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Lúıs Machadoa,b, Knut Hüperc, Krzysztof Krakowskid, Fátima Silva Leiteb,e

aDepartment of Mathematics, University of Trás-os-Montes and Alto Douro
(UTAD), Quinta de Prados, Vila Real, 5001-801, Portugal

bInstitute of Systems and Robotics, University of Coimbra, DEEC - Polo
II, 3030-290, Coimbra, Portugal

cInstitute of Mathematics, Julius-Maximilians-Universität Würzburg, Campus Hubland
Nord Emil-Fischer-Straße 31, 97074, Würzburg, Germany

dMatematyczno-Przyrodniczy, Uniwersytet Kardyna!la Stefana Wyszyńskiego w
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Abstract

The main objective is to characterize all configurations of three distinct points
on the n-dimensional sphere that have the same Riemannian geometric mean
and find efficient ways to compute such invariant. The regular case, when
the points form the vertices of an equilateral spherical triangle, appears as
the global minimum of an appropriate cost function. As a warm-up, and
also to get more insight for the spherical case, we first develop our ideas
for configurations in the Euclidean space Rn. In both cases, the theoretical
results are supported by numerical experiments and illustrated by meaningful
plots.
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1. Introduction

In recent years there has been increasing interest in studying certain k-
point configurations or arrangements on specific finite dimensional Rieman-
nian manifolds, in particular configurations that fulfil certain geometric con-
straints. Among them are, for instance, those having their geometric mean

Preprint submitted to Elsevier June 13, 2024

D
M

U
C

 P
re

pr
in

t 2
4-

31
, 1

3 
Ju

n 
20

24

[v1] Fri, 13 Jun 2024

https://www.mat.uc.pt/preprints/eng_2024.html


in common or those maximizing the content of their convex hull. The first of
these problems appears prominently in statistics on manifolds, where usually
k points are given and one aims to find the geometric (Riemannian) mean
or a closely related di↵erent type of weighted mean, cf. [3] and further ref-
erences cited therein. The second is related to packing problems and as a
consequence also to the task of designing codes with additional properties,
say self-duality or fulfilling an additional optimality criterion. In this case,
one looks for k points which satisfy certain geometric properties, cf. [8].
However, in both cases usually closed form solutions are extremely rare to
find. So, a maximal amount of a priori (di↵erential) geometric insight might
be helpful for designing an e�cient numerical procedure. Clearly, ordinary
Euclidean geometry, along with the entire arsenal of linear algebra, is helpful
simply because Euclidean space serves as a joyful playground for most of
these problems. In such cases, closed-form solutions are indeed well-known,
sometimes even for centuries.

Although, at first glance, the mathematics behind such goals is mainly
based on di↵erential geometric methodologies or insights, as well on purely
algebraic grounds (other than the real numbers field), oftentimes one has to
apply sophisticated numerical techniques, such as geometric integration, cf.
[10], or geometric optimization, cf. [1].

We are generally interested in characterizing configurations of k distinct
points in an n-dimensional Riemannian manifold that share the same geomet-
ric mean. Additionally, we aim to explore e�cient methods for computing
these configurations and their associated invariant.

Finding the geometric mean of data points on a Riemannian manifold
has been extensively studied for quite some time. Typically, the geometric
mean is the solution of an optimization problem, where the sum of the square
geodesic distances to the data points is minimized. This approach has been
used in specific manifolds, such as, Sn, the orthogonal group, the hyperbolic
space, and the cone of positive symmetric matrices, cf., [4], [23], [6], [3], [18],
[6], [5], [24], to name a few. For more di↵erential geometric background with
respect to existence and uniqueness of geometric means see [13] or [15]. In
the literature, the geometric or Fréchet mean has, in some instances, been at-
tributed to H. Karcher see, however, [14] (https://arxiv.org/abs/1407.2087).

Our general interest and objective is rather ambitious, since it requires
more advanced backgrounds and time to mature ideas and achieve solid de-
velopments. To keep this paper in a manageable frame, for the moment
we only consider the example of the standard sphere S

n embedded in the
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Euclidean space Rn+1, with k = 3, but using new ideas rather than just
minimizing the sum of the squared geodesic distances. Some of these new
ideas, also emerged from the fact that one often knows a simple formula for
the mean of k points that form a regular Riemannian geodesic k-gon, e.g.
for k = 3 an equilateral geodesic triangle. In order to get some insight, we
nevertheless, even start by applying this new approach to Euclidean n-space.
Generalizations to other symmetric spaces are already in preparation and
will appear in forthcoming publications.

The paper is organized as follows. After introducing the necessary nota-
tions, our problem statement is presented in Section 3, where we consider,
as warming up, points in the Euclidean space Rn. Then, in Section 4, we
transfer all the ideas and procedures to the n-dimensional spherical case. The
geometry of the manifold consisting of all configurations of points that have
the same Riemannian geometric mean is studied in detail. Both sections, 3
and 4, also contain explicit calculations, a detailed characterization of the
critical point sets of appropriate cost functions, their Riemannian gradients
and Hessians, followed by the classification of the critical points. In particu-
lar, the equilateral triangle configurations arise as global minimum of those
cost functions.

Using several routines from MATLAB toolboxes, the steepest descent and
quasi-Newton algorithms on manifolds have been implemented to corrobo-
rate the theoretical outcomes. These algorithms turned out to be easy to
implement, o↵ering high accuracy and precision even when handling spher-
ical data. To enrich the paper, meaningful plots illustrating our results are
also included.
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2. Notations

These are some of the notations used throughout the paper.

M,N smooth manifolds
TxM tangent space of M at x 2 M

DF (x) : TxM ! TF (x)N tangent map (or di↵erential) of F : M ! N at x
T

?
x M normal space of M at x 2 M

rF gradient of the function F

HF Hessian matrix of the function F

S
n

n-dimensional unit sphere
H

n open hemisphere of Sn

k.k Euclidean norm
cos�1(x>

y) arccos(x>
y)

cos�2(x>
y) arccos2(x>

y)
ker(X) kernel of a matrix X

RS(X) row space of a matrix X

CS(X) column space of a matrix X

rref(X) reduced row echelon form of a matrix X

X
+ Moore-Penrose inverse of a matrix X

3. Problem Statement, Warming up in Rn

Given three distinct points x0, x1, x2 in Rn, find all configurations of three
points {p0, p1, p2} ⇢ Rn having the same geometric mean q as the given ones,
i.e.,

q = 1
3(p0 + p1 + p2) =

1
3(x0 + x1 + x2). (1)

In particular, we are also looking for three points that form the vertices of
a regular 3-gon, i.e., an equilateral triangular having q as the center of its
circumscribed circle.

Recall that q is the unique solution of the minimization problem

min
x2Rn

�
kp0 � xk

2 + kp1 � xk
2 + kp2 � xk

2
�
. (2)

Here it seems we are dealing with a catch-22 as we do not need an equi-
lateral triangle to verify formula (1), but we are currently only warming up
for the much more complicated spherical case, where q is in general given
only implicitly as the unique global minimum of a smooth cost.

4



Without loss of generality we fix one of the three points, say x0 =: p0,
and consider the smooth manifold

M =
�
(p1, p2) 2 Rn

⇥ Rn : p1 + p2 = 3q � p0

 
, (3)

which is clearly an n-dimensional a�ne subspace. The tangent and the nor-
mal spaces of M at (p1, p2) 2 M are given, respectively, by

T(p1,p2)M :=
�
(v,�v) | v 2 Rn

 
, T

?
(p1,p2)M :=

�
(v, v) | v 2 Rn

 
. (4)

Any vector (u, v) 2 Rn
⇥ Rn can be decomposed in a unique way as

(u, v) = 1
2

�
u� v, v � u

�
+ 1

2

�
u+ v, u+ v

�
, (5)

where 1
2

�
u� v, v � u

�
2 T(p1,p2)M and 1

2

�
u+ v, u+ v

�
2 T

?
(p1,p2)

M .
In the sequel we analyze the smooth cost function

F : M �! R,
(p1, p2) 7�!

1
4

�
kp0 � p1k

2
� kp0 � p2k

2
�2

+ 1
4

�
kp1 � p0k

2
� kp1 � p2k

2
�2

+ 1
4

�
kp2 � p0k

2
� kp2 � p1k

2
�2
.

(6)

Clearly, the global minimum value of F equals 0 and it is attained exactly if
the triple (p0, p1, p2) describes an equilateral triangle in Rn or is the degener-
ated case when all the points coincide. One of our objectives is to minimize
F to end up with one of these equilateral triangles.

To simplify notations, define

A :=kp0 � p1k
2
� kp0 � p2k

2;

B :=kp1 � p0k
2
� kp1 � p2k

2;

C :=kp2 � p0k
2
� kp2 � p1k

2 = B � A.

(7)

Consider the following smooth cost function

F : M �! R,
(p1, p2) 7�!

1
4

�
A

2 +B
2 + C

2) = 1
2(A

2 +B
2
� AB).

(8)

Theorem 1. Every critical point (p1, p2) 2 M of the function F defined

by (8) fulfills one of the following conditions.

1. p0 = p1 = p2 = q;
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2. p1 = p2 =
3q�p0

2 ;

3. p0, p1, p2 form an equilateral triangle.

Proof. The critical points are the points (p1, p2) such that DF (p1, p2)(v,�v) =
0, for all v 2 Rn, where DF stands for the di↵erential of F . Since

DF (p1, p2)(v,�v) = (2A� B)
�
hp1 � p0, vi+ hp2 � p0, vi

�

+ (2B � A)
�
hp1 � p0, vi+ hp2 � p1, 2vi

�

= 3hA(p1 � p0) + B(p2 � p1), vi,

(9)

the critical points (p1, p2) are solutions of

A(p1 � p0) + B(p2 � p1) = 0. (10)

Let us consider the following cases.

Case 1. p1 � p0 and p2 � p1 are linearly dependent.

Case 1.1. p1 � p0 = 0 and p2 � p1 = 0.
We get the trivial case p0 = p1 = p2 = q.

Case 1.2. p1 � p0 6= 0 and p2 � p1 = 0.
From the constraint p0 + p1 + p2 = 3q, we immediately get p1 =
p2 = 3q�p0

2 . Note that in this case A = 0, so equation (10) is
satisfied.

Case 1.3. p1 � p0 = 0 and p2 � p1 6= 0.
Using the definition of B, this implies that B 6= 0. But on the
other hand these conditions, together with (10), imply that B = 0.
So, this case gives no critical points.

Case 1.4. p1 � p0 6= 0 and p2 � p1 6= 0.
In this case, there exists � 2 R (� 6= 0) such that p1 � p0 =
�(p1�p2) and so the equation (10) is satisfied only when B = �A.
Using the fact that p0�p2 = (p0�p1)+(p1�p2) = (1��)(p1�p2),
and replacing in the expressions of A and B, we get

A = (2�� 1)kp1 � p2k
2
, B = (�2

� 1)kp1 � p2k
2
. (11)

But the condition B = �A implies that �2
� �+1 = 0, which has

no real solutions. So, this case gives no critical points.
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Case 2. p1 � p0 and p2 � p1 are linearly independent.
In this case A = B = 0 or, equivalently,

kp0 � p1k
2 = kp0 � p2k

2 = kp1 � p2k
2
. (12)

So, p0, p1, p2 form the vertices of an equilateral triangle.

This completes the proof.

Remark 1. Notice that the cost function F vanishes at the critical points

corresponding to 1. and 3. in the previous theorem, while for the other case

we have A = 0, B = kp1 � p0k
2
> 0, and so, F (p1, p2) =

B2

2 > 0.

3.1. Gradients and Hessians

The simplest way to compute Riemannian gradients and Riemannian Hes-
sians for a function F defined on a Riemannian manifold M is by exploiting
well known formulas for the Levi-Civita connection r. In particular, for the
latter

HessF (X, Y ) = rX(rY F )�DF (rXY ), (13)

where X and Y are vector fields in M (see, for instance, pages 343-344 in
[17]). There are two situations when the second summand in (13) vanishes.
Either the Hessian is evaluated at a critical point p and DF (p) = 0, or one
considers the representation of the Hessian along a geodesic �, in which case,
X = Y = �̇ and consequently r�̇ �̇ = 0. In this paper, we only need to evalu-
ate Riemannian Hessians in these two situations, and since we only consider
submanifolds embedded in Euclidean spaces, the Riemannian Hessian coin-
cides with the tangent space projection of the Euclidean Hessian.

We now consider gradients and Hessians of the function F defined by (8).
In a straightforward way we extend F uniquely from M to a smooth function
bF on the embedding space Rn

⇥ Rn ⇠= R2n, compute the Euclidean gradient
of bF and project it back to TM orthogonally to end up with the Riemannian
gradient rF of F on M . The symbol r used in(13) for the Levi-Civita
connection will no longer be used later. So, our notation for the Riemannian
gradient of a function will not be a source of confusion.

For any (p1, p2) 2 Rn
⇥Rn and (v1, v2) 2 T(p1,p2)(Rn

⇥Rn) ⇠= Rn
⇥Rn we

have
D bF (p1, p2)(v1, v2) = hr bF (p1, p2), (v1, v2)i. (14)

7



Since

D bF (p1, p2)(v1, v2) = (2A� B)
�
hp1 � p0, v1i+ hp0 � p2, v2i

�

+ (2B � A)
�
hp2 � p0, v1i+ hp1 � p2, v2i

�

= h(2A� B)(p1 � p0) + (2B � A)(p2 � p0), v1i

+ h(2A� B)(p0 � p2) + (2B � A)(p1 � p2), v2i,

(15)

the Euclidean gradient is given by

r bF (p1, p2) =

"
(2A� B)(p1 � p0) + (2B � A)(p2 � p0)

(2A� B)(p0 � p2) + (2B � A)(p1 � p2)

#
. (16)

Consequently, from (5) we get for the Riemannian gradient

rF (p1, p2) = P
?
(p1,p2)r

bF (p1, p2) 2 T(p1,p2)M, (17)

where

P
?
(p1,p2) =

1
2


In �In

�In In

�
. (18)

Some straightforward computations show that

rF (p1, p2) =
3
2

"
A(p1 � p0) + B(p2 � p1)

�
�
A(p1 � p0) + B(p2 � p1)

�

#
. (19)

The Riemannian gradient can now be used to implement the steepest
descent method (Algorithm 1). Figure 1 illustrates this method for points
in R2 with fixed p0 = (0, 1). In the three situations shown on the left hand
side, the points p1 and p2 (whose coordinates are given in each caption)
converge to the minimum of the cost function, forming with p0 the vertices
of an equilateral triangle. The circumscribed circle observed in each picture
is centered at the geometric mean, a property only shared by equilateral
triangles. The graphs on the right hand side show how the distances between
pairs of points (p1, p2) in successive iterations evolve. As expected, these
distances converge linearly to zero.
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Algorithm 1: Steepest descent with Armijo line search

Input : Initial point p(0) = (p(0)1 , p
(0)
2 ) and tolerance tol

Output: Stationary point p⇤ = (p⇤1, p
⇤
2)

1 for k = 0, 1, . . . do
2 Set d(k) = �rF (p(k)) ;
3 Determine the step length ↵k according to Armijo rule;
4 Set p(k+1) = p

(k) + ↵kd
(k);

5 Stop if F (p(k)) < tol or krF (p(k))k < tol
6 end
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Figure 1: Plots obtained using Algorithm 1.
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Now, from the Euclidean gradient given in (16), we can proceed with the
Hessian. The matrix representation of the Hessian of a function F will be
denoted by HF . In order to compute second derivatives, notice that

2A� B = kp0 � p1k
2
� 2kp0 � p2k

2 + kp1 � p2k
2

2B � A = kp0 � p1k
2
� 2kp1 � p2k

2 + kp0 � p2k
2

and we compute the matrix representation of the Hessian of bF as follows

D2
1
bF (p1, p2)=2

�
(p1 � p0)(p1 � p0 + p1 � p2)

>+(p2 � p0)(p2 � p0 + p2 � p1)
>�

+ (2A� B)In,

=2
�
(p1� p0)(p1�p0)

>+(p2�p0)(p2�p0)
>+(p2�p1)(p2�p1)

>�

+ (2A� B)In,

D12
bF (p1, p2)=2

�
(p1�p0)(p0�p1 + p0 � p2)

>+(p2�p0)(p1�p2 + p1 � p0)
>�

+ (2B � A)In

=2
�
(p1�p0)(p0�p2)

>+(p1�p2)(p0�p1)
> +(p2�p0)(p1�p2)

>�

+ (2B � A)In

=
�
D21

bF (p1, p2)
�>

,

D2
2
bF (p1, p2)=2

�
(p0�p2)(p0�p1 + p0 � p2)

>+(p1�p2)(p1�p2 + p1 � p0)
>

� (A+B)In

=2
�
(p1�p0)(p1�p0)

>+(p2�p0)(p2�p0)
>+(p1�p2)(p1�p2)

>�

� (A+B)In.
(20)

So,

H bF (p1, p2) =

"
D2

1
bF (p1, p2) D12

bF (p1, p2)�
D12

bF (p1, p2)
�>

D2
2
bF (p1, p2)

#
. (21)

Furthermore, being the Riemannian Hessian the restriction to the tangent
space of the Euclidean Hessian, we can write

HF (p1, p2) = H bF (p1, p2)
��
T(p1,p2)

M
= P

?
(p1,p2)H bF (p1, p2)P

?
(p1,p2). (22)

Here an important remark is in order. HF (p1, p2) is considered here in co-
ordinates of the embedding space Rn

⇥ Rn, the space of point pairs (p1, p2).
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It, however, defines a symmetric quadratic form on the subspace T(p1,p2)M ⇢

Rn
⇥ Rn which has codimension n.
The matrix representation of the Riemannian Hessian is a 2n⇥ 2n block

matrix with the structure

HF (p1, p2) =


X �X

�X X

�
=


1 �1

�1 1

�
⌦X, (23)

where X is written in terms of A and B as

X =
3
4

�
2(p1 � p0)(p1 � p0)

>

+ 2(p2 � p0)(p2 � p0)
> + 2(p1 � p2)(p1 � p2)

> + (A� 2B)I
�
,

(24)

and is clearly symmetric and singular.
Making use of the Riemannian Hessian, we now apply a quasi-Newton

method to improve the convergence speed (Algorithm 4). Figure 2 illus-
trates this method for the data already used to implement Algorithm 1. As
expected, the distances between pairs of points (p1, p2) in successive itera-
tions converge quadratically to zero, showing that the quasi-Newton method
is faster than the steepest descent method.

Algorithm 2: Quasi-Newton method

Input : Initial point p(0) = (p(0)1 , p
(0)
2 ), � > 0 and tolerance tol

Output: Stationary point p⇤ = (p⇤1, p
⇤
2)

1 for k = 0, 1, . . . do
2 Set B(k) = HF (p(k)) + �In ;
3 Solve d

(k) from B
(k)
d
(k) = �rF (p(k));

4 Update p
(k+1) = p

(k) + d
(k);

5 Stop if F (p(k)) < tol or krF (p(k))k < tol
6 end
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Figure 2: Plots obtained using Algorithm 4.
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3.2. Classification of the critical points

At the critical points given in Theorem 1, the formulas (21) and(22) sim-
plify considerably, either by collinearity of the triple {p0, p1, p2} or by equi-
laterality. The latter suggests to deal with the triple in R2, more specifically
in the plane spanned by this triple.

For convenience, we may represent pairs of points in Rn+1
⇥ Rn+1 by

(v1, v2) or by a column matrix


v1

v2

�
.

Theorem 2. The critical points of the function F on M are classified as:

1. when p1 = p2 =
3q�p0

2 , the critical point (p1, p2) is a saddle point;

2. when p0, p1, p2 form an equilateral triangle, the critical point (p1, p2) is
a global minimum.

Proof. In order to show that the critical point (p1, p1) is a saddle point, first
note that in this case of collinearity A = 0, B = kp1�p0k

2, and consequently

X =
3
2

�
2(p1 � p0)(p1 � p0)

T
� kp1 � p0k

2
I
�
.

First consider the vector v = (v1,�v1), where v1 = p1 � p0. In this case,

⇥
v
>
1 �v

>
1

⇤
HF (p1, p2)


v1

�v1

�
=
⇥
v
>
1 �v

>
1

⇤  X �X

�X X

� 
v1

�v1

�

= 4 v>1 Xv1 = 6 kp1 � p0k
4
> 0.

(25)

Now, consider a vector v = (v1, v2) such that (v1 � v2)>(p1 � p0) = 0. In this
case, we get

⇥
v
>
1 v

>
2

⇤
HF (p1, p2)


v1

v2

�
=
⇥
v
>
1 v

>
2

⇤  X �X

�X X

� 
v1

v2

�

= (v1 � v2)
>
X(v1 � v2)

= �
3
2kp1 � p0k

2
kv1 � v2k

2
< 0.

(26)

This proves that we are in the presence of a saddle point.
In case of equilaterality, A = B = 0 and X is the rank two matrix

X =
3
2

�
(p1� p0)(p1� p0)

>+(p2� p0)(p2� p0)
>+(p1� p2)(p1� p2)

>�
. (27)
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For convenience, denote the critical point by (p?1, p
?
2). Then, for any vector

v = (v1, v2) 2 Rn+1
⇥ Rn+1,

⇥
v
>
1 v

>
2

⇤
HF (p

?
1, p

?
2)


v1

v2

�
=3

2

⇥�
(v1 � v2)

>(p?1 � p0)
�2

+
�
(v1 � v2)

>(p?2 � p0)
�2

+
�
(v1 � v2)

>(p?1 � p
?
2)
�2⇤

� 0,

(28)

meaning that the Riemannian Hessian at (p?1, p
?
2) is positive semidefinite.

This, combined with the observation that F (p1, p2) � F (p?1, p
?
2) = 0, for all

(p1, p2) 2 M , leads to the conclusion that the cost function F attains its
global minimum at (p?1, p

?
2).

Figure 3 shows the behavior of the points (p1, p2) in a neighborhood of
a saddle point. If p1 and p2 are aligned with p0, then they converge to the
saddle point. Otherwise, they converge to the minimum of the cost function
(the vertices of an equilateral triangle).
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(a) p1 = (0,�0.55), p2 = (0,�0.45)
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(b) p1 = (�0.001,�0.499), p2 = (0.001,�0.501)

Figure 3: Behavior in a neighborhood of a saddle point.

4. The Spherical Case

4.1. Some background

In preparation for the main results in this section, we first recall some
important facts that will be used in this section, referring to [19] for basic
concepts of Riemannian geometry.
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Consider the unit sphere

S
n = {p 2 Rn+1

| p
>
p = 1}, (29)

equipped with the Riemannian metric induced by the Euclidean inner prod-
uct in Rn+1. Its tangent and normal space at p 2 S

n are, respectively,

TpS
n = {v 2 Rn+1

| v
>
p = 0}, T

?
p S

n = span(p). (30)

If p 2 S
n and v 2 TpS

n, the unique minimal geodesic with �(0) = p, �̇(0) = v

is given by
�(t) = cos(tkvk)p+ sin(tkvk)

kvk v. (31)

If p, q 2 S
n with p 6= ±q, the unique minimal geodesic satisfying �(0) = p,

�(1) = q, purely expressed by p and q only, is given by (see, for instance
[12]),

�(t) = sin((1�t)kvk)
sin kvk p+ sin(tkvk)

sin kvk q, with kvk = arccos(q>p). (32)

The geodesic distance between two points p, q 2 S
n is exactly equal to the

norm of the velocity vector that takes p to q, i.e.,

d(p, q) = arccos(q>p). (33)

For x 2 Rn+1
\{0}, the orthogonal projection operator is defined by

P
?
x : Rn+1

! Rn+1
, y 7!

�
I �

xx>

x>x

�
y, (34)

and the associated reflection operator by

Rx : Rn+1
! Rn+1

, Rx := id�2P?
x . (35)

The latter is an orthogonal linear transformation, thus preserving the Eu-
clidean metric.

When x = p 2 S
n,

P
?
p : Rn+1

! TpS
n
, y 7!

�
I � pp

>�
y, (36)

and
Rp : Rn+1

! Rn+1
, y 7!

�
� I + 2pp>

�
y. (37)

Notice that
ker(P?

p ) = T
?
p S

n
, rank(P?

p ) = n,

and
Rp|TpSn = � id, Rp|T?

p Sn = id .
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4.2. Problem Statement on the sphere S
n

Given three distinct points x0, x1, x2 contained in an open hemisphere Hn

of Sn, find all configurations of points {p0, p1, p2} in that hemisphere that
have the same Riemannian geometric mean q 2 H

n, in particular those that
form the vertices of an equilateral spherical triangle centered at q. Without
loss of generality we keep the assumption p0 := x0.

It is well known that the Riemannian mean minimizes the sum of squared
geodesic distances to a given set of points. In our case, consider the smooth
function

� : Hn
⇢ S

n
�! R, x 7�! �(x) =

2X

i=0

d
2(xi, x) =

2X

i=0

arccos2(x>
xi), (38)

with tangent map

D�(x) : TxH
n
! T�(x)R ⇠= R,

h 7! 2
2X

i=0

arccos(x>
xi)| {z }

=:⇠i

Darccos(x>
xi)h = �2

2X

i=0

⇠i
sin ⇠i

(x>
i h).

(39)

[7], showed that � is strictly convex and therefore has exactly one global
minimum, the geometric Riemannian mean, [13], [15], [16].

It is well known that the Riemannian mean is the solution of D�(x)(h) =
0, 8h 2 TxH

n. From now on, q will denote the Riemannian mean of the points
xi, which is defined implicitly by

2X

i=0

⇠i
sin ⇠i

(In+1 � qq
>)xi = 0. (40)

The quotient ⇠i
sin ⇠i

makes sense in the interval [0, ⇡[ by assuming that for

⇠i = 0, its value is equal to lim
⇠i!0+

⇠i
sin ⇠i

= 1. Similar indeterminate forms that

appear throughout the text will be treated the same way.

Remark 2. From the equation that defines the Riemannian mean q, it is

also clear that

� 2X

i=0

⇠i cos ⇠i
sin ⇠i

�
q =

2X

i=0

⇠i
sin ⇠i

xi, (41)

17



showing that the Riemannian mean of the points x0, x1, x2 belongs to the

vector subspace of Rn+1
spanned by them. In the particular case when the

3 points belong to the same geodesic in S
n
, then q also belongs to the same

geodesic.

There is one particular situation when the Riemannian mean is given
explicitly in terms of the given points, as the following result shows.

Lemma 1 ([20]). If x0, x1, x2 are the vertices of a spherical equilateral tri-

angle lying in H
n
, then the Riemannian mean of these points coincides with

its spherical projected arithmetic mean, given explicitly by

q =
P2

i=0 xi��P2
i=0 xi

�� . (42)

Proof. Since the function � has a unique critical point, one just needs to
show that the spherical projected arithmetic mean given by (42) satisfies the
equation (40).

Let ⇥ denote the common length of the edges of the equilateral triangle,
that is, ⇥ = arccoshx0, x1i = arccoshx0, x2i = arccoshx1, x2i. So,

kx0 + x1 + x2k
2 = 3

�
1 + 2 cos⇥

�
,

hx0 + x1 + x2, xii = 1 + 2 cos⇥, for i = 0, 1, 2,

and

hq, xii =
q

1+2 cos⇥
3 , for i = 0, 1, 2.

Consequently, ⇠i
sin ⇠i

has the same value for i = 0, 1, 2, and the left hand side
of equation (40) reduces to

⇠0
sin ⇠0

(I � qq
>)
� 2X

i=0

xi

�
. (43)

Since
P2

i=0 xi is a multiple of q, the expression in (43) is identically zero.
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4.3. Defining the manifold M of all configurations

Consider the di↵eomorphism that defines the Riemannian normal coor-
dinates around a point q

'q : S
n
! TqS

n
, p 7!

↵
sin↵(p� q cos↵), (44)

where cos↵ = q
>
p.

Let M be the smooth manifold consisting of all sets of pairs (p1, p2) such
that (p0, p1, p2) has the Riemannian mean q, that is

M =
�
(p1, p2) 2 H

n
⇥H

n : (I � qq
>)

2X

i=0

↵i
sin↵i

pi = 0
 
, (45)

where cos↵i = q
>
pi and I denotes the identity matrix of order n + 1. In

terms of Riemannian normal coordinates around q, M can be written as

M =
�
(p1, p2) 2 H

n
⇥H

n :
2X

i=0

'q(pi) = 0
 
. (46)

Theorem 3. M is an n�dimensional smooth manifold.

Proof. We will use the regular value theorem to show that M is the zero fiber
of the following di↵erentiable function

' : H
n
⇥H

n
�! TqH

n

(p1, p2) 7�! '(p1, p2) =
P2

i=0 'q(pi).
(47)

Given (p1, p2) 2 '
�1({0}), the tangent map of ' at (p1, p2) is defined as

D'(p1, p2) : Tp1H
n
⇥ Tp2H

n
�! TqH

n

(v1, v2) 7�!
⇥
D'q(p1) D'q(p2)

⇤  v1

v2

�
.

(48)

Since D'q(pi) is an isomorphism between TpiH
n and TqH

n, its rank is n and
so rank(D'(p1, p2)) = n, showing that D'(p1, p2) is surjective everywhere.
Consequently, ' is a submersion and M = '

�1({0}) is an n-dimensional
smooth manifold.
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Visualizing the manifold M is challenging, even for dimension 2, but one
can exhibit some symmetries.

Using the projection operator, M can be rewritten as

M =
�
(p1, p2) 2 H

n
⇥H

n : P
?
q

� 2X

i=0

↵i
sin↵i

pi

�
= 0

 
. (49)

Proposition 1. Assume that p0 = q 6= p1 2 S
n
. Then, (p1, Rq(p1)) 2 M ,

where Rq is the reflection operator defined in (37).

Proof. To show that (p1, p2) 2 M when p2 = Rq(p1) := �p1 + 2q cos↵1,
notice that in this case ↵0 = 0, and Rq leaves q invariant. This implies
cos↵2 = cos↵1 and, consequently, ↵2

sin↵2
= ↵1

sin↵1
. So,

2X

i=0

↵i
sin↵i

pi =
�
q + ↵1

sin↵1
(p1 +Rq(p1)

�
=
�
q + 2↵1 cos↵1

sin↵1
q
�
,

showing that

(I � qq
>)

2X

i=0

↵i
sin↵i

pi = 0.

So, (p1, Rq(p1)) 2 M ,

Now, assume that p0 6= q, and let Rp0q
denote a reflection operator along

the plane spanned by p0, q and 0. With respect to this plane, any y 2 Rn+1

can be written as y = y
? + ȳ, where ȳ is the orthogonal projection of y onto

the plane. Then,

Rp0q
: Rn+1

! Rn+1
, y 7! 2ȳ � y. (50)

Moreover, ȳ = ↵p0 + �q, where

↵ = 1
sin2 ↵0

�
p
>
0 y � (cos↵0)q

>
y
�
, � = 1

sin2 ↵0

�
q
>
y � (cos↵0)p

>
0 y
�
,

or, equivalently, ȳ = 1
sin2 ↵0

�
p0p

>
0 + qq

>
� cos↵0 (p0q> + qp

>
0 )
�
y.

So, the orthogonal matrix AR describing the reflection Rp0q can be written
as

AR = 2
sin2 ↵0

�
p0p

>
0 + qq

>
� cos↵0 (p0q

> + qp
>
0 )
�
� In+1.
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Proposition 2. If p0 6= q and (p1, p2) 2 M , then (AR(p1), AR(p2)) 2 M ,

i.e., AR is a symmetry of M .

Proof. We first show that AR commutes with I � qq
>. This follows from the

fact that [p0p>0 � cos↵0(p0q> + qp
>
0 ), qq

>] = 0, which is easily checked from

[p0p
>
0 , qq

>] = cos↵0(p0q
>
� qp

>
0 ),

[p0q
> + qp

>
0 , qq

>] = p0q
>
� qp

>
0 .

Moreover, it is clear that AR leaves p0 and q invariant, and q
>
AR(pi) =

q
>
pi = cos↵i, for i = 1, 2. Consequently,

P
?
q

� 2X

i=0

↵i
sin↵i

pi

�
= 0 implies P

?
q

� 2X

i=0

↵i
sin↵i

AR(pi)
�
= 0,

that is, if (p1, p2) 2 M then (AR(p1), AR(p2)) 2 M .

4.4. Tangent and normal spaces to M

The following result will be useful.

Lemma 2. Consider the function

f : Hn
! H

n

pi 7!
↵i

sin↵i
pi
. (51)

The tangent map of f at the point pi is given by

D f(pi) : TpiH
n
! Tf(pi)H

n

vi 7!
�

↵i
sin↵i

I +
�
↵i cos↵i�sin↵i

sin3 ↵i

�
piq

>�
vi
. (52)

Proof. The proof uses some elementary calculations based on the fact that
for ↵i = arccos(q>pi), D↵i(pi)(vi) =

�1
sin↵i

(q>vi).

Now, it is convenient to define matrices

Ai =
↵i

sin↵i
I +

�
↵i cos↵i�sin↵i

sin3 ↵i

�
piq

>
. (53)

One can check that they are full rank. Indeed, following [21], p.475,

det(Ai) =
�

↵i
sin↵i

�n+1�↵i�cos↵i sin↵i

↵i sin2 ↵i

�
, (54)
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and since the second term in (54) is increasing in the interval ]0, ⇡[ and
satisfies

lim
↵i!0+

↵i�cos↵i sin↵i

↵i sin2 ↵i
= 2/3,

we can conclude that det(Ai) 6= 0, in the interval [0, ⇡[. Its inverse can be
derived from the Sherman-Morrison formula in [21], to obtain

A
�1
i = sin↵i

↵i

�
I + sin↵i�↵i cos↵i

↵i�sin↵i cos↵i
piq

>�
.

Using the matrices Ai, the linear transformation D'(p1, p2) defined in (48)
can be written as the following block matrix

D'(p1, p2) = (I � qq
>)
⇥
A1 A2

⇤
.

The tangent space to M at the point (p1, p2), can be characterized im-
plicitly by

T(p1,p2)M =
�
(v1, v2) 2 Rn+1

⇥Rn+1 : X1v1+X2v2 = 0, p>1 v1 = 0, p>2 v2 = 0
 
,

(55)
where Xi, i = 1, 2, is the rank-n matrix

Xi := (I � qq
>)Ai. (56)

Example 1. If (p1, p1) 2 M , the tangent space simplifies to

T(p1,p1)M =
�
(v1,�v1) : v1 2 Tp1S

n
 
.

Indeed, this vector space is n-dimensional and its vectors trivially satisfy the

constraints in (55).

Example 2. If p0 = q 2 H
n
and p1 2 H

n
satisfies cos�1(q>p1) 2]0, ⇡/2[,

then

T(p1,Rq(p1))M =
�
(v1, Rq(v1)) : v1 2 Tp1S

n
 
,

where Rq is the reflection operator defined in (37).
To show this, first notice that since v

>
1 p1 = 0, also (Rq(v1))>Rq(p1) = 0,

and so the last constraint in (55) holds. To check that the first constraint in

(55) also holds, compute X1v1 and X2v2, with v2 = Rq(v1) = �v1 + 2q>v1q
and taking into consideration that if p2 := Rq(v1), then cos↵1 = cos↵2,

we conclude after simplifications that X2v2 = �X1v1, which completes the

verification.
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In what follows, it is convenient to rewrite the tangent space in a more
compact form. For that, define the the block matrix

X =

2

4
X1 X2

p
>
1 0

0 p
>
2

3

5 2 R(n+3)⇥(2n+2)
.

Notice that the tangent space to M is the kernel of the matrix X, therefore
the normal space is the row space (RS) of the matrix X (or the column space
(CS) of X>), that is,

T(p1,p2)M = ker(X) =
�
x 2 R2n+2

|Xx = 0
 
;

T
?
(p1,p2)M = RS(X) = CS(X>) =

�
X

>
x | x 2 Rn+3

 
.

(57)

By the rank-nullity theorem, we conclude that dim(T?
(p1,p2)

M) = n+ 2.

Since M is an embedded submanifold of Rn+1
⇥Rn+1, it is convenient to

define the projection operators onto the tangent and the normal spaces of
M . For that, we first recall some facts about the Moore-Penrose inverse of
X, denoted by X

+ (see, for instance, [11] or [21] for details).
The projection operators onto the tangent and the normal spaces of M

are therefore defined, respectively, by

P
?
ker(X) : Rn+1

⇥Rn+1
! T(p1,p2)M, (!1,!2) 7! (I2n+2�X

+
X)


!1

!2

�
, (58)

P
?
RS(X) : Rn+1

⇥ Rn+1
! T

?
(p1,p2)M, (!1,!2) 7! X

+
X


!1

!2

�
. (59)

4.5. Geodesics in M

In order to characterize the geodesics in M , let � : t 2 (a, b) 7! �(t) =
(�1(t), �2(t)) 2 M . Then, for i = 1, 2,

h�i(t), �i(t)i = 1, 8t 2 (a, b). (60)

and

(I � qq
>)

2X

i=1

↵i(t)
sin↵i(t)

�i(t) + (I � qq
>) ↵0

sin↵0
p0 = 0, (61)
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where ↵i(t) = arccoshq, �i(t)i, 8t 2 (a, b), i = 1, 2.
Di↵erentiating (60) and (61) with respect to t, one gets

h�i(t), �̇i(t)i = 0, i = 1, 2, (62)

and

(I � qq
>)

2X

i=1

� ↵i(t)
sin↵i(t)

I + ↵i(t) cos↵i(t)�sin↵i(t)
sin3 ↵i(t)

�i(t)q
>�

�̇i(t) = 0. (63)

Introducing for i = 1, 2

Xi(t) = (I � qq
>)
� ↵i(t)
sin↵i(t)

I + ↵i(t) cos↵i(t)�sin↵i(t)
sin3 ↵i(t)

�i(t)q
>�

,

and the block matrix

X(t) =

2

64
X1(t) X2(t)

�1(t)> 0

0 �2(t)>

3

75 ,

equations (62)-(63) are equivalent to

X(t)�̇(t) = 0, 8t 2 (a, b). (64)

If we di↵erentiate (64) with respect to t, one also gets the following relation
between the extrinsic acceleration (in the embedding space R2n+2) and the
velocity of any curve in M

X(t)�̈(t) = �Ẋ(t)�̇(t). (65)

In order for � to be a geodesic in M , the orthogonal projection of the
extrinsic acceleration �̈(t) onto the tangent space T(�1(t),�2(t))M should vanish,
for all t 2 (a, b). So, using (58) one must have

�̈ �X
+
X �̈ = 0. (66)

Using (65), the geodesic equation (66) can be rewritten as

�̈ +X
+
Ẋ �̇ = 0. (67)

So far, no explicit solutions of this equation are known. Nevertheless we can
state that geodesics on M are not pairs of geodesics on S

n, except possibly
when all the points are aligned.
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4.6. Cost function on M

Now, consider the smooth cost function

F : M �!R,
(p1, p2) 7�!

1
4

�
d
2(p0, p1)� d

2(p0, p2)
�2

+ 1
4

�
d
2(p0, p1)� d

2(p1, p2)
�2

+ 1
4

�
d
2(p0, p2)� d

2(p1, p2)
�2

= 1
4

⇥�
⇥2

1 �⇥2
2

�2
+
�
⇥2

1 �⇥2
3

�2
+
�
⇥2

2 �⇥2
3

�2⇤
,

(68)

where ⇥i = arccoshp0, pii, i = 1, 2, and ⇥3 = arccoshp1, p2i.
Clearly if (p0, p1, p2) describes a spherical equilateral triangle, then F

attains its global minimum. Since the tangent space to M is only defined
implicitly, we naturally extend F from M to a smooth function F̂ , then
compute its derivative at the point (p1, p2) in the embedding space and use
the implicit definition of the tangent space.

In order to simplify the expression for the di↵erential of F̂ , introduce

�1 := ⇥2
2 +⇥2

3 � 2⇥2
1

�2 := ⇥2
1 +⇥2

3 � 2⇥2
2.

Lemma 3.

DF̂ (p1, p2)(v1, v2) =
�

⇥1
sin⇥1

�1p
>
0 �

⇥3
sin⇥3

(�1 + �2)p
>
2

�
v1

+
�

⇥2
sin⇥2

�2p
>
0 �

⇥3
sin⇥3

(�1 + �2)p
>
1

�
v2.

(69)

Proof. In order to compute the tangent map of F̂ at a pair (p1, p2), first
notice that the expression of F is equivalent to

F (p1, p2) =
1
2

�
⇥4

1 +⇥4
2 +⇥4

3 �⇥2
1

�
⇥2

2 +⇥2
3

�
�⇥2

2⇥
2
3

�
. (70)

Thus, given (v1, v2) 2 T(p1,p2)M , we can write

DF̂ (p1, p2)(v1, v2) = �2 ⇥3
1

sin⇥1
p
>
0 v1 � 2 ⇥3

2
sin⇥2

p
>
0 v2 � 2 ⇥3

3
sin⇥3

(p>2 v1 + p
>
1 v2)

+ ⇥1
sin⇥1

�
⇥2

2 +⇥2
3

�
p
>
0 v1 +

⇥2
1⇥2

sin⇥2
p
>
0 v2 +

⇥2
3⇥2

sin⇥2
p
>
0 v2

+ ⇥2
1⇥3

sin⇥3

�
p
>
2 v1 + p

>
1 v2

�
+ ⇥2

2⇥3

sin⇥3

�
p
>
2 v1 + p

>
1 v2

�

=
�

⇥1
sin⇥1

�
⇥2

2 +⇥2
3 � 2⇥2

1| {z }
:=�1

�
p
>
0 + ⇥3

sin⇥3

�
⇥2

1 +⇥2
2 � 2⇥2

3| {z }
:=�(�1+�2)

�
p
>
2

�
v1

+
�

⇥2
sin⇥2

�
⇥2

1 +⇥2
3 � 2⇥2

2| {z }
:=�2

�
p
>
0 + ⇥3

sin⇥3

�
⇥2

1 +⇥2
2 � 2⇥2

3| {z }
:=�(�1+�2)

�
p
>
1

�
v2
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The Euclidean gradient of DF̂ (p1, p2) is therefore given by

r bF (p1, p2) =

"
⇥1

sin⇥1
�1p0 �

⇥3
sin⇥3

(�1 + �2)p2
⇥2

sin⇥2
�2p0 �

⇥3
sin⇥3

(�1 + �2)p1

#
, (71)

and the Riemannian gradient of F is given by

rF (p1, p2) = P
?
ker(X)

"
⇥1

sin⇥1
�1p0 �

⇥3
sin⇥3

(�1 + �2)p2
⇥2

sin⇥2
�2p0 �

⇥3
sin⇥3

(�1 + �2)p1

#
. (72)

4.6.1. Critical points

Theorem 4. In the three following situations, (p1, p2) 2 M is a critical point

of the functional F defined by (68).

1. p0 = p1 = p2 = q;

2. p0, p1, p2 form an equilateral spherical triangle;

3. p1 = p2, and moreover q =
sin(

⇥1
3 )p0+sin(

2⇥1
3 )p1

sin⇥1
, where ⇥1 = arccos(p>0 p1).

Proof. Since (p1, p2) 2 M is a critical point of F if and only if the Riemannian
gradient rF vanishes at that point, it is enough to show that in all these
cases the orthogonal projection, onto the tangent space T(p1,p2)M , of the

Euclidean gradient r bF (given in (71)) vanishes.

Case 1. p0 = p1 = p2 = q.
In this case, ⇥i = arccos(q>pi) = arccos(1) = 0, 8i = 1, 2, 3, and so
�1 = �2 = 0. Consequently, r bF (p1, p2) = 0 and rF (p1, p2) = 0.

Case 2. p0, p1, p2 form an equilateral spherical triangle.
Here we have ⇥1 = ⇥2 = ⇥3. So, as in the previous case, �1 = �2 = 0
and clearly also r bF (p1, p2) = rF (p1, p2) = 0.

Case 3. p1 = p2 ( 6= p0) implies that ↵1 = ↵2, ⇥3 = 0, ⇥1 = ⇥2, and according to
Remark 2, all the points are on the same geodesic. Moreover, ↵0 = 2↵1

and consequently cos⇥1 = cos(3↵1), ⇥2
1 = 9↵2

1, and �1 = �2 = �9↵2
1.

We first obtain the value of q in terms of p0 and p1. For that, consider
the geodesic in S

n going through q at t = 0, with velocity v, �(t) =
cos(tkvk)q+ sin(tkvk)

kvk v. Assume that p0 = �(t0), p1 = �(t1), with t1 > 0.

Then, t0 = �2t1 and, since cos↵i = q
>
p1, we can write

p0 = cos(↵0)q �
sin(↵0)
kvk v, p1 = cos(↵1)q +

sin(↵1)
kvk v.
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Multiplying both sides of the first equation by sin↵1, both sides of the
second equation by sin(2↵1), adding them up, and using the fact that
↵0 = 2↵1 and ⇥1 = 3↵1, one obtains

q =
sin(

⇥1
3 )p0+sin(

2⇥1
3 )p1

sin⇥1
.

In order to show that (p1, p1) is a critical point, it is enough to observe
that in this case the Euclidean gradient in (71) reduces to

r bF (p1, p1) =

"
⇥1

sin⇥1
�1p0 � 2 ⇥3

sin⇥3
�1p1

⇥1
sin⇥1

�1p0 � 2 ⇥3
sin⇥3

�1p1

#
,

and clearly leaves in the orthogonal space to T(p1,p1)M given in Example
2. So, the Riemannian gradient vanishes at (p1, p1).

Theorem 5. The only critical points of the functional F in M are those in

the previous theorem.

Proof. Based on the characterization of the normal space given in (57), we
can also state that (p1, p2) is a critical point of F if, and only if, there exists
(x1, x2, x3) 2 Rn+1

⇥ R⇥ R such that

"
⇥1

sin⇥1
�1p0 �

⇥3
sin⇥3

(�1 + �2)p2
⇥2

sin⇥2
�2p0 �

⇥3
sin⇥3

(�1 + �2)p1

#
=

"
X

>
1 p1 0

X
>
2 0 p2

#2

4
x1

x2

x3

3

5 . (73)

To prove this theorem we are going to show that in all the situations
not covered by the previous theorem the system (73) is inconsistent or im-
possible. Let us assume that all the three points p0, p1 and p2 are distinct
from each other. Suppose, by contradiction, that the system (73) is pos-
sible. This means that r bF (p1, p2) 2 RS(X), which is equivalent to have
P

?
ker(X)(r

bF (p1, p2)) = 0, where P
?
ker(X) is the orthogonal projection opera-

tor defined by (58). Therefore, r bF (p1, p2) is a solution of the homogeneous
system

(I �X
+
X)y = 0. (74)

Now, let R = rref(I�X
+
X) be the reduced row echelon form of I�X

+
X

(see, for instance, [11] for details). Then, there exists an (invertible) product
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E of the elementary row operations such that R = E(I � X
+
X). So, it is

immediate to see that y is a solution of (74) if and only if it is a solution of
Ry = 0. But, since rank(I �X

+
X) = n, then R has also rank n and can be

represented as

R =


A B

0 0

�
, (75)

where the last n+ 2 rows are null. Therefore, in order for

y =


y1

y2

�
, (76)

where y1 2 Rn and y2 2 Rn+2, to be a solution for Ry = 0 it is necessary
that y2 = 0. It is evident that since pi 2 S

n, i = 0, 1, 2, r bF (p1, p2) cannot
fulfill this requirement, which leads us to the desired contradiction.

Next, we present the steepest descent algorithm (Algorithm 3) in order to
obtain approximate solutions to the problem. Figure 4 illustrates this method
for points (p1, p2) in M with fixed p0 = (0, 0, 1). In the first two images, the
points (whose coordinates are given in each caption) converge to the vertices
of a spherical equilateral triangle, corresponding to the critical point stated in
Theorem 4, case 2. In the third image, the points belong to the geodesic that
contains p0 and q and converge to the critical point, corresponding to case 3
in Theorem 4. The graphs on the right hand side show how the Euclidean
distances between pairs of points (p1, p2) in successive iterations evolve. As
expected, these distances converge linearly to zero.

Algorithm 3: Steepest descent with Armijo line search

Input : Initial point p(0) = (p(0)1 , p
(0)
2 ) and tolerance tol

Output: Stationary point p⇤ = (p⇤1, p
⇤
2)

1 for k = 0, 1, . . . do
2 Set v(k) = �rF (p(k));
3 Determine the step length ↵k according to Armijo rule;
4 Set p(k+1) = �(↵k), where � is a geodesic in M starting in p

(k)

with velocity v(k);
5 Stop if F (p(k)) < tol or krF (p(k))k < tol
6 end
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Figure 4: Plots obtained using Algorithm 3
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4.6.2. Riemannian Hessian

According to the definition (see, for instance, p. 109 in [1] or Proposition
16.22. in [9]), the Riemannian Hessian along geodesics can be computed as

HF (p1, p2)(v1, v2) =
d2

dt2

��
t=0

F (�(t)), (77)

where �(t) = (�1(t), �2(t)) is a geodesic in M satisfying �(0) = (p1, p2) and
�̇(0) = (v1, v2).

The presence of the Moore-Penrose inverse ofX in the projection operator
(58) makes the computation of the Riemannian Hessian of F challenging.
Formula (7) in [2] provides an alternative to obtain this Hessian. However,
in our case, the non-di↵erentiability of X+(t) that appears in the projection
operator (58) becomes an obstacle to use that formula.

In order to use (77), we need some additional computations to obtain
Ẋi(0) and ⇥̈j(0).

Using equation (67), one can write


�̈1(0)
�̈2(0)

�
= �X

+(0)Ẋ(0)


v1

v2

�
, (78)

where

X(t) =

2

64
X1(t) X2(t)

�1(t)> 0

0 �2(t)>

3

75 ,

and, for i = 1, 2, Xi(t) is defined as before by

Xi(t) = (I � qq
>)
� ↵i(t)
sin↵i(t)

I + ↵i(t) cos↵i(t)�sin↵i(t)
sin3 ↵i(t)

�i(t)q
>�

,

and
↵i(t) = arccoshq, �i(t)i.

The derivatives evaluated at t = 0 of the two above expressions give

↵̇i(0) = �
hq,vii
sin↵i

,
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and

Ẋi(0) = �
(I�qq>)
sin3 ↵i

�
(q>vi)(sin↵i � ↵i cos↵i)I + (sin↵i � ↵i cos↵i)viq

>

+ 3 cos↵i sin↵i�3↵i cos2 ↵i�↵i sin2 ↵i

sin2 ↵i
(q>vi)piq

>�

= �
(I�qq>)
sin3 ↵i

�
(sin↵i � ↵i cos↵i)((q

>
vi)I + viq

>)

+ (3 cot↵i(1� ↵i cot↵i)� ↵i)(q
>
vi)piq

>�

(79)

Let ⇥i(t) = arccoshp0, �i(t)i, i = 1, 2 and ⇥3(t) = arccosh�1(t), �2(t)i.
Then, for i = 1, 2,

�⇥̇i(t) sin⇥i(t) = hp0, �̇i(t)i, (80)

and
�⇥̈i(t) sin⇥i(t)� ⇥̇i(t)

2 cos⇥i(t) = hp0, �̈i(t)i. (81)

So, evaluating the above at t = 0, yields

⇥̇i(0) = �
hp0,vii
sin⇥i

, ⇥̈i(0) = �
cos⇥ihp0,vii2+sin2 ⇥ihp0,�̈i(0)i

sin3 ⇥i
. (82)

Analogous computations for ⇥3 show that

⇥̇3(0) = �
hp2,v1i+hp1,v2i

sin⇥3
, (83)

and

⇥̈3(0) = �
1

sin⇥3

�
⇥̇2

3(0) cos⇥3 + h�̈1(0), p2i+ 2hv1, v2i+ h�̈2(0), p1i
�

= �
1

sin3 ⇥3

�
cos⇥3

�
hp1, v2i

2 + 2hp1, v2ihp2, v1i+ hp2, v1i
2
�

+ sin2 ⇥3(h�̈1(0), p2i+ 2hv1, v2i+ h�̈2(0), p1i)
�

(84)

Then

HF (p1, p2)(v1, v2) =
d2

dt2

��
t=0

F (�(t))

= d
dt

��
t=0

�
2⇥̇1⇥

3
1 + 2⇥̇2⇥

3
2 + 2⇥̇3⇥

3
3 � ⇥̇1⇥1

�
⇥2

2 +⇥2
3

�
� ⇥̇2⇥2

�
⇥2

1 +⇥2
3

�

� ⇥̇3⇥3

�
⇥2

1 +⇥2
2

��

= ⇥̈1(0)⇥1(2⇥
2
1 �⇥2

2 �⇥2
3) + ⇥̈2(0)⇥2(2⇥

2
2 �⇥2

1 �⇥2
3)

+ ⇥̈3(0)⇥3(2⇥
2
3 �⇥2

1 �⇥2
2) + ⇥̇1(0)

2
�
6⇥2

1 �⇥2
2 �⇥2

3

�

+ ⇥̇2(0)
2
�
6⇥2

2 �⇥2
1 �⇥2

3

�
+ ⇥̇3(0)

2
�
6⇥2

3 �⇥2
1 �⇥2

2

�

� 4⇥1⇥2⇥̇1(0)⇥̇2(0)� 4⇥1⇥3⇥̇1(0)⇥̇3(0)� 4⇥2⇥3⇥̇2(0)⇥̇3(0)
(85)
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Now, plugging the expressions (82) and (84) in the latter and after rearrang-
ing the terms, one gets

HF (p1, p2)(v1, v2) =

= v
>
1

�⇥1 cos⇥1�1+sin⇥1(6⇥2
1�⇥2

2�⇥2
3)

sin3 ⇥1
p0p

>
0

+ sin⇥3(6⇥2
3�⇥2

1�⇥2
3)�⇥3 cos⇥3(�1+�2)

sin3 ⇥3
p2p

>
2 � 2 ⇥1

sin⇥1

⇥3
sin⇥3

(p0p
>
2 + p2p

>
0 )
�
v1

+ v
>
2

�⇥2 cos⇥2�2+sin⇥2(6⇥2
2�⇥2

1�⇥2
3)

sin3 ⇥2
p0p

>
0

+ sin⇥3(6⇥2
3�⇥2

1�⇥2
2)�⇥3 cos⇥3(�1+�2)

sin3 ⇥3
p1p

>
1 � 2 ⇥2

sin⇥2

⇥3
sin⇥3

(p0p
>
1 + p1p

>
0 )
�
v2

+ 2v>1
� (6⇥2

3�⇥2
1�⇥2

3) sin⇥3�⇥3 cos⇥3(�1+�2)

sin3 ⇥3
p2p

>
1 � (�1 + �2)

⇥3
sin⇥3

I

� 2 ⇥1
sin⇥1

⇥2
sin⇥2

p0p
>
0 � 2 ⇥3

sin⇥3

�
⇥1

sin⇥1
p0p

>
1 + ⇥2

sin⇥2
p2p

>
0

��
v2 +

⇥1
sin⇥1

�1hp0, �̈1(0)i

+ ⇥2
sin⇥2

�2hp0, �̈2(0)i �
⇥3

sin⇥3
(�1 + �2)(hp2, �̈1(0)i+ hp1, �̈2(0)i)

(86)

So, if we denote by

Y = ⇥1 cos⇥1�1+sin⇥1(6⇥2
1�⇥2

2�⇥2
3)

sin3 ⇥1
p0p

>
0

+ (6⇥2
3�⇥2

1�⇥2
2) sin⇥3�⇥3 cos⇥3(�1+�2)

sin3 ⇥3
p2p

>
2 � 2 ⇥1

sin⇥1

⇥3
sin⇥3

(p0p
>
2 + p2p

>
0 )

Z = (6⇥2
3�⇥2

1�⇥2
2) sin⇥3�⇥3 cos⇥3(�1+�2)

sin3 ⇥3
p2p

>
1 � (�1 + �2)

⇥3
sin⇥3

I

� 2 ⇥1
sin⇥1

⇥2
sin⇥2

p0p
>
0 � 2 ⇥3

sin⇥3

�
⇥1

sin⇥1
p0p

>
1 + ⇥2

sin⇥2
p2p

>
0

�

W = ⇥2 cos⇥2�2+sin⇥2(6⇥2
2�⇥2

1�⇥2
3)

sin3 ⇥2
p0p

>
0

+ sin⇥3(6⇥2
3�⇥2

1�⇥2
2)�⇥3 cos⇥3(�1+�2)

sin3 ⇥3
p1p

>
1 � 2 ⇥2

sin⇥2

⇥3
sin⇥3

(p0p
>
1 + p1p

>
0 ),

(87)

the Hessian of F at (p1, p2) can be written as

HF (p1, p2)(v1, v2) =
⇥
v
>
1 v

>
2

⇤  Y Z

Z
>

W

� 
v1

v2

�

+ ⇥1
sin⇥1

�1p
>
0 �̈1(0) +

⇥2
sin⇥2

�2p
>
0 �̈2(0)�

⇥3
sin⇥3

(�1 + �2)(p
>
2 �̈1(0) + p

>
1 �̈2(0))

=
⇥
v
>
1 v

>
2

⇤  Y Z

Z
>

W

� 
v1

v2

�

+
⇥

⇥1
sin⇥1

�1p
>
0 �

⇥3
sin⇥3

(�1 + �2)p>2
⇥2

sin⇥2
�2p

>
0 �

⇥3
sin⇥3

(�1 + �2)p>1
⇤ �̈1(0)

�̈2(0)

�
.

(88)
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Now, using equation (78) and taking into account the expression for the
Euclidean gradient of bF given in (71), we can write the Hessian in terms of
the coordinates of the embedding space

HF (p1, p2)(v1, v2) =
⇥
v
>
1 v

>
2

⇤  Y Z

Z
>

W

� 
v1

v2

�

�r bF (p1, p2)
>

2

4
X1 X2

p
>
1 0
0 p

>
2

3

5
+ 2

4
Ẋ1(0) Ẋ2(0)
v
>
1 0
0 v

>
2

3

5

v1

v2

�
,

(89)

which, according to the expressions for Ẋi(0) given by (79), is clearly a
quadratic form in v1 and v2, although not in the canonical form.

Algorithm 5: Quasi-Newton method

Input : Initial point p(0) = (p(0)1 , p
(0)
2 ), � > 0 and tolerance tol

Output: Stationary point p⇤ = (p⇤1, p
⇤
2)

1 for k = 0, 1, . . . do
2 Set B(k) = HF (p(k)) + �In ;
3 Solve d

(k) from B
(k)
d
(k) = �rF (p(k));

4 Update p
(k+1) = �(1), where � is a geodesic in M starting in p

(k)

with velocity d
(k);

5 Stop if F (p(k)) < tol or krF (p(k))k < tol
6 end
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Figure 5: Plots obtained using Algorithm 5
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We are now in conditions to classify the critical points of F given in
Theorem 4.

Theorem 6. The critical points of the function F on M are classified in the

following way:

1. when p1 = p2 6= p0, the critical point (p1, p1) is a saddle point;

2. when p0, p1, p2 form the vertices of a spherical triangle, the critical point

(p1, p2) is a global minimum.

Proof. For p1 = p2 6= p0, we have ⇥1 = ⇥2 6= 0, ⇥3 = 0, �1 = �2 = �⇥2
1. So,

taking into consideration that

lim
⇥3!0

sin⇥3�⇥3 cos⇥3

sin3 ⇥3
= 1

3 and lim
⇥3!0

⇥3
sin⇥3

= 1,

the expressions appearing in (87) reduce to

Y = 5⇥2
1 sin⇥1�⇥3

1 cos⇥1

sin3 ⇥1
p0p

>
0 +

�
6� 2

3⇥
2
1

�
p1p

>
1 �

2⇥1
sin⇥1

(p0p
>
1 + p1p

>
0 ),

Z=
�
6� 2

3⇥
2
1

�
p1p

>
1 � 2 ⇥2

1

sin2 ⇥1
p0p

>
0 �

2⇥1
sin⇥1

(p0p
>
1 + p1p

>
0 ) + 2⇥2

1In+1,

W =Y.

(90)

To simplify notations, for the rest of the proof of statement 1., we will use ⇥
and ↵ instead of ⇥1 and ↵1, respectively. Although for this case ↵ = ⇥

3 , in
the calculations below we may use either ⇥ or ↵ depending on which makes
the expressions look simpler.

To show that (p1, p1) is a saddle point, it is enough to choose two di↵erent
directions (v1,�v1) in T(p1,p1)M for which the quadratic form

HF (p1, p1)(v1,�v1) =
⇥
v
>
1 �v

>
1

⇤  Y Z

Z Y

� 
v1

�v1

�

�r bF (p1, p1)
>

2

4
X1 X1

p
>
1 0
0 p

>
1

3

5
+ 2

4
Ẋ1(0) Ẋ1(0)
v
>
1 0
0 �v

>
1

3

5


v1

�v1

�

= 2v>1 (Y � Z)v1

�
⇥
2⇥2

p
>
1 �

⇥3

sin⇥p
>
0 2⇥2

p
>
1 �

⇥3

sin⇥p
>
0

⇤
2

4
X1 X1

p
>
1 0
0 p

>
1

3

5
+ 2

4
0

v
>
1 v1

v
>
1 v1

3

5

(91)
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has opposite signs.
According to the expressions for Y and Z, we conclude after simplifica-

tions that
Y � Z =

�
7⇥2 sin⇥�⇥3 cos⇥

sin3 ⇥

�
p0p

>
0 � 2⇥2

In+1. (92)

In order to evaluate the second expression in (91), let us introduce the
matrix

W1 = 2X>
1 X1 + p1p

>
1 . (93)

According to the definition of X1 given in (56), W1 can be written as

W1 =
2↵2

sin2 ↵
I + 2↵(↵ cos↵�sin↵)

sin4 ↵
(p1q

> + qp
>
1 ) +

2 sin2 ↵�2↵2

sin4 ↵
qq

> + p1p
>
1

= 2↵2

sin2 ↵

�
I + ↵ cos↵�sin↵

↵ sin2 ↵
(p1q

> + qp
>
1 ) +

sin2 ↵�↵2

↵2 sin2 ↵
qq

> + sin2 ↵
2↵2 p1p

>
1

�
.

(94)

By defining the following rank-two matrix

K : = ↵ cos↵�sin↵
↵ sin2 ↵

(p1q
> + qp

>
1 ) +

sin2 ↵�↵2

↵2 sin2 ↵
qq

> + sin2 ↵
2↵2 p1p

>
1

=
⇥
p1 q

⇤
2

4
sin2 ↵
2↵2

↵ cos↵�sin↵
↵ sin2 ↵

↵ cos↵�sin↵
↵ sin2 ↵

sin2 ↵�↵2

↵2 sin2 ↵

3

5

p
>
1

q
>

�
,

(95)

we get
W1 =

2↵2

sin2 ↵
(I +K). (96)

It turns out that W1 is nonsingular and its inverse can be computed in
closed form using Sherman-Morrison’s formula recursively, as explained in
[22]. Eventually, we obtain

W
�1
1 = sin2 ↵

2↵2 (I � 1
d+e(dK �K

2)), (97)

with d = 1 + trK and e =
�
(trK)2 � tr(K2)

�
/2.

Further computations lead to

d = 1 + 1
2↵2

�
sin2

↵ + 4↵ cot↵(↵ cot↵� 1)
�
,

d+ e = sin4 ↵
2↵4 .

(98)

By using the well known properties of the Moore-Penrose inverse, it can
be shown that

2

4
X1 X1

p
>
1 0
0 p

>
1

3

5
+

= 1
2

"
2W�1

1 X
>
1 W

�1
1 p1 + p1 W

�1
1 p1 � p1

2W�1
1 X

>
1 W

�1
1 p1 � p1 W

�1
1 p1 + p1

#
. (99)
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We proceed by choosing

v1 =
⇥

sin⇥

�
p0 � p1 cos⇥

�
,

i.e., v1 is the initial velocity vector of the geodesic in S
n joining p1 (at t = 0)

to p0 (at t = 1). Replacing this in (92), the Hessian given in (91) becomes

HF (p1, p1)(v1,�v1) =

= 2⇥4
�
5� ⇥

sin⇥ cos⇥
�
� 2⇥4

�
2p>1 �

⇥
sin⇥p

>
0

�
W

�1
1 p1

= 2⇥4
�
5� ⇥

sin⇥ cos⇥� 2p>1 W
�1
1 p1 +

⇥
sin⇥p

>
0 W

�1
1 p1

�
.

(100)

Using the expression for W�1
1 given by (97) and some standard trigono-

metric identities, it follows that

p
>
1 W

�1
1 p1 = 1,

p
>
0 W

�1
1 p1 = �2 cos↵ + 3↵

sin↵ � 4↵ sin↵.
(101)

Plugging this expression into (100) and simplifying, one gets

HF (p1, p1)(v1,�v1)=
35↵4

2

�
4↵2 +

�
1� 2↵ cot↵

�2
+ 3

�
, (102)

which is greater than zero.
On the other hand, choosing v1 2 Tp1S

n to be orthogonal to both p1 and
p0, the quadratic form (91) simplifies to

HF (p1, p1)(v1,�v1) = �kv1k
2
�
4⇥2 + 2⇥2

p
>
1 W

�1
1 p1 �

⇥3

sin⇥p
>
0 W

�1
1 p1

�

= �kv1k
2⇥2

�
6� 3↵

sin(3↵)
cos(3↵)�cos↵+2↵ sin(3↵)

2 sin2 ↵

�
,

= �33↵2
kv1k

2
�
2� ↵2

sin2 ↵
+ 2

3
3↵

sin(3↵) cos↵
�
,

(103)

which is negative because ↵2

sin2 ↵
< 2, for all ↵ 2 (0, ⇡3 ).

This proves that (p1, p1) is indeed a saddle point.
We now proceed to the second case, when ⇥1 = ⇥2 = ⇥3, and so �1 =

�2 = 0. In this case, r bF (p1, p2) = 0 and the Hessian given by (89) reduces
to the first term. In this case, formulas (87) simplify to

Y = 2⇥2
1

sin2 ⇥1

�
2p0p

>
0 + 2p2p

>
2 � p0p

>
2 � p2p

>
0

�
,

Z= 2⇥2
1

sin2 ⇥1

�
2p2p

>
1 � p0p

>
0 � p0p

>
1 � p2p

>
0

�
,

W = 2⇥2
1

sin2 ⇥1

�
2p0p

>
0 + 2p1p

>
1 � p0p

>
1 � p1p

>
0

�
.

(104)
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Let (v1, v2) 2 T(p1,p2)M . Then, after computations and simplifications,
we can write

HF (p1, p2)(v1, v2) =
⇥
v
>
1 v

>
2

⇤  Y Z

Z
>

W

� 
v1

v2

�

= 2⇥2
1

sin2 ⇥1

�
(v>1 p0 � v

>
1 p2)

2 + (v>2 p0 � v
>
2 p1)

2 + (v>1 p0 � v
>
2 p1)

2

+ (v>1 p2 � v
>
2 p0)

2 + 4(v>1 p2)(v
>
2 p1)� 2(v>1 p0)(v

>
2 p0)

�
.

(105)

To show that the expression inside the big brackets is non-negative, it is
convenient to define the following four scalars

a := v
>
1 p0, b := v

>
1 p2, c := v

>
2 p0, d := v

>
2 p1,

and rewrite that expression as:

(a� b)2 + (c� d)2 + (a� d)2 + (b� c)2 � 2ac+ 4bd. (106)

First assume that a = b = 0. In this situation, (106) reduces to

(c� d)2 + d
2 + c

2
, (107)

which is evidently nonnegative. Now, assume that a 6= 0 or b 6= 0. After doing
some extensive yet straightforward computations, (106) can be rewritten as

3(bc+a(d�c))2+(ad+bc�2bd+ca�2(a2+b2�ab))2

2(a2+b2�ab) ,

which is nonnegative, since a
2 + b

2
� ab = ((a� b)2 + a

2 + b
2)/2 .

In conclusion, the Riemannian Hessian is positive semidefinite and there-
fore the critical point in the second case is indeed a point of local minimum.

Figure 6 shows the convergence behavior of points (p1, p2) in a neighbor-
hood of a saddle point. If p1 and p2 belong to the geodesic that contains
p0, then they converge to the saddle point. Otherwise, they converge to the
minimum of the cost function (the vertices of a spherical equilateral triangle).
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(a) p1 = (0.9854, 0, 0.017), p2 = (0.9996, 0,�0.0292) (b) p1 = (0.9975, 0.01, 0.0707), p2 = (0.9975,�0.01, 0.0707)

Figure 6: Behavior of a neighborhood of a saddle point.
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