or D = CMonop):

[Di | i ∈ I]⇒ [D′
i′ | i

′ ∈ I ′] =

[

l

i∈I

Dπ1(f(i)) | f ∈ Πi∈IΣi′∈I′D(Di, D
′
i′)

]

;

17

• Fam(Dop) is (non-fibred) cartesian closed for an extensive category D with a small coproducts and
a terminal object (such as D = Set or D = Top):

[Di | i ∈ I]⇒ [D′
i′ | i

′ ∈ I ′] =

[

⊔

i∈I

d
c(π2(f(i))) | f ∈ Πi∈IΣi′∈I′D(D′

i′ , Di ⊔ 1)

]

here, dc(g) should be thought of as the complement of the domain of g; in particular, for D = Set
that is precisely what it is;

• free doubly-infinitary distributive categories Dist(C) = Fam(Fam(Cop)op) are always (non-fibred)
cartesian closed (see also [Lucatelli Nunes and Vákár(2024)]):

[⟨Cji | i ∈ Ij⟩ | j ∈ J]⇒ [⟨C ′
j′i′ | i

′ ∈ I ′j⟩ | j
′ ∈ J ′] =

[⟨C ′
j′i′ | j ∈ J, ⟨j′, g⟩ = f(j), i′ ∈ I ′j′ , g(i

′) = ⟨⊥,⊥⟩⟩ |

f ∈ Πj∈JΣj′∈J ′Πi′∈I′
j′
Σi∈Ij⊔{⊥}C(Cji, C

′
j′i′) if i ̸= ⊥ else {⊥}];

using the same formula for the exponentials, we see that finite coproducts of products of C-objects
are exponentiable in the free infinitary distributive category on C; further, [Nunes et al.(2024)] shows
that a similar formula for exponentials also exists in free lextensive categories;

• Fam(pSetop) is (non-fibred) cartesian closed:

[Di | i ∈ I]⇒ [D′
i′ | i

′ ∈ I ′] =

[

⊔

i∈I

D′
π1(f(i))

\ (π2(f(i)))
−1(Di) | f ∈ Πi∈IΣi′∈I′pSet(D′

i′ , Di)

]

;

this example is reminiscent of the variant of the Dialectica interpretation discussed by [Biering(2008)].

Example 37 (Monoidal closure of lax comma categories). We can categorify Example 36 by building on
Example 35. Theorem 1 tells us that the lax comma category Cat//D is monoidal closed for any small
complete category D with a Σ,Cat-cotractable monoidal structure (including any Σ,Set-cotractable one).
In particular, this is true for any small complete category D that is monoidal closed, has finite biproducts,
or is co-extensive with an initial object. In the last two cases, Cat//D is cartesian closed. Similarly,
Cat//pSetop is cartesian closed.

Example 38 (Predicate-free Dialectica). Building on Example 31, we have a symmetric monoidal structure
(U,X) ⊗ (V, Y) = (U × V,X × Y) on Dialpf = ΣCself(C)

op. This has a corresponding closed structure:
(U,X) ⊸ (V, Y) = (U ⇒ V × (Y ⇒ X), U × Y). This is a predicate-free version of the Dialectica in-
terpretation [Gödel(1958)]. The original Dialectica interpretation has a further fibration of predicates over
this category, which we omit as it would distract from the main point of this paper. See Section 5 and
[Hyland(2002)] for details.

Example 39 (Predicate-free Diller-Nahm). Building on Example 30, assume that D is a C-enriched category
with biproducts and C-copowers C ⊗D. Then, L(C)(D,D′) = C(C,Dop(D,D′)) defines a locally C-indexed
category with Π-types given by ΠCD = C ⊗D. It then follows that Dillpf = ΣCL is cartesian closed with
products given by (U,X)× (V, Y) = (U × V,X × Y) and exponentials given by (U ⇒ V ×D(Y,X), U ⊗ Y).
This is a predicate-free version of the Diller-Nahm interpretation, where one classically considers the case
where D is the Kleisli category for an additive monad on C. Like the Dialectica interpretation, the Diller-
Nahm variant can also be extended with a further fibration of predicates over this category. See Section 5
and [Hyland(2002)] for details.

Example 40 (Fibred closed structures). From the formula given in Theorem 1, it is immediately clear that
the monoidal left-closed structure on ΣCL will be fibred, if L is an C-indexed left-closed monoidal category
(Example 12), as we can then choose Tx ⊸ y = 1 ∈ C′(W) for all x, y ∈ L(W), resulting in the formula

(X,x) ⊸ (Y, y) ∼= (X ⇒ Y,ΠXx ⊸ L(ev)(y)),

for the left-exponential in ΣCL. The converse also holds: if the monoidal left-closed structure resulting from
Theorem 1 is fibred, then Tx ⊸ y ∼= 1 ∈ C′(W). Then, Σ, C-cotractability of ⊗ tells us that

L(W)(y ⊗ z, x) ∼= Σf ∈ C′(W)(1, Tx ⊸ y).L(W)(z, dc(x, y, f)) ∼= L(W)(z, dc(x, y, !1)).
18

We see that L(W) is monoidal left-closed with exponential y ⊸ x = d
c(x, y, !1), which is an indexed functor,

as dc and 1 are. Co-dually, we get fibred right-exponentials in ΣCL from our Theorem 1 if and only if L is
an indexed monoidal right-closed category.

These results are mostly a special case of those of Lemma 5.

Example 41 (Cartesian closure for indexed co-extensive categories). We build on Example 28. In the
special case that L is an indexed extensive category with an indexed terminal object 1, ΣCL

op is cartesian
closed and we have the following formula for exponentials:

(X,x)⇒ (Y, y) = (ΠXΣY L(π2)(y) ⊸ (L(π1)(x) ⊔ 1),ΣXL(ζ)(∂
cṽ)),

i.e. the second component is the Σ-type (sum, in L, so product in Lop) of all complements of the domains
∂c(g) of definition of the morphisms g : L(π2)(y) ⊸ L(π1)(x)⊔ 1 (which we think of as partial functions) in
the first component. This special case can be seen as a generalisation of the results of [Altenkirch et al.(2010)]
on higher-order containers.

Example 42 (Cartesian closure for indexed coproduct/biproduct categories). We build on Example 29.
In the special case that L is a C′-enriched indexed category with indexed coproducts and Π-types, ΣCL is
symmetric monoidal closed and we have the following formula for exponentials:

(X,x) ⊸ (Y, y) = (ΠXΣY L(π1)(x) ⊸ L(π2)(y),ΠXL(ev1)(y)),

where we use the obvious morphism
ev1 : ΠXΣY Z.X → Y,

that is, the morphism obtained as the composition (where we write π1 for the projection ΣY Z → Y)

ΠXΣY Z.X ∼= (ΠXΣY Z)×X
(ΠXπ1)×X
−−−−−−−→ (ΠXY)×X ∼= (X ⇒ Y)×X

ev
−→ Y.

Of particular interest are the cases that

• L = C′op: in this case, required the Π-types and coproducts always exist (as C′ has Σ-types) and
the C′-enrichment exists as C′ has Π-types so its fibres are cartesian closed; we conclude that for
any model C′ : Cop → CAT of dependent type theory with Π-types and strong Σ-types, ΣCC

′op is
symmetric monoidal closed;

• L has biproducts: in this case, the monoidal structure, if it exists is a cartesian one, giving us
a cartesian closed structure on ΣCL, assuming that the required C′-enrichment and Π-types exist;
further, observe that ΣCL

op is then also cartesian closed as long as the required Σ-types exist in L:

(X,x)⇒ (Y, y) = (ΠXΣY L(π2)(y) ⊸ L(π1)(x),ΣXL(ev1)(y))

This shows that we reproduce the results of [Moss(2018), Proposition 4.6.1] and [Lucatelli Nunes and
Vákár(2023), Section 6.4], as a special case of Theorem 1.

Finally, we can also use our result as a tool to show that a monoidal structure is not Σ-cotractable.

Counter example 2. Let D be a infinitary distributive category, i.e. a category with small coproducts
and finite products such that

⊔

: Fam(D) → D preserves finite products. Suppose further that D is
not cartesian closed. For example, D could be the category of locally connected topological spaces and
continuous functions [Lucatelli Nunes and Vákár(2024), Example 8] or the category of finite dimensional
smooth manifolds of varying dimension and smooth functions [Huot et al.(2020), Appendix A]. Then, by
[Lucatelli Nunes and Vákár(2024), Theorem 4.2], Fam(D) is not cartesian closed. As a consequence, by
Example 36, it follows that the products in D are not Σ-cotractable.

5. Related work and outlook

Dialectica and Diller-Nahm interpretations (with predicates). The earliest examples of similar techniques for
constructing exponentials on Grothendieck constructions that we are aware of arose in proof theory when
demonstrating the relative consistency of Heyting arithmetic: Gödel’s Dialectica interpretation [Gödel(1958)]
and Diller and Nahm’s CMon-enriched variant of that interpretation [Diller(1974)]. In Examples 38 and 40,
we give simplified (predicate-free) presentations Dialpf and Dillpf of these constructions. Here, we briefly
point out how to extend them with predicates, following [Hyland(2002)]’s categorical presentation of these

19

interpretations. We first quote the presentation in [Hyland(2002)] for definitions and next briefly explain
how the closed structures are obtained from Theorem 1 by building on the closed structures described in
Examples 38 and 40.

[[Hyland(2002)], Dialectica] Suppose that we have a category T which we can think of as
interpreting some type theory; and suppose that over the category T we have a pre-ordered
fibration p : P → T , which we can regard as providing for each I ∈ T a pre-ordered collection
of (possibly non-standard) predicates P (I) = (P (I),⊢). Starting with this data we construct
a new category Dial = Dial(p) which we regard as a category of propositions and proofs.
We do this as follows.
• The objects A of Dial are U,X ∈ T together with α ∈ P (U × X). (· · ·) Our un-
derstanding of the predicate α is not symmetric as regards U and X : we read α as
∃u ∈ U.∀x ∈ X.α(u, x), in accord with the form of propositions in the image of the
Dialectica interpretation.

• Maps of Dial from A = (U,X, α) to B = (V, Y, β) are (· · ·) of the form f : U → V ,
F : U × Y → X with α(u, F (u, y)) ⊢ β(f(u), y) in P (U × Y).

We can observe that8 Dial is precisely the category

ΣU∈TDial(U) for Dial(U) = (ΣX∈self(T)(U)P (U ×X)op)op.

It is a more involved version of the category discussed in Example 38, where we additionally endow all objects
with predicates.

If we assume that P → T is fibred cartesian closed, it follows from our Theorem 1 that Dial is monoidal
closed for the (symmetric) monoidal structure (U,X, α)⊗(V, Y, β) = (U×V,X×Y, α∧β). Then, (V, Y, β) ⊸
(W,Z, γ) = ((V ⇒W)× (V × Z ⇒ Y), V × Z, ρ), where ρ((g,G), (v, z)) = β(v,G(v, z)) ⇒ γ(g(v), z). In-
deed, the indexed monoidal structure on Dial(U) with unit (1,⊤) and product (X,α) ⊗ (X ′, α) = (X ×
X ′, P (id × π1)(α) ∧ P (id × π2)(α

′) is Σ, self(T)(U)-cotractable because

Dial(U)((X,α)⊗ (X ′, α′), (X ′′, α′′)) =

{F : U ×X ′′ → X ×X ′ | α(u, π1(F (u, x′′))) ∧ α′(u, π2(F (u, x′′))) ⊢ α′′(u, x′′)} =

ΣF1 ∈ self(T)(U)(1, X ′′ ⇒ X).Dial(U)((X ′, α′), (X ′′, ρ)),

where ρ(u, x′′) = α(u, F1(u)(∗)(x
′′))⇒ α′′(u, x′′). Therefore,

Dial(U)((X ′, α′), (X ′′, ρ)) =

{F2 : U ×X ′′ → X ′ | α′(u, F2(u, x
′′)) ⊢ α(u, F1(u)(∗)(x

′′))⇒ α′′(u, x′′)},

showing that we can choose T (X ′′, α′′) ⊸ (X,α) = X ′′ ⇒ X and d
c((X ′′, α′′), (X,α), F1) = (X ′′, ρ) where

ρ(u, x′′) = α(u, F1(u)(∗)(x
′′))⇒ α′′(u, x′′). Further, the indexed category U 7→ Dial(U) has Π-types, given

by ΠV (X,α) = (V ×X,P (π2)(α)), meaning that the assumptions of Theorem 1 are met.

[[Hyland(2002)], Diller-Nahm] Suppose again that we have a pre-ordered set fibration p :
P → T , providing for each type I ∈ T a collection of (possibly non-standard) predicates
P (I) over I. We need some additional structure. We suppose that p : P → T is equipped
with a commutative monoid (−)• in the following sense.
• Firstly, T is a category with products and (−)• is a strong monad on T such that each
algebra is equipped naturally with the structure of a commutative monoid.

• Secondly, we suppose that we have an indexed extension of (−)• to P . For ϕ ∈ P (I×A)
we have ϕ• ∈ P (I ×X•). For each I ∈ T , the strength gives an action of (−)• on the
(simple slice) category T/I . And the operation ϕ→ ϕ• just described is an extension
of this to the global category P/I → T/I.

The example to have in mind here is the finite multiset monad on the category of sets; of
course, that is exactly the monad whose algebras are commutative monoids. This monad
extends naturally to the subset lattices: if ϕ ⊆ I ×X then ϕ• ⊆ I ×X• is defined by ϕ•(i, ξ)

8We use the locally indexed category self(T) for the category with products T here. See Example 7.

20

if and only if ∀x ∈ ξ.ϕ(i, x). From the data just described we construct a new category
Dill = Dill(p) which we regard again as a category of propositions and proofs.
• The objects of Dill are still pairs U,X ∈ T together with α ∈ P (U ×X). (· · ·)
• Maps of Dill from A = (U,X, α) to B = (V, Y, β) are (· · ·) of the form f : U → V ,
F : U × Y → X• with α•(u, F (u, y)) ⊢ β(f(u), y) in P (U × Y).

That is, Dill is precisely the category

ΣU∈TDill(U) for Dill(U) = ΣU∈T (Kleisli((−)•)(ΣX∈self(T)(U)P (U ×X)op))op,

for the lifted monad (−)• on ΣX∈self(T)(U)P (U×X)op. It is a more involved version of the category discussed
in Example 40, where we additionally endow all objects with predicates.

If we assume that P → T is a fibred cartesian closed category over a bicartesian closed category T and

that P is an extensive indexed category in the sense that we have a natural isomorphism [−] :
dN

i=1 P (Xi) ∼=

P (
⊔N

i=1 Xi) and that (−)• is an additive monad in the sense that (
⊔N

i=1 Xi)
• ∼=

dN
i=1 X

•
i (we will abuse

notation slightly and leave these two isomorphisms implicit), then it follows from our Theorem 1 that Dial
has the cartesian closed structure structure (U,X, α) × (V, Y, β) = (U × V,X ⊔ Y, [α, β]) and (V, Y, β) ⇒
(W,Z, γ) =

(

(V ⇒W)× (V × Z ⇒ Y •), V × Z, ρ
)

, where ρ((g,G), (v, z)) = β•(v,G(v, z))⇒ γ(g(v), z).
Indeed, the indexed product structure on Dill(U) with unit (0, []) and product (X,α) × (X ′, α) = (X ⊔

X ′, [α, α′]) is Σ, self(T)(U)-cotractable because

Dill(U)((X,α)× (X ′, α′), (X ′′, α′′)) =

{F : U ×X ′′ → X• ×X ′• ∼= (X ⊔X ′)• | α•(u, π1(F (u, x′′))) ∧ α′•(u, π2(F (u, x′′))) ⊢ α′′(u, x′′)} =

ΣF1 ∈ self(T)(U)(1, X ′′ ⇒ X).Dill(U)((X ′, α′), (X ′′, ρ)),

where ρ(u, x′′) = α•(u, F1(u)(∗)(x
′′))⇒ α′′(u, x′′). Therefore,

Dill(U)((X ′, α′), (X ′′, ρ)) =

{F2 : U ×X ′′ → X ′• | α′•(u, F2(u, x
′′)) ⊢ α•(u, F1(u)(∗)(x

′′))⇒ α′′(u, x′′)},

showing that we can choose T (X ′′, α′′) ⊸ (X,α) = X ′′ ⇒ X• and d
c((X ′′, α′′), (X,α), F1) = (X ′′, ρ) where

ρ(u, x′′) = α•(u, F1(u)(∗)(x
′′))⇒ α′′(u, x′′). Further, the indexed category U 7→ Dill(U) has Π-types, given

by ΠV (X,α) = (V ×X,P (π2)(α)), meaning that the assumptions of Theorem 1 are met.
These Examples raise the more general question under what circumstances, given two fibrations p : P → Q

and q : Q→ R, the fibration (q ◦pop)op (using the fibrewise opposite fibration and composition of fibrations)
has a monoidal closed total space. Assuming that q is a model of dependent type theory with Π-types and
strong Σ-types, that amounts, in the light of our Theorem 1, to characterising when an indexed monoidal
structure on the fibres of (q ◦ pop)op is Σ, Q(−)-cotractable and when (q ◦ pop)op has Π-types.
Higher order containers. [Altenkirch et al.(2010)] previously gave the special case of our formula for exponen-
tials in Fam(Setop) = ΣSetCAT(−,Setop) which they interpret as a category of containers (or polynomial
endofunctors). Such containers are useful in programming as they give a certain, concrete representation of
datatypes. As such, the authors use it to give a notion of “higher-order container”. Our construction shows
that the same construction can be carried out for more general notions of containers valued in a category
with a Σ-tractable monoidal structure, like an extensive category with its coproduct structure or a category
with biproducts. Some examples of such containers (such as additive containers, as in CHAD, see below)
have already found useful programming applications. However, we believe there might be potential for many
more notions of container and lens to find use in programming. We hope that the formulas given in his work
can contribute to principled programming idioms for such data representations.
CHAD. Recent work [Vákár(2021), Vákár and Smeding(2021), Lucatelli Nunes and Vákár(2023)] has anal-
ysed the special case of our formula for exponentials in the case that the fibre categories L have biproducts.
They show that this case can be used to prove correct (see loc. cit.) and give an efficient implementation of
(see [Smeding and Vákár(2024)]) a programming technique called Automatic Differentiation (AD), typically
the method of choice these days for efficiently computing derivatives of numerical programs. It is tempting
to give a similar analysis, based on Grothendieck constructions, for reverse-mode AD methods for calculating
higher derivatives [Betancourt(2018), Huot et al.(2022)].

21

Freely generated categorical structures. The case of our formula for exponentials in Grothendieck construc-
tions ΣCL indexed cartesian closed categories indexed by a cartesian closed category seems to be well-known.
It is used, in particular, for the case of families Fam(D) = ΣSetCAT(−,D) valued in a cartesian closed
category D (i.e., the freely generated category with small coproducts on D) by [Adámek and Rosický(2020)].
Recently, [Lucatelli Nunes and Vákár(2024)] and [Nunes et al.(2024)] analysed exponentiability in freely gen-
erated distributive and lextensive categories generated from an arbitrary locally small category D (which need
not be cartesian closed), respectively. The formula used for the exponentials arises as a special case of the
present work. These works raise the question whether our method is suitable for a study of exponentiability
in further kinds of freely generated categorical structures.
Dependently typed Dialectica. In a tour de force, [Von Glehn(2015), Moss and von Glehn(2018), Moss(2018)]
show that the Dialectica and Diller-Nahm interpretations can be extended to dependently typed languages.
In particular, they show the following two results, which are in a sense dependently typed variants of two of
our examples:

• starting from a model of dependent type theory with strong Σ-types, Π-types and identity types
that is extensive in a suitable sense, they construct another model of dependent type theory with
Σ-types, Π-types and identity types, generalizing our Example 28, in a sense;

• starting from a model of dependent type theory with strong Σ-types, Π-types and identity types with
an additive monad, using a Kleisli construction, they construct another model of dependent type
theory with Σ-types, Π-types and identity types; this is closely related but not quite a generalisation
of our Example 29;

Compared to their work, on the one hand, we do not consider the considerable amount of structure needed
to interpret dependent types in a Grothendieck construction, so, in this sense, our work is more limited. On
the other hand, we generalise from two examples of products in extensive categories and Kleisli categories of
additive monads to Σ-cotractable monoidal structures. The latter also give rise to various new examples of
cartesian and non-cartesian (even non-symmetric) monoidal closed structures on Grothendieck constructions.
In that sense, our work is more general.

Dependently typed (Σ-type) equivalents of non-cartesian monoidal structures are surprisingly subtle
[Vákár(2017)], so it is not clear if a common generalisation of both approaches is possible. The most
promising avenue might be to limit oneself to cartesian type theories and to pursue a notion of Σ-cotractable
Σ-type to generalise Σ-cotractable binary products as well as [Moss and von Glehn(2018)]’s examples.
Other Σ-(co)tractable monoidal structures. So far, we have shown that typical examples of Σ-cotractable
monoidal structures are:

• coproducts in any category;
• products in a co-extensive category with an initial object;
• a monoidal left-closed structure on a category with an initial object;
• products in pSetop.

In fact, we have seen that for posets (and, more generally, preorders) Σ-cotractability of the product is
equivalent to cartesian closure plus an initial object. For non-thin categories, we have no such characterisation
of Σ-cotractability, however. This raises the question if there are other interesting, naturally occurring
examples of Σ-cotractable products and non-cartesian monoidal structures for non-thin categories.
Efficient implementation. [Smeding and Vákár(2024)] shows that when interpreted as a recipe for generating
code in a functional programming language, programs that make use of the Dialectica-like monoidal closed
structure presented in this paper can be inefficient. Interestingly, the non-fibred nature of the exponen-
tials can result in recomputation. In the particular example of CHAD-style automatic differentiation, a
workaround is possible by closure converting the code (essentially, by using a representation for the expo-
nential as a co-end, using the co-Yoneda lemma).

Containers and lenses are a more and more important data-representation, particularly in machine learning
applications where data needs to flow in both directions [Cruttwell et al.(2022)]. Therefore, it would be
interesting to have a better understanding of the precise nature of these efficiency pathologies arising for
higher-order containers, as well as generally applicable solutions.

22

Acknowledgements. This project has received funding via NWO Veni grant number VI.Veni.201.124. The
first author acknowledges partial financial support by Centro de Matemática da Universidade de Coimbra
(CMUC), funded by the Portuguese Government through FCT/MCTES, DOI 10.54499/UIDB/00324/2020.

References

[Abbott et al.(2003)] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2003. Categories of containers. In Foundations of
Software Science and Computation Structures: 6th International Conference, FOSSACS 2003 Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2003 Warsaw, Poland, April 7–11, 2003 Proceedings
6. Springer, 23–38.

[Adámek and Rosický(2020)] Jǐŕı Adámek and Jǐŕı Rosický. 2020. How nice are free completions of categories? Topology Appl.
273 (2020), 24. https://doi.org/10.1016/j.topol.2019.106972 Id/No 106972.

[Ahman et al.(2016)] Danel Ahman, Neil Ghani, and Gordon D Plotkin. 2016. Dependent types and fibred computational
effects. In International Conference on Foundations of Software Science and Computation Structures. Springer, 36–54.

[Altenkirch et al.(2010)] Thorsten Altenkirch, Paul Levy, and Sam Staton. 2010. Higher-order containers. In Programs, Proofs,
Processes: 6th Conference on Computability in Europe, CiE 2010, Ponta Delgada, Azores, Portugal, June 30–July 4,

2010. Proceedings 6. Springer, 11–20.
[Betancourt(2018)] Michael Betancourt. 2018. A geometric theory of higher-order automatic differentiation. arXiv preprint

arXiv:1812.11592 (2018).

[Biering(2008)] Bodil Biering. 2008. Cartesian closed Dialectica categories. Annals of pure and applied logic 156, 2-3 (2008),
290–307.

[Blackwell et al.(1989)] R. Blackwell, G. M. Kelly, and A. J. Power. 1989. Two-dimensional monad theory. J. Pure Appl. Algebra
59, 1 (1989), 1–41. https://doi.org/10.1016/0022-4049(89)90160-6

[Carboni et al.(1993)] Aurelio Carboni, Stephen Lack, and Robert FC Walters. 1993. Introduction to extensive and distributive
categories. Journal of Pure and Applied Algebra 84, 2 (1993), 145–158.

[Clairambault and Dybjer(2014)] Pierre Clairambault and Peter Dybjer. 2014. The biequivalence of locally cartesian closed
categories and Martin-Löf type theories. Mathematical Structures in Computer Science 24, 6 (2014), e240606.

[Clementino et al.(2024)] Maria Manuel Clementino, Fernando Lucatelli Nunes, and Rui Prezado. 2024. Lax comma categories:
cartesian closedness, extensivity, topologicity, and descent. arXiv preprint arXiv:2405.03773 (2024).

[Cruttwell et al.(2022)] Geoffrey SH Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson, and Fabio Zanasi. 2022. Categorical
foundations of gradient-based learning. In European Symposium on Programming. Springer International Publishing Cham,
1–28.

[Day(1970)] Brian Day. 1970. On closed categories of functors. Lecture Notes in Mathematics 137 (1970), 1–38.
[Diller(1974)] Justus Diller. 1974. Eine variante zur dialectica-interpretation der heyting-arithmetik endlicher typen. Archiv für

mathematische Logik und Grundlagenforschung 16, 1-2 (1974), 49–66.
[Foster et al.(2007)] J Nathan Foster, Michael B Greenwald, Jonathan T Moore, Benjamin C Pierce, and Alan Schmitt. 2007.

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Transactions
on Programming Languages and Systems (TOPLAS) 29, 3 (2007), 17–es.

[Gambino and Kock(2013)] Nicola Gambino and Joachim Kock. 2013. Polynomial functors and polynomial monads. In Math-
ematical proceedings of the cambridge philosophical society, Vol. 154. Cambridge University Press, 153–192.

[Gödel(1958)] Von Kurt Gödel. 1958. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. dialectica
12, 3-4 (1958), 280–287.

[Gray(1966)] John W. Gray. 1966. Fibred and cofibred categories. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965).

Springer, New York, 21–83.
[Gray(1974)] John W Gray. 1974. Quasi-Kan extensions for 2-categories. Bull. Amer. Math. Soc. 80, 4 (1974), 142–147.

[Grothendieck and Raynaud(1971)] Alexandre Grothendieck and Michèle Raynaud. 1971. Revêtements étales et groupe fonda-
mental: Séminaire de géométrie algébrique du Bois-Marie 1960–1961 (SGA 1). Lecture Notes in Mathematics 224 (1971),

1–447.
[Hofmann and Hofmann(1997)] Martin Hofmann and Martin Hofmann. 1997. Syntax and semantics of dependent types. Ex-

tensional Constructs in Intensional Type Theory (1997), 13–54.
[Hofmann and Streicher(1998)] Martin Hofmann and Thomas Streicher. 1998. The groupoid interpretation of type theory.

Twenty-five years of constructive type theory (Venice, 1995) 36 (1998), 83–111.
[Huot et al.(2022)] Mathieu Huot, Sam Staton, and Matthijs Vákár. 2022. Higher order automatic differentiation of higher

order functions. Logical Methods in Computer Science 18 (2022).

[Huot et al.(2020)] Mathieu Huot, Sam Staton, and Matthijs Vákár. 2020. Correctness of Automatic Differentiation via Diffe-
ologies and Categorical Gluing. In Proc. FoSSaCS.

[Hyland(2002)] J. M. E. Hyland. 2002. Proof theory in the abstract. Ann. Pure Appl. Log. 114, 1-3 (2002), 43–78.
[Jacobs(1999)] Bart Jacobs. 1999. Categorical logic and type theory. Elsevier.
[Johnstone(2002)] Peter T Johnstone. 2002. Sketches of an elephant: A topos theory compendium. Vol. 2. Oxford University

Press.
[Kapulkin and Lumsdaine(2021)] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. 2021. The simplicial model of univalent

foundations (after Voevodsky). Journal of the European Mathematical Society 23, 6 (2021), 2071–2126.

23

[Keigher(1978)] William F Keigher. 1978. Symmetric monoidal closed categories generated by commutative adjoint monads.
Cahiers de topologie et géométrie différentielle 19, 3 (1978), 269–293.

[Kock(1971)] Anders Kock. 1971. Closed categories generated by commutative monads. Journal of the Australian Mathematical

Society 12, 4 (1971), 405–424.
[Lack(2002)] Stephen Lack. 2002. Codescent objects and coherence. J. Pure Appl. Algebra 175, 1-3 (2002), 223–241. https:

//doi.org/10.1016/S0022-4049(02)00136-6

[Levy(2012)] Paul Blain Levy. 2012. Call-by-push-value: A Functional/imperative Synthesis. Vol. 2. Springer Science & Business
Media.

[Lucatelli Nunes(2016)] Fernando Lucatelli Nunes. 2016. On biadjoint triangles. Theory Appl. Categ. 31 (2016), Paper No. 9,
217–256.

[Lucatelli Nunes and Vákár(2023)] Fernando Lucatelli Nunes and Matthijs Vákár. 2023. CHAD for expressive total languages.
Mathematical Structures in Computer Science 33, 4-5 (2023), 311–426.

[Lucatelli Nunes and Vákár(2024)] Fernando Lucatelli Nunes and Matthijs Vákár. 2024. Free Doubly-Infinitary Distributive
Categories are Cartesian Closed. arXiv:2403.10447 [math.CT]

[Lumsdaine and Warren(2015)] Peter LeFanu Lumsdaine and Michael AWarren. 2015. The local universes model: an overlooked
coherence construction for dependent type theories. ACM Transactions on Computational Logic (TOCL) 16, 3 (2015),
1–31.

[Mitchell and Scedrov(1992)] John C Mitchell and Andre Scedrov. 1992. Notes on sconing and relators. In International Work-
shop on Computer Science Logic. Springer, 352–378.

[Moss(2018)] Sean K Moss. 2018. The Dialectica Models of Type Theory. (2018). https://doi.org/10.17863/CAM.28036

[Moss and von Glehn(2018)] Sean K. Moss and Tamara von Glehn. 2018. Dialectica models of type theory. In Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj
Dawar and Erich Grädel (Eds.). ACM, 739–748. https://doi.org/10.1145/3209108.3209207

[North(2019)] Paige Randall North. 2019. Towards a directed homotopy type theory. Electronic Notes in Theoretical Computer
Science 347 (2019), 223–239.

[Nunes et al.(2024)] Fernando Lucatelli Nunes, Rui Prezado, and Matthijs Vákár. 2024. Free extensivity via distributivity.
arXiv:2405.02185 [math.CT]

[Palmgren and Stoltenberg-Hansen(1990)] Erik Palmgren and Viggo Stoltenberg-Hansen. 1990. Domain interpretations of

Martin-Löf’s partial type theory. Annals of Pure and Applied Logic 48, 2 (1990), 135–196.
[Seely(1984)] Robert AG Seely. 1984. Locally cartesian closed categories and type theory. In Mathematical proceedings of the

Cambridge philosophical society, Vol. 95. Cambridge University Press, 33–48.
[Shulman(2008)] Michael Shulman. 2008. Framed Bicategories and Monoidal Fibrations. Theory and Applications of Categories

20, 18 (2008), 650–738.
[Smeding and Vákár(2024)] Tom J Smeding and Matthijs IL Vákár. 2024. Efficient CHAD. Proceedings of the ACM on Pro-

gramming Languages 8, POPL (2024), 1060–1088.
[Vákár(2015)] Matthijs Vákár. 2015. A categorical semantics for linear logical frameworks. In International Conference on

Foundations of Software Science and Computation Structures. Springer, 102–116.
[Vákár(2017)] Matthijs Vákár. 2017. In search of effectful dependent types. arXiv preprint arXiv:1706.07997 (2017). DPhil

Thesis, University of Oxford.
[Vákár(2021)] Matthijs Vákár. 2021. Reverse AD at Higher Types: Pure, Principled and Denotationally Correct.. In ESOP.

607–634.
[Vákár and Smeding(2021)] Matthijs Vákár and Tom Smeding. 2021. CHAD: Combinatory Homomorphic Automatic Differen-

tiation. arXiv preprint arXiv:2103.15776 (2021).
[Von Glehn(2015)] Tamara Von Glehn. 2015. Polynomials and models of type theory. (2015). https://doi.org/10.17863/CAM.

16245

Utrecht University, Netherlands; and CMUC, University of Coimbra, Portugal
Email address: fernandolucatellinunes@gmail.com

Utrecht University, Netherlands

Email address: m.i.l.vakar@uu.nl

24

