
LEBESGUE INTEGRATION ON σ-LOCALES:

SIMPLE FUNCTIONS

RAQUEL BERNARDES

Abstract. This paper presents a point-free version of the Lebesgue in-
tegral for simple functions on σ-locales. It describes the integral with
respect to a measure defined on the coframe of all σ-sublocales, moving
beyond the constraints of Boolean algebras. It also extends the notion of
integrable function, usually reserved for measurable functions, to localic
general functions.

1. Introduction

The concept of a “point-free” integral is not new in the literature. In
1965, Segal [23] proposed an “algebraic integration theory” (i.e., concerned
with features independent of isomorphisms), whose starting point is an alge-
braic structure with no underlying space of points. More recently, Coquand-
Palmgren [11], Coquand-Spitters [12] and Vickers [25] gave a constructive
account of measure theory. They approached the real numbers construc-
tively, working with lower reals, upper reals and Dedekind reals. With a
more categorical perspective, Kriz-Pultr [19], Ball-Pultr [2] and Jakl [18]
proposed generalisations of measure theory to abstract σ-algebras (that is,
Boolean algebras with countable joins). They took morphisms of abstract
σ-algebras as measurable functions. Then, in that framework, they focused
on the Daniell’s version of Lebesgue integral (for an account of Daniell’s
integral see [22]).

The novelty of our approach in this paper lies in our effort to move beyond
the constraints of Boolean algebras and of a specified notion of “measurabil-
ity”. We aim to describe the integral with respect to measures defined on
coframes and to extend the concept of integrable function (usually reserved
for measurable functions) to arbitrary functions.

Just as locales generalise a substantial part of topological spaces ([21]), σ-
locales generalise a substantial part of measurable spaces ([1]). Motivated by
this, Simpson proposed in [24] a new approach to the problem of measuring
subsets. Replacing “subsets” by “σ-sublocales” (which actually generalise the
former when a space is viewed as a σ-locale), Simpson extended a measure
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µ on a σ-locale L to a measure µ⋄ on the coframe S(L) of all σ-sublocales of
L. Remarkably, this approach not only overcomes some well-known classic
paradoxes (as the ones of Vitali [26] and Banach-Tarski [3]), but it also shows
that there is no need to introduce any formal notion of measurability. Since
µ⋄ assigns a value to every σ-sublocale of L, it makes sense to assume that
every σ-sublocale of L is “measurable”.

In [9], we studied measurable functions on a σ-locale (previously mentioned
by Banaschewski-Gilmour [6] as σ-continuous maps). A measurable function

on a σ-locale L is a σ-frame homomorphism f : L(R) → L from the frame
of reals into L. General real-valued functions on L are measurable functions
on C(L) = S(L)op, the congruence frame of L.

Our aim now is to develop a theory of integration for general real-valued
functions in a σ-locale L by defining the integral with respect to a measure
defined on all of S(L). This paper is the first step on that direction: we
present a point-free version of the Lebesgue integral for localic simple func-
tions (regardless of being measurable or not). In order to work with simple
functions, we will have to introduce the limit superior and the limit inferior
of a sequence of measurable functions. This will require some investigation
of the behaviour of countable joins and meets in the ring M(L) of measurable
functions on a σ-locale L.

In a subsequent paper ([10]) we intend to use Corollary 6.3 (that states
that under certain conditions a nonnegative function on L can be written as
a limit of simple functions) to extend the integral to more general functions.

The paper is structured as follows. In Section 2, we review some essential
definitions and results about σ-locales, σ-frames and the ring of measurable
functions. Then, we study the existence of countable joins and countable
meets of measurable functions (Section 3), in order to establish the notions
of limit superior, limit inferior and limit of a sequence of measurable functions
in Section 4. In Section 5, we present the ring of measurable simple functions,
and we show in Section 6 that any nonnegative measurable function on L
can be written as a limit of an increasing sequence of nonnegative simple
functions. Then, in Section 7, we introduce the integral of simple functions
and study its elementary properties. Firstly, we focus on nonnegative simple
functions; and later (Section 8), we extend it to general simple functions.
In Section 9, we prove that the indefinite integral of a nonnegative simple
function is a measure on S(L). Finally, in Section 10, we show that our point-
free integral generalises the classic Lebesgue integral of simple functions. We
close the paper with a final comment on the integration of more general
functions on L.
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2. Background

Our general reference for point-free topology and lattice theory is Picado-
Pultr [21]. For σ-frames (σ-locales) and congruences on σ-frames, we use
Madden [20] and Frith-Schauerte [14]. We follow our previous paper [9] for
measurable functions on σ-locales. And finally, for general classic measure
theory and, in particular, simple functions and integrable simple functions,
our main references are Halmos [17], Evans-Gariepy [13] and Bartle [8].

2.1. Frames and locales. A frame is a complete lattice L (with bottom 0
and top 1) satisfying the distributive law

(
∨

a∈A

a
)

∧ b =
∨

a∈A

(a ∧ b)

for every A ⊆ L and b ∈ L. Equivalently, it is a complete Heyting algebra,
with the Heyting implication given by a → b =

∨

{x ∈ L | a ∧ x ≤ b}
and pseudocomplements given by a∗ = a → 0 =

∨

{x ∈ L | a ∧ x = 0}.
Whenever the pseudocomplement of an element a ∈ L is the complement of
a, we shall denote it by ac. A frame homomorphism is a map between frames
that preserves finite meets and arbitrary joins.

Frames and frame homomorphisms form a category that will be denoted
by Frm. The category of locales and localic maps is the opposite category
Loc = Frm

op.

2.2. σ-Frames and σ-locales. A lattice L is join-σ-complete if it has joins
of all countable A ⊆ L. A join-σ-complete lattice is a σ-frame [4, 20] if it
satisfies the distributive law

(
∨

a∈A

a
)

∧ b =
∨

a∈A

(a ∧ b)

for every countable A ⊆ L and b ∈ L. A σ-frame homomorphism is a
map between σ-frames that preserves finite meets and countable joins. The
category of σ-frames and σ-frame homomorphisms will be denoted by σFrm.

The category of σ-locales and σ-localic maps is the opposite category
σLoc = σFrm

op. A remarkable difference between Loc and σLoc lies in the
fact that while the subobjects of a locale L in Loc, refered to as sublocales,
have a useful concrete description as subsets of L (see [21]), a similar de-
scription is not possible in σLoc. Indeed, a subobject S of an object L in
σLoc, that we refer to as a σ-sublocale, can only be described by a σ-frame
quotient L/θS given by a σ-frame congruence θS on L, that is, an equivalence
relation on L satisfying the congruence properties

(C1) (x, y), (x′, y′) ∈ θS ⇒ (x ∧ x′, y ∧ y′) ∈ θS,
(C2) (xa, ya) ∈ θS (a ∈ A,A = countable) ⇒

(
∨

a∈A

xa,
∨

a∈A

ya
)

∈ θS.
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The set C(L) of all congruences on a σ-frame L, ordered by inclusion, is
a frame [20]. Hence the dual lattice S(L) of all σ-sublocales of L, equipped
with the partial order

S ≤ T if and only if θT ⊆ θS,

is a coframe. Given a complemented σ-sublocale S, its complement Sc is
precisely the σ-sublocale defined by θcS.

The open and closed σ-sublocales associated with an element a ∈ L are the
σ-sublocales o(a) and c(a) represented, respectively, by the open and closed
congruences

∆a := {(x, y) ∈ L× L | x ∧ a = y ∧ a}

∇a := {(x, y) ∈ L× L | x ∨ a = y ∨ a}.

They are complemented to each other in C(L).
Setting ∆[L] := {∆a | a ∈ L} and ∇[L] := {∇a | a ∈ L}, the map

∇ : L → ∇[L] is an isomorphism of σ-frames (an embedding of L in C(L))
while ∆: Lop → ∆[L] is an isomorphism of σ-coframes (an embedding of L
in S(L), with L isomorphic to o[L] := {o(a) | a ∈ L}).

In particular,

0C(L) = ∇0L = ∆1L = {(x, y) ∈ L× L | x = y},

1C(L) = ∇1L = ∆0L = L× L,

while 1S(L) = L/0C(L) and 0S(L) = L/1C(L) are isomorphic to L and {0 = 1},
respectively.

2.3. The frames of reals and of extended reals. The frame of reals [5]
is the frame L(R) generated by elements (p,—) and (—, q), with p, q ∈ Q,
subject to the relations

(R′
1) (p,—) ∧ (—, q) = 0 whenever p ≥ q;

(R′
2) (p,—) ∨ (—, q) = 1 whenever p < q;

(R′
3) (p,—) =

∨

{(r,—) | p < r};
(R′

4) (—, q) =
∨

{(—, s) | s < q};
(R′

5) 1 =
∨

{(p,—) | p ∈ Q};
(R′

6) 1 =
∨

{(—, q) | q ∈ Q}.

The frame L(R) of extended reals [7] is the frame generated by all (p,—)
and (—, q), with p, q ∈ Q, subject to the relations

(R′
1) (p,—) ∧ (—, q) = 0 whenever p ≥ q;

(R′
2) (p,—) ∨ (—, q) = 1 whenever p < q;

(R′
3) (p,—) =

∨

{(r,—) | p < r};
(R′

4) (—, q) =
∨

{(—, s) | s < q}.

Since the relations involved only deal with countable joins and any count-
ably generated σ-frame L is automatically a frame, the frame L(R) (resp.
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L(R)) corresponds to the σ-frame defined by the same generators and rela-
tions (see [6, 24] for more details).

A map from the generating set of L(R) (resp. L(R)) into a σ-frame L
defines a σ-frame homomorphism f : L(R) → L (resp. f : L(R) → L) if and
only if it sends the relations of L(R) (resp. L(R)) into identities in L.

2.4. Rings of measurable functions. A measurable real function ([9]) on
a σ-frame L is a σ-frame homomorphism f : L(R) → L . These functions
were originally introduced by Banaschewski-Gilmour [6] as continuous real-

valued functions for σ-frames. Similarly, a measurable extended real function

on L is a σ-frame homomorphism f : L(R) → L.
We denote by M(L) and M(L) the sets of all measurable real functions and

all measurable extended real functions on L, respectively. M(L) and M(L)
are both partially ordered by

f ≤ g ≡ ∀p ∈ Q, f(p,—) ≤ g(p,—)

⇔ ∀q ∈ Q, g(—, q) ≤ f(—, q).

We say that an f ∈ M(L) is finite if
∨

{f(p,—) | p ∈ Q} = 1 =
∨

{f(—, q) | q ∈ Q}.

Finite measurable extended real functions are clearly in a one-to-one cor-
respondence with σ-frame homomorphisms f : L(R) → L. Thus, we can
regard M(L) as the subset {f ∈ M(L) | f is finite} of M(L).

We will also deal with the sets

F(L) := M(C(L)) = σFrm(L(R),C(L))

and F(L) := M(C(L)) = σFrm(L(R),C(L))

of all arbitrary real functions and arbitrary extended real functions on a σ-
frame L. Identifying each f ∈ M(L) with ∇◦f ∈ F(L), we have M(L) ⊆ F(L).
Moreover, an f : L(R) → C(L) is measurable on L if

f(p,—), f(—, q) ∈ ∇[L] for all p, q ∈ Q.

In [9], we described some of the algebraic operations in M(L). Here we
outline the ones that we will use throughout the paper.

(1) Let 0 < λ ∈ Q and f, g ∈ M(L). Then, for each p, q ∈ Q, we have:
(a) (λ · f)(p,—) = f( p

λ
,—) and (λ · f)(—, q) = f(—, q

λ
);

(b) −f(p,—) = f(—,−p) and −f(—, q) = f(−q,—);
(c) (f ∨ g)(p,—) = f(p,—) ∨ g(p,—) and (f ∨ g)(—, q) = f(—, q) ∧

g(—, q);
(d) (f ∧ g)(p,—) = f(p,—) ∧ g(p,—) and (f ∧ g)(—, q) = f(—, q) ∨

g(—, q).
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(2) Moreover, if f, g ∈ M(L), then (f+g)(—, q) =
∨

t∈Q

(f(—, t)∧g(—, q−t)),

and (f + g)(p,—) =
∨

t∈Q

(f(t,—) ∧ g(p− t,—)).

(3) If f, g ∈ M(L) are such that 000 ≤ f ∧ g, then

(f · g)(p,—) =

{

1 if p < 0
∨

s>0 f(s,—) ∧ g(p
s
,—) if p ≥ 0,

(f · g)(—, q) =

{

0 if q ≤ 0
∨

s>0 f(—, s) ∧ g(—, q
s
) if q > 0.

For each r ∈ Q, we also have a nullary operation r defined by

r(p,—) =

{

1 if p < r

0 if p ≥ r
and r(—, q) =

{

0 if q ≤ r

1 if q > r.

An f ∈ M(L) is nonnegative if f ≥ 000. Given an f ∈ M(L), we define the
positive part of f , the negative part of f and the modulus of f , respectively,
by

f+ := f ∨ 000, f− := (−f) ∨ 000 and |f | := f+ + f−.

Furthermore, for any f ∈ M(L), we have

f = f+ − f−.

2.5. σ-scales in σ-frames. In [9], we have shown that measurable func-
tions can be produced via σ-scales as follows.

Let ϕ : Q → L be a σ-scale, that is, a map for which there is a family
(cr)r∈Q of elements of L such that ϕ(s) ∧ cr = 0 whenever s ≤ r, and
cr ∨ ϕ(s) = 1 whenever r < s. Then there is a measurable extended real
function f : L(R) → L determined by

f(p,—) =
∨

r>p

cr and f(—, q) =
∨

r<q

ϕ(r) for all p, q ∈ Q.

If the σ-scale ϕ is finite, that is,
∨

{ϕ(r) | r ∈ Q} = 1 =
∨

{cr | r ∈ Q}, then
the corresponding function f is finite.

Example 2.5.1. Extended constant functions. For each r ∈ Q ∪ {±∞},
let ϕr(s) = 0 if s ≤ r and ϕr(s) = 1 if s > r. The map ϕr : Q → L is a
σ-scale in L that generates the measurable function r : L(R) → L given by
the formulas

r(p,—) =

{

1 if p < r

0 if p ≥ r
and r(—, q) =

{

0 if q ≤ r

1 if q > r.

We call this the extended constant function associated with r. If r ∈ Q, the
extended constant function r is finite, and we simply refer to it as a constant

function.
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Example 2.5.2. Characteristic functions. For each complemented a ∈ L,
consider the finite σ-scale defined by ϕa(r) = 0 if r ≤ 0, ϕa(r) = ac if
0 < r ≤ 1 and ϕa(r) = 1 if r > 1. The finite measurable function

χ
a : L(R) → L

generated by ϕa is given by

χ
a(p,—) =











1 if p < 0

a if 0 ≤ p < 1

0 if p ≥ 1

and χ
a(—, q) =











0 if q ≤ 0

ac if 0 < q ≤ 1

1 if q > 1.

This is the characteristic function associated with a ∈ L.

3. Countable joins and meets

In the previous section we mentioned that M(L) is closed under binary
meets and binary joins. We shall now study the behaviour of countable joins
and countable meets. (A similar study in F(L), for a frame L, was previously
done in [16].) Throughout this paper, the join and the meet of a sequence
(fn)n∈N in M(L) will be denoted by supn∈N fn and infn∈N fn, respectively.

Let L be a σ-frame and consider a sequence (fn : L(R) → L)n∈N in M(L).

Proposition 3.1. If
∨

n∈N fn(—, q) is complemented in L for every q ∈ Q,

then infn∈N fn exists in M(L), with

(inf
n∈N

fn)(—, q) =
∨

n∈N

fn(—, q),

(inf
n∈N

fn)(p,—) =
∨

r>p

(
∨

n∈N

fn(—, r)
)c

for all p, q ∈ Q. Moreover, if each fn ∈ M(L) and
∨

q∈Q

(
∨

n∈N

fn(—, q)
)c

= 1,

then infn∈N fn ∈ M(L).

Proof. Define ϕ(r) :=
∨

n∈N fn(—, r) for each r ∈ Q. Set cr := ϕ(r)c. Note
that ϕ : Q → L is an increasing map. Thus, ϕ(r) ∧ cs = ϕ(r) ∧ ϕ(s)c = 0
for any r ≤ s, and cs ∨ ϕ(r) = ϕ(s)c ∨ ϕ(r) = 1 otherwise. As a result, ϕ
is a σ-scale in L, and the corresponding extended real-valued function is the
meet of {fn | n ∈ N}. From Section 2.5, it is given by

(inf
n∈N

fn)(—, q) =
∨

r<q

ϕ(r) =
∨

r<q

∨

n∈N

fn(—, r) =
∨

n∈N

∨

r<q

fn(—, r) =
∨

n∈N

fn(—, q),

(inf
n∈N

fn)(p,—) =
∨

r>p

cr =
∨

r>p

(
∨

n∈N

fn(—, r)
)c
.
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If each fn is finite and
∨

q∈Q

(
∨

n∈N fn(—, q)
)c

= 1, we have
∨

p∈Q

(inf
n∈N

fn)(p,—) =
∨

p∈Q

∨

r>p

(
∨

n∈N

fn(—, r)
)c

=
∨

r∈Q

(
∨

n∈N

fn(—, r)
)c

= 1 and

∨

q∈Q

(inf
n∈N

fn)(—, q) =
∨

q∈Q

∨

n∈N

fn(—, q) =
∨

n∈N

∨

q∈Q

fn(—, q) = 1. �

Corollary 3.2. If (fn)n∈N is a sequence in M(L) such that
∨

n∈N fn(—, q) is

complemented for every q ∈ Q and there is a g ∈ M(L) such that g ≤ fn for

each n ∈ N, then infn∈N fn exists in M(L).

Proof. From fn(—, r) ≤ g(—, r) for all r ∈ Q, it follows that

g(r,—) ∧
∨

n∈N

fn(—, r) ≤
∨

n∈N

(

g(r,—) ∧ g(—, r)
)

= 0.

Hence g(r,—) ≤
(
∨

n∈N fn(—, r)
)c

and

1 =
∨

r∈Q

g(r,—) ≤
∨

r∈Q

(
∨

n∈N

fn(—, r)
)c
. �

Corollary 3.3. F(L) is closed under countable meets in M(L).

Dual results regarding the existence of countable joins of measurable func-
tions follow similarly:

Proposition 3.4. If
∨

n∈N fn(p,—) is complemented in L for every p ∈ Q,

then supn∈N fn exists in M(L) and

(sup
n∈N

fn)(p,—) =
∨

n∈N

fn(p,—),

(sup
n∈N

fn)(—, q) =
∨

r<q

(
∨

n∈N

fn(r,—)
)c

for all p, q ∈ Q. Additionally, if each fn ∈ M(L) and
∨

p∈Q

(
∨

n∈N

fn(p,—)
)c

= 1,

then supn∈N fn ∈ M(L).

Corollary 3.5. If (fn)n∈N is a sequence in M(L) such that
∨

n∈N fn(p,—) is

complemented for every p ∈ Q and there is a g ∈ M(L) such that fn ≤ g for

each n ∈ N, then supn∈N fn exists in M(L).

Corollary 3.6. F(L) is closed under countable joins in M(L).

When L is a frame, the countable meet given by Proposition 3.1 and the
countable join given by Proposition 3.4 are defined by

(inf
n∈N

fn)(—, q) =
∨

n∈N

fn(—, q), (inf
n∈N

fn)(p,—) =
∨

r>p

∧

n∈N

fn(r,—),

and

(sup
n∈N

fn)(p,—) =
∨

n∈N

fn(p,—), (sup
n∈N

fn)(—, q) =
∨

r<q

∧

n∈N

fn(—, r),



LEBESGUE INTEGRATION ON σ-LOCALES 9

coinciding with the formulas in [16].

4. Limit inferior and limit superior. Limits of functions

We may now introduce the limit of a sequence of measurable functions.
Our motivation is the classic definition in [13].

Given a σ-frame L, let

(fk : L(R) → L)k∈N

be a sequence in M(L). The limit inferior and the limit superior of (fk)k∈N
are defined as

lim
k→+∞

inf fk := sup
n≥1

inf
k≥n

fk,

lim
k→+∞

sup fk := inf
n≥1

sup
k≥n

fk.

Note that they may not exist. When they both exist and are equal, we say
that the limit of (fk)k∈N exists and write

lim
k→+∞

fk = lim
k→+∞

inf fk = lim
k→+∞

sup fk.

Proposition 4.1. If the limit superior and the limit inferior of (fk)k∈N exist,

then

lim
k→+∞

inf fk ≤ lim
k→+∞

sup fk.

Proof. Set hn := supk≥n fk and gm := infk≥m fk. Then (hn)n∈N is a decreasing
sequence while (gm)m∈N is increasing. Moreover, gk ≤ hk for every k ∈ N.
Fix n ∈ N. If k ≤ n, then gk ≤ gn ≤ hn. If k > n, then gk ≤ hk ≤ hn. Hence

sup
k∈N

gk ≤ hn

for every n ∈ N, which means that supk∈N gk ≤ infn∈N hn, as claimed. �

Proposition 4.2. Let (fk)k∈N and (gk)k∈N be sequences in M(L).

(1) If lim sup fk, lim sup gk and lim sup(fk + gk) exist, then

lim
k→+∞

sup(fk + gk) ≤ lim
k→+∞

sup fk + lim
k→+∞

sup gk.

(2) If lim inf fk, lim inf gk and lim inf(fk + gk) exist, then

lim
k→+∞

inf fk + lim
k→+∞

inf gk ≤ lim
k→+∞

inf(fk + gk).

Proof. Note that for any j ≥ n,

inf
k≥n

fk + inf
k≥n

gk ≤ fj + gj ≤ sup
k≥n

fk + sup
k≥n

gk,
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which implies that

inf
k≥n

fk + inf
k≥n

gk ≤ inf
j≥n

(fj + gj) and sup
j≥n

(fj + gj) ≤ sup
k≥n

fk + sup
k≥n

gk.

As a result, since (infk≥n fk)n∈N and (infk≥n gk)n∈N are increasing sequences,
we get

sup
n∈N

inf
k≥n

fk + sup
n∈N

inf
k≥n

gk = sup
n∈N

(

inf
k≥n

fk + inf
k≥n

gk
)

≤ sup
n∈N

inf
j≥n

(fj + gj).

Similarly, since (supk≥n fk)n∈N and (supk≥n gk)n∈N are decreasing, we have

inf
n∈N

sup
k≥n

fk + inf
n∈N

sup
k≥n

gk = inf
n∈N

(

sup
k≥n

fk + sup
k≥n

gk
)

≥ inf
n∈N

sup
j≥n

(fj + gj). �

Remark 4.3. Although it can be hard to check whether the limit of a
sequence in M(L) does exist or not, the answer is straightforward whenever
the sequence is monotone:

If (fk)k∈N is an increasing (resp. decreasing) sequence, its limit exists if
and only if supk∈N fk (resp. infk∈N fk) exists, and

lim
k→+∞

fk = sup
k∈N

fk (resp. lim
k→+∞

fk = inf
k∈N

fk).

Combining the previous remark with Corollaries 3.3 and 3.6, one ensures
the existence of the limit of a monotone sequence of measurable functions in
F(L). All that is left to check is whether the limit is measurable or not.

Proposition 4.4. Every monotone sequence in M(L) has a limit in F(L).
Every monotone and bounded sequence in M(L) has a limit in F(L).

In the following example, we describe a simplified way of determining the
limit of a monotone sequence.

Example 4.5. Let us compute the limit of the decreasing sequence (fn)n∈N
given by fn = 1

n

1
n
1
n

(recall Example 2.5.1). Since it is a bounded and monotone
sequence of finite measurable functions, from the previous proposition we
know that its limit exists and

lim
n

fn = inf
n∈N

fn ∈ F(L).

Moreover, for each q ∈ Q,

(inf
n∈N

fn)(—, q) =
∨

n∈N

fn(—, q) =

{

0 if q ≤ 0

1 if q > 1.

Indeed, if q ≤ 0, fn(—, q) = 0 for all n ∈ N. Otherwise, there is nq ∈ N such
that 0 < 1

nq
< q and

∨

n∈N

fn(—, q) ≥ fnq
(—, q) = 1.
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Because ϕ(r) := (infn∈N fn)(—, r) is a σ-scale in C(L) generating infn∈N fn
(see [9, Proposition 3.8] for more details) and C(L) is a frame, for each p ∈ Q,

(inf
n∈N

fn)(p,—) =
∨

r>p

(inf
n∈N

fn)(—, r)c =

{

1 if p < 0

0 if p ≥ 1.

Hence, both (infn∈N fn)(p,—) and (infn∈N fn)(—, q) are in ∇[L] for all p, q ∈
Q, which means that infn∈N fn is measurable on L. More precisely, we have

lim
n

1
n

1
n
1
n
= 000.

5. Simple functions

In this section, we study a special type of σ-localic functions, the mea-
surable simple functions, which are the point-free counterparts of finite lin-
ear combinations of characteristic functions associated with measurable sets.
This class of functions forms a subring of M(L) and will be crucial to intro-
duce integration in σ-frames.

Let L be a σ-frame. We will denote by BL := {a ∈ L | a is complemented}
the sublattice of complemented elements in L.

Definition 5.1. We say that a measurable function f : L(R) → L is simple

when it is a finite linear combination of characteristic functions with rational
scalars, that is, if there exist n ∈ N, r1, . . . , rn ∈ Q and a1, . . . , an ∈ BL such
that

f =
n
∑

i=1

ri · χai .

Whenever r1 < r2 < · · · < rn and a1, . . . , an ∈ BLr{0} are pairwise disjoint
with

∨n

i=1 ai = 1, we say that
∑n

i=1 ri · χai is the canonical form of f .

In particular, characteristic functions are simple. Recalling Example 2.5.2
and the algebraic operations in M(L) presented in Section 2.4, it is a straight-
forward exercise to prove the next lemma. It summarises some basic prop-
erties that will be helpful throughout this section.

Lemma 5.2. The following statements hold for a σ-frame L:

(1) χ
0L = 000. Moreover, for any a, b ∈ BL, a ≤ b if and only if χa ≤ χ

b.

(2) For any a, b ∈ BL, χa · χb = χ
a∧b.

(3) If a1, . . . , ak ∈ BL are pairwise disjoint, then χ
a1+· · ·+χ

ak = χ
∨k
i=1ai

.

From any representation of a simple function, we can always obtain its
canonical form.

Proposition 5.3. The following statements are equivalent for a σ-frame L
and an f ∈ M(L):

(1) There are r1, . . . , rn ∈ Q and a1, . . . , an ∈ BL such that f =
∑n

i=1 ri ·
χ
ai.
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(2) There are r1, . . . , rn ∈ Q and pairwise disjoint a1, . . . , an ∈ BLr {0}
such that f =

∑n

i=1 ri · χai.

(3) There are r1, . . . , rn ∈ Q and pairwise disjoint a1, . . . , an ∈ BLr {0}
with

∨n

i=1 ai = 1 such that f =
∑n

i=1 ri · χai.

(4) There are r1 < · · · < rn ∈ Q and pairwise disjoint a1, . . . , an ∈
BLr {0} with

∨n

i=1 ai = 1 such that f =
∑n

i=1 ri · χai.

Proof. (1)⇒(2): Since ai = 0L implies that χai = 000, we may assume without
loss of generality that a1, . . . , an ∈ BL r {0}. Moreover, as ai, aj ∈ BL, we
have ai = (ai ∧ aj) ∨ (ai ∧ acj) and aj = (aj ∧ ai) ∨ (aj ∧ aci). Therefore,

ri · χai + rj · χaj = ri · χai∧aj + ri · χai∧a
c
j
+ rj · χaj∧ai + rj · χaj∧a

c
i

= (ri + rj) · χai∧aj + ri · χai∧a
c
j
+ rj · χaj∧a

c
i
,

where ai ∧ aj, ai ∧ acj and aj ∧ aci are pairwise disjoint.

(2)⇒(3): If
∨n

i=1 ai 6= 1, take a := (
∨n

i=1 ai)
c. Then a 6= 0 and

f =
n
∑

i=1

ri · χai =
n
∑

i=1

ri · χai + 0 · χa,

where a1, . . . , an, a ∈ BLr{0} are pairwise disjoint because ai∧a ≤ ac∧a = 0
for every i.

(3)⇒(4): If ri = rj, it follows from ai ∧ aj = 0 that

ri · χai + rj · χaj = ri · (χai + χ
aj) = ri · χai∨aj .

In addition, for k ∈ {1, . . . , n}r{i, j}, (ai∨aj)∧ak = (ai∧ak)∨(aj∧ak) = 0.

(4) ⇒ (1) is immediate. �

Proposition 5.4. Let f =
∑n

i=1 ri · χai be a measurable simple function on

L with r1 < · · · < rk < 0 ≤ rk+1 < · · · < rn ∈ Q and pairwise disjoint

a1, . . . , an ∈ BL. For each p, q ∈ Q, f(p,—) and f(—, q) are given by the

following formulas:
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f(p,—) f(—, q)

1 if p < r1 0 if q ≤ r1

ac1 if r1 ≤ p < r2 a1 if r1 < q ≤ r2

(a1 ∨ a2)
c if r2 ≤ p < r3 a1 ∨ a2 if r2 < q ≤ r3

...
...

...
...

(

k−1
∨

i=1

ai
)c

if rk−1 ≤ p < rk
k−1
∨

i=1

ai if rk−1 < q ≤ rk

n
∨

i=k+1

ai if rk ≤ p < rk+1

(

n
∨

i=k+1

ai
)c

if rk < q ≤ rk+1

...
...

...
...

an−1 ∨ an if rn−2 ≤ p < rn−1 (an−1 ∨ an)
c if rn−2 < p ≤ rn−1

an if rn−1 ≤ p < rn acn if rn−1 < p ≤ rn

0 if rn ≤ p 1 if rn < q

Proof. Since the proof of this result is lengthy but straightforward, we will
only outline each of its three parts. Firstly, we suppose that 0 < r1 < · · · < rn
and prove the claim by induction over n ∈ N (applying the formulas for sum
in M(L)). Next, we apply the previous step to deduce the cases when (I)
0 ≤ r1 < · · · < rn and (II) r1 < · · · < rn < 0. Finally, if r1 < · · · < rk < 0 ≤
rk+1 < · · · < rn, note that f = fk + fn−k, where

fk :=
k
∑

i=1

ri · χai and fn−k :=
n
∑

i=k+1

ri · χai .

Thus, we can use (I) and (II) to obtain the formulas for fn−k and fk, respec-
tively. Then the result follows straightforwardly from the sum in M(L). �

In particular, if a1, . . . , an ∈ BL are pairwise disjoint and
∨n

i=1 ai = 1,

we have (
∨j

i=1 ai)
c =

∨n

i=j+1 ai for any j ∈ {1, . . . , n − 1}. Hence, we get
the following formulas describing the canonical representation of a simple
function.

Corollary 5.5. Let f =
∑n

i=1 ri · χai be a measurable simple function on

L with r1 < · · · < rn ∈ Q and pairwise disjoint a1, . . . , an ∈ BL such that
∨n

i=1 ai = 1. For each p, q ∈ Q, f(p,—) and f(—, q) are given by the following

formulas:
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f(p,—) f(—, q)

1 if r1 < p 0 if q ≤ r1

n
∨

i=2

ai if r1 ≤ p < r2 a1 if r1 < q ≤ r2

n
∨

i=3

ai if r2 ≤ p < r3 a1 ∨ a2 if r2 < q ≤ r3

...
...

...
...

an if rn−1 ≤ p < rn
n−1
∨

i=1

ai if rn−1 < q ≤ rn

0 if rn ≤ p 1 if rn < q

Remark 5.6. It follows from the above corollary that each simple func-
tion f : L(R) → L is uniquely determined by its canonical form. Indeed,
if
∑n

i=1 ri · χai and
∑m

i=1 si · χbi are canonical forms of f , then n = m and
rj = sj for all 1 ≤ j ≤ n. Besides,

a1 = f(—, r2) = b1,

aj =
(

j−1
∨

i=1

ai ∨
n
∨

i=j+1

ai
)c

=
(

f(—, rj) ∨ f(rj,—)
)c

=
(

j−1
∨

i=1

bi ∨
n
∨

i=j+1

bi
)c

= bj,

and an = f(rn−1,—) = bn.

Let
SM(L) := {f ∈ M(L) | f is simple}.

Proposition 5.7. If f, g ∈ SM(L) and λ ∈ Q, then λ · f , −f , f · g, f + g
and |f | are simple functions. Consequently, SM(L) is a subring of M(L).

Proof. Suppose that f =
∑n

i=1 ri ·χai and g =
∑m

j=1 sj ·χbj are the canonical

representations of f and g, respectively. As a consequence of M(L) being an
algebra over Q, we have that

λ · f =
n
∑

i=1

λ · (ri · χai) =
n
∑

i=1

(λri) · χai

and, in particular, for λ = −1,

−f = −
(

n
∑

i=1

ri · χai

)

=
n
∑

i=1

(−ri) · χai .

Moreover, by Lemma 5.2, we have

f · g =
n
∑

i=1

m
∑

j=1

(risj) · (χai · χbj) =
n
∑

i=1

m
∑

j=1

(risj) · χai∧bj .
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As 111 = χ
1L = χ

∨m
j=1bj

=
∑m

j=1
χ
bj , for each i ∈ {1, . . . , n},

ri · χai = ri · χai ·
(

m
∑

j=1

χ
bj

)

=
m
∑

j=1

ri · χai∧bj .

Similarly, sj · χbj =
∑n

i=1 sj · χai∧bj for each j ∈ {1, . . . ,m}. Therefore,

f + g =
n
∑

i=1

ri · χai +
m
∑

j=1

sj · χbj =
n
∑

i=1

m
∑

j=1

ri · χai∧bj +
m
∑

j=1

n
∑

i=1

sj · χai∧bj

=
n
∑

i=1

m
∑

j=1

(ri + sj) · χai∧bj .

Finally, suppose with no loss of generality that r1 < · · · < rk < 0 ≤ rk+1 <
· · · < rn. It is easy to check that

f− = −
(

k
∑

i=1

ri · χai

)

and f+ =
n
∑

i=k+1

ri · χai .

Hence, |f | = f+ + f− is also a simple function. �

Remark 5.8. For each σ-frame L, we have

SM(L) ⊆ M(L) ∩ SM(C(L)) ⊆ F(L) ⊆ F(L).

6. Decomposition of nonnegative measurable functions

A well-known result in measure theory states that any nonnegative mea-
surable function is a pointwise limit of an increasing sequence of nonnegative
simple functions ([13, Theorem 1.12]). In this section, we establish a coun-
terpart of this result for point-free measurable functions. This is one of the
most important results about the class of measurable simple functions. For
that we need the following technical lemma.

Lemma 6.1. Let f : L(R) → L be a measurable function on L such that

f(r,—) ∈ BL for all r ∈ Q. Consider the sequence (fk : L(R) → L)k∈N in

SM(L) defined by

a1 := f(1,—), f1 := χ
a1

k ≥ 2: ak := (f − fk−1)(
1
k
,—), fk :=

k
∑

i=1

1
i
· χai .

For each k ∈ N, fk(p,—) and fk(—, q) (p, q ∈ Q) are given by
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fk(p,—) fk(—, q)

1 if p < t0 0 if q ≤ t0

f(t1,—) if t0 ≤ p < t1 f(t1,—)c if t0 < q ≤ t1

f(t2,—) if t1 ≤ p < t2 f(t2,—)c if t1 < q ≤ t2

...
...

...
...

f(tj,—) if tj−1 ≤ p < tj f(tj,—)c if tj−1 < q ≤ tj

...
...

...
...

f(tn,—) if tn−1 ≤ p < tn f(tn,—)c if tn−1 < q ≤ tn

0 if p ≥ tn 1 if q > tn

for some n ∈ N, t0, t1, . . . , tn ∈ Q satisfying

t0 := 0 < t1 :=
1
k
< t2 < · · · < tn−2 < tn−1 :=

k−1
∑

i=1

1
i
< tn :=

k
∑

i=1

1
i

and tj − tj−1 ≤
1
k

for every j ∈ {1, . . . , n}.

Proof. We shall verify that the sequence (fk)k∈N is well-defined and given by
the formulas above. Moreover, since fk(p,—) =

∨

r>p fk(r,—) =
∨

r>p fk(—, r)∗,

we just need to prove the formula for fk(—, q) by induction over k ∈ N.
As a1 ∈ BL, it follows from Example 2.5.2 that the claim holds for k = 1.

Now, suppose that the claim is true for k − 1 ≥ 1. In other words, suppose
that a1, . . . , ak−1 ∈ BL and

fk−1(—, q) =



















































































0 if q ≤ 0 =: t0

f(t1,—)c if t0 < q ≤ 1
k−1

=: t1

f(t2,—)c if t1 < q ≤ t2

...
...

f(tj,—)c if tj−1 < q ≤ tj

...
...

f(tn,—)c if tn−1 < q ≤
∑k−1

i=1
1
i
=: tn

1 if q > tn,
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with tj − tj−1 ≤
1

k−1
for every j ∈ {1, . . . , n}. Then, for each k ∈ N,

ak := (f − fk−1)(
1
k
,—) =

n
∨

i=1

(

f(ti,—)c ∧ f(ti−1 +
1
k
,—)

)

∨ f(tn +
1
k
,—)

is a complemented element in L (since BL is a sublattice of L) and we can
define

fk :=
k
∑

i=1

1
i
· χai = fk−1 +

1
k
· χak .

Note that

χ
ak(—, k(q − r)) =











1 if r < q − 1
k

ack if q − 1
k
≤ r < q

0 if r ≥ q.

Hence, by the algebraic operations described in Section 2.4,

fk(—, q) =
∨

r∈Q

fk−1(—, r) ∧ χ
ak(—, k(q − r))

=
∨

0<r<q

fk−1(—, r) ∧ χ
ak(—, k(q − r)).

I. For q ≤ 0, it is clear that fk(—, q) = 0.
II. Suppose that t0 = 0 < q ≤ t1 =

1
k−1

.

(i) If 0 < q ≤ 1
k
, we have q − 1

k
≤ 0 < q. So

fk(—, q) = f(t1,—)c ∧ ack = (f(t1,—) ∨ ak)
c = f( 1

k
,—)c

in view of the fact that

f(t1,—) ∨ ak =
n
∨

i=1

(

f(t1,—) ∨ f(ti−1 +
1
k
,—)

)

= f(t1,—) ∨ f(t0 +
1
k
,—).

(ii) Otherwise, when 1
k
< q ≤ t1, we get 0 < q − 1

k
< q ≤ t1 and

fk(—, q) = (f(t1,—)c ∧ ack) ∨ (f(t1,—)c ∧ 1) = f(t1,—)c.

III. Now fix j = 2, . . . , n and consider tj−1 < q ≤ tj. As 0 = t0 < q − 1
k
,

there is m := max{i ∈ {0, . . . , n} | ti < q − 1
k
}.

(i) If tj−1 < q ≤ (tj−1+
1
k
)∧tj, note that m ≤ j−2 and q− 1

k
≤ tm+1∧tj−1.

Thus,

fk(—, q) = f(tm+1,—)c ∨ (f(tj,—)c ∧ ack)

= [f(tm+1,—) ∧ (f(tj,—) ∨ ak)]
c = f(tj ∧ (tj−1 +

1
k
),—)c.
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The proof of the last equality is rather technical. Succinctly we have

f(tj,—) ∨ ak =
n
∨

i=1

(

[f(tj,—) ∨ f(ti,—)c] ∧ [f(tj,—) ∨ f(ti−1 +
1
k
,—)]

)

=
n
∨

i=1

(

[f(tj,—) ∨ f(ti,—)c] ∧ f(tj ∧ (ti−1 +
1
k
),—)

)

= f(tj ∧ (tj−1 +
1
k
),—) ∨

j−1
∨

i=1

(

f(ti,—)c ∧ f(tj ∧ (ti−1 +
1
k
),—)

)

.

Since tm+1 ≤ tj ∧ (tj−1 +
1
k
), f(tj ∧ (tj−1 +

1
k
),—) ≤ f(tm+1,—). And

f(tm+1,—) ∧
j−1
∨

i=1

(

f(ti,—)c ∧ f(tj ∧ (ti−1 +
1
k
),—)

)

= 0

in consequence of f(tj ∧ (ti−1 +
1
k
),—) ≤ f(tj−1 ∧ (ti−1 +

1
k
),—), f(tm+1,—)∧

f(ti,—)c = 0 for 0 ≤ i ≤ m + 1, and tj−1 < q ≤ tm+1 +
1
k
≤ ti−1 +

1
k

for
m+ 2 ≤ i ≤ j − 1.

(ii) If tj−1 +
1
k
< tj, take tj−1 +

1
k
< q ≤ tj. Then 0 < t1 < · · · < tj−1 <

q − 1
k
< q and

fk(—, q) = f(tj,—)c.

IV. When tn < q ≤ tn + 1
k
, setting m := max{i ∈ {0, . . . , n} | ti < q − 1

k
},

we have 0 < t1 < · · · < tm < q − 1
k
≤ tm+1 ≤ tn < q and

fk(—, q) = f(tm+1,—)c ∨ (f(tn,—)c ∧ ack) ∨ ack = [f(tm+1,—) ∧ ak]
c

= f(tn +
1
k
,—)c.

The last equality follows from f(tm+1,—) ∧ f(ti,—)c = 0 for 0 ≤ i ≤ m + 1,
and tn < q ≤ tm+1 +

1
k
≤ ti−1 +

1
k

for m+ 2 ≤ i ≤ n.

V. Finally, for q > tn +
1
k
, we have q − 1

k
> tn and there is s ∈ Q such that

q − 1
k
> s > tn. Therefore,

fk(—, q) ≥ fk−1(—, s) ∧ χ
ak(—, k(q − s)) = 1.

This concludes the proof that fk(—, q) satisfies the required formula. The
remaining facts are straightforward. �

With the sequence given above, we can tackle the problem of approximat-
ing a nonnegative measurable function by simple functions.

Theorem 6.2. Let f : L(R) → L be a nonnegative measurable function such

that f(r,—) ∈ BL for all r ∈ Q. If any countable join in {f(r,—) | r ∈ Q}
is complemented in L, then we can write

f = lim
k→+∞

k
∑

i=1

1
i
· χai

for some ai ∈ BL.
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Proof. Consider the sequence (fk)k∈N in SM(L) given by

a1 := f(1,—), f1 := χ
a1

k ≥ 2 : ak := (f − fk−1)(
1
k
,—), fk :=

k
∑

i=1

1
i
· χai ,

(already used in Lemma 6.1). Each ak is a finite join of elements of the form
ac ∧ b for some a, b ∈ BL. The sequence (fk)k∈N is increasing. And because
f is nonnegative, we have fk ≤ f for each k ∈ N. Moreover, for every p ∈ Q,
∨

k∈N fk(p,—) =
∨

k∈N f(pk,—) for some p < pk ∈ Q (k ∈ N). Hence, since
countable joins of {f(r,—) | r ∈ Q} are complemented in L,

∨

k∈N fk(p,—)

is complemented in L. As a consequence, supk∈N fk exists in M(L) and

lim
k→+∞

fk = sup
k∈N

fk.

We want to show that
f = lim

k→+∞
fk.

Because fk ≤ f for each k ∈ N, it is clear that

lim
k→+∞

fk = sup
k∈N

fk ≤ f.

Conversely, if p < 0, as fk(p,—) = 1 for each k ∈ N and f ≥ 000 implies
that f(p,—) = 1, then

( lim
k→+∞

fk)(p,—) =
∨

k∈N

fk(p,—) = 1 = f(p,—).

If p ≥ 0, since (
∑n

i=1
1
i
)n∈N is not a convergent sequence, there is u ∈ N such

that p <
∑u

i=1
1
i
. Moreover, for each s > p, there is some m ∈ N such that

s− p > 1
m

by the Archimedean property. Set

us := max{u,m}.

We have
1
us

≤ 1
m

< s− p and p <
u
∑

i=1

1
i
≤

us
∑

i=1

1
i
.

The function fus
is a piecewise constant function. Let us denote by 0 =:

t0 < t1 < · · · < tn :=
∑us

i=1
1
i

the discontinuity points of fus
. Note that p ≥ t0

and p < tn. Now, let

i− 1 := max{j ∈ {0, . . . , n− 1} | tj ≤ p}.

The interval [ti−1, ti) is such that p < ti < s. Indeed, if [p, s) ⊆ [ti−1, ti), we
have ti−1 ≤ p, s ≤ ti and

1
m

< s− p ≤ ti − ti−1 ≤
1
us

≤ 1
m
,

which is a contradiction. Thus, p < ti < s and from the formula of fus
(p,—)

described in Lemma 6.1, we conclude that

f(s,—) ≤ f(ti,—) = fus
(p,—).
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As a result, and because {us | s > p, s ∈ Q} ⊆ N, we obtain

f(p,—) =
∨

s>p

f(s,—) ≤
∨

s>p

fus
(p,—) ≤

∨

k∈N

fk(p,—) = ( lim
k→+∞

fk)(p,—). �

Since any nonnegative f ∈ F(L) = M(C(L)) that is measurable on L satis-
fies the conditions required in the previous theorem, we obtain the following
corollary for any nonnegative measurable function.

Corollary 6.3. Let f : L(R) → C(L) be a nonnegative real-valued function

on L. If f is measurable on L, then we can write

f = lim
k→+∞

k
∑

i=1

1
i
· χθSi

for some complemented θSi
∈ C(L).

In other words, any nonnegative measurable function f on L can be written
as a limit of an increasing sequence (fk)k∈N of nonnegative simple functions

in SM(C(L)). However, we point out that in general fk :=
∑k

i=1
1
i
· χθSi

is

not measurable on L because fk ∈ SM(C(L)) ∩ SM(L) if and only if the
congruences θS1 , . . . , θSk

are clopen.

7. Integral of a nonnegative simple function

We will now address the problem of defining the integral of localic func-
tions. We will do it for localic simple functions. We start with the case of
nonnegative simple functions.

Recall from [24] that a map µ : L → [0,∞] on a join-σ-complete lattice L
is a measure on L if

(M1) µ(0L) = 0;
(M2) ∀x, y ∈ L, x ≤ y ⇒ µ(x) ≤ µ(y);
(M3) ∀x, y ∈ L, µ(x) + µ(y) = µ(x ∨ y) + µ(x ∧ y);
(M4) ∀(xi)i∈N ⊆ L, ∀i ∈ N, xi ≤ xi+1 ⇒ µ(

∨

i∈N

xi) = sup
i∈N

µ(xi).

In the literature, these functions are usually referred to as σ-continuous

valuations ([15, 24]).
From now on, let L be a σ-frame and let µ be a measure on S(L). Recall

that the lattice C(L) is dual to S(L). For each S ∈ S(L) we will denote the
corresponding congruence by θS (hence S = L/θS).

Definition 7.1 (Integral of a nonnegative simple function). If g ∈
SM(C(L)) is a nonnegative function with canonical representation

g =
n
∑

i=1

ri · χθc
Si
,
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the integral of g with respect to µ (briefly, µ-integral) is the value
∫

L

g dµ ≡

∫

g dµ :=
n
∑

i=1

riµ(Si).

Moreover, for each S ∈ S(L), the integral of g over S with respect to µ is
given by

∫

S

g dµ :=
n
∑

i=1

riµ(Si ∧ S).

By convention, whenever ri = 0 and µ(Si) = ∞ (or µ(Si∧S) = ∞) we set
0 · ∞ := 0. Because g is simple and nonnegative, we have 0 ≤ r1 < · · · < rn
(by Corollary 5.5), and since µ(Si ∧ S) ∈ [0,∞] for every i = 1, . . . , n, not
only is the µ-integral well-defined but we also get that

0 ≤

∫

S

g dµ ≤ ∞.

We will omit “with respect to µ” or drop the prefix µ if there is no am-
biguity. When a simple function g is not expressed in its canonical form, it
will be helpful to evaluate the integral of g through a weaker representation.

Proposition 7.2. Let g =
∑n

i=1 ri ·χθc
Si

be a representation of a nonnegative

simple function with pairwise disjoint θcS1
, θcS2

, . . . , θcSn
in BC(L). Then µ(Si∧

S) = 0 whenever ri < 0, and for any S ∈ S(L),
∫

S

g dµ =
n
∑

i=1

riµ(Si ∧ S).

Remark 7.3. In other words, if g =
∑n

i=1 ri · χθSi
, where θS1 , . . . , θSn

are

pairwise disjoint in BC(L), then
∫

S

g dµ =
n
∑

i=1

riµ(S
c
i ∧ S).

It is worth noting that the integral is defined such that
∫

χ
θSdµ = µ(Sc)

because, while it seems more natural to think of χ
θS as the characteristic

function in F(L) associated with a complemented S ∈ S(L), if this were the
case, taking S1 ≤ S2 in BC(L), one would expect the characteristic function
associated with S1 to be less or equal than the one associated with S2, but
χ
θS2

≤ χ
θS1

. Thus, we set
χ
S := χ

θc
S
,

and through this identification the integral of a nonnegative simple function
with canonical representation

∑n

i=1 ri · χθc
Si

becomes
∫

n
∑

i=1

ri · χSi
dµ =

n
∑

i=1

riµ(Si).
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Example 7.4. Recalling that 0C(L) ∈ C(L) represents L = 1S(L) ∈ S(L) and
1C(L) ∈ C(L) represents {1L} = 0S(L) ∈ S(L), the integrals of 000 and 111 are
given, respectively, by

∫

000 dµ =

∫

χ
0C(L)

dµ = µ(1c
S(L)) = µ({1L}) = 0 and

∫

111 dµ =

∫

χ
1C(L)

dµ = µ(0c
S(L)) = µ(L).

As expected, the integral of a nonnegative simple function over a σ-
sublocale S is monotone with respect to S:

Proposition 7.5. If g ∈ SM(C(L)) is nonnegative and S, T ∈ S(L) are such

that S ≤ T , then
∫

S

g dµ ≤

∫

T

g dµ.

Proof. Write g =
∑n

i=1 ri ·χθSi
where θS1 , θS2 , . . . , θSn

are pairwise disjoint in

BC(L). Then
∫

S

g dµ =
n
∑

i=1

riµ(S
c
i ∧ S) ≤

n
∑

i=1

riµ(S
c
i ∧ T ) =

∫

T

g dµ. �

Furthermore, whenever S ∈ S(L) is complemented, the integral of g over
S is equal to the integral of g · χS.

Proposition 7.6. Given a nonnegative g ∈ SM(C(L)) and a complemented

S ∈ S(L),
∫

S

g dµ =

∫

g · χθc
S
dµ.

Proof. Write g =
∑n

i=1 ri · χθc
Si

with θcS1
, . . . , θcSn

∈ BC(L) pairwise disjoint.

Since g ·χθc
S
=

∑n

i=1 ri ·χθc
Si

∧θc
S
, where θcS1

∧ θcS, . . . , θ
c
Sn

∧ θcS are also pairwise

disjoint, and θcSi
∧ θcS = θSi

c∨Sc for i = 1, . . . , n, we have
∫

g · χθc
S
dµ =

n
∑

i=1

riµ((S
c
i ∨ Sc)c) =

n
∑

i=1

riµ(Si ∧ S) =

∫

S

g dµ. �

8. Integral of a general simple function

After studying the nonnegative case, let us consider a general simple func-
tion g ∈ F(L). Recall that g = g+ − g−, where g+ and g− are both nonneg-
ative simple functions. Thus, the idea is to define the integral of g through
the integrals of g+ and g−.

Definition 8.1 (Integral of a simple function). Let g ∈ SM(C(L)) and
S ∈ S(L). If

∫

S

g+ dµ < ∞ or

∫

S

g− dµ < ∞,
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we say that g is µ-integrable over S, and the µ-integral of g over S is
∫

S

g dµ :=

∫

S

g+ dµ−

∫

S

g− dµ.

We say that g is µ-integrable if g is µ-integrable over L = 1S(L), and in that
case we talk about the µ-integral of g.

Note that a nonnegative simple function is always µ-integrable over any
S ∈ S(L). When there is no ambiguity, we will drop the prefix µ. Moreover,
the previous definition generalises Definition 7.1 in the sense that whenever
g is nonnegative

∫ (Def. 8.1)

S

g dµ =

∫ (Def. 7.1)

S

g dµ

because g = g+ and g− = 000.

Definition 8.2. A g ∈ SM(C(L)) is summable over S ∈ S(L) if
∫

S

g+ dµ < ∞ and

∫

S

g− dµ < ∞.

We say that g is summable if g is summable over L = 1S(L).

By definition, it is clear that every summable function is integrable and
its integral is finite.

Remark 8.3. Here, our use of the term “integrable” admits that the integral
of g can be equal to +∞ or −∞. However, the standard approach in measure
theory is that a function is integrable whenever it is summable.

The following formulas will be often helpful to determine the integral of a
integrable simple function.

Proposition 8.4. If g ∈ SM(C(L)) is integrable over S ∈ C(L) and g =
∑n

i=1 ri · χθc
Si

is a representation of g with θcS1
, . . . , θcSn

pairwise disjoint in

BC(L), then
∫

S

g dµ =
n
∑

i=1

riµ(Si ∧ S).

Proof. If ri ≥ 0 for all i ∈ {1, . . . , n}, then g is nonnegative and the result fol-
lows from Proposition 7.2. On the other hand, if there is some i ∈ {1, . . . , n}
such that ri < 0, let r1 ≤ · · · ≤ rn (with no loss of generality) and set

k := max{i | ri < 0}. Then g− =
∑k

i=1(−ri) · χθc
Si

and g+ =
∑n

i=k+1 ri · χθc
Si

.

Hence, once again by Proposition 7.2,
∫

S

g+ dµ−

∫

S

g− dµ =
n
∑

i=k+1

riµ(Si ∧S)−
k
∑

i=1

(−ri)µ(Si ∧S) =
n
∑

i=1

riµ(Si ∧S).

�
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Proposition 8.5. Let g ∈ SM(C(L)) and let S ∈ S(L) be complemented. If

g is integrable over S, then g · χθc
S

is integrable and
∫

S

g dµ =

∫

g · χθc
S
dµ.

Proof. If g is nonnegative, the result follows from Proposition 7.6. In the
case of a general simple function g, note that (g · χθc

S
)+ = g+ · χθc

S
and

(g ·χθc
S
)− = g− ·χθc

S
. Thus, because (g ·χθc

S
)+ and (g ·χθc

S
)− are nonnegative,

∫

(g · χθc
S
)+dµ =

∫

g+ · χθc
S
dµ =

∫

S

g+ dµ and

∫

(g · χθc
S
)−dµ =

∫

g− · χθc
S
dµ =

∫

S

g− dµ. �

We have seen that the integral of a nonnegative simple function over an
S ∈ S(L) is always nonnegative. In the following, we will weaken the as-
sumption that “a simple function g is nonnegative” so that the integral of g
over complemented σ-sublocales is still nonnegative.

Proposition 8.6. If g ∈ SM(C(L)) is integrable over a complemented σ-

sublocale S ∈ S(L) and θcS ∧ g(—, 0) = 0, then
∫

S

g dµ ≥ 0.

Proof. Write g =
∑n

i=1 ri · χθc
Si

where θcS1
, . . . , θcSn

are pairwise disjoint in

BC(L). By Proposition 8.4,
∫

S

g dµ =
n
∑

i=1

riµ(Si ∧ S).

If ri ≥ 0 for i = 1, . . . , n, then the result is trivial. On the other hand, if
there is some i ∈ {1, . . . , n} such that ri < 0, let k := max{i | ri < 0} and
take q ∈ Q such that ri ≤ rk < q < 0. Then θcS ∧ g(—, q) ≤ θcS ∧ g(—, 0) = 0,
and by Proposition 5.4 we get

θcS ∧
n
∧

j=i+1

θSj
≤ θcS ∧

n
∧

j=k+1

θSj
= θcS ∧

(

n
∨

j=k+1

θcSj

)c
= θcS ∧ g(—, q) = 0.

Finally, as θSi
∨ θSj

= 1 for any j 6= i, we have θSi
∨
∧n

j=i+1 θSj
= 1 and

θSi
∨ θcS = (θSi

∨ θcS) ∧
(

θSi
∨

n
∧

j=i+1

θSj

)

= θSi
∨
(

θcS ∧
n
∧

j=i+1

θSj

)

= θSi
.

Hence Si ≤ Sc whenever ri < 0, which implies µ(S ∧ Si) = µ(0S(L)) = 0. �

Next, we present some elementary properties of the integral.
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Proposition 8.7. Let g ∈ SM(C(L)) and λ ∈ Q. If g is integrable over

S ∈ S(L), then λ · g is also integrable over S and
∫

S

λ · g dµ = λ

∫

S

g dµ.

Proof. Write g =
∑n

i=1 ri · χθc
Si

with θcS1
, . . . , θcSn

∈ BC(L) pairwise disjoint.

Recall that

λ · g =
n
∑

i=1

(λri) · χθc
Si
.

If λ = 0, then λ · g = 000 and the claim holds trivially.
Suppose that λ > 0. If g is nonnegative, then

∫

S

λ · g dµ =
n
∑

i=1

λriµ(Si ∧ S) = λ
n
∑

i=1

riµ(Si ∧ S) = λ

∫

S

g dµ.

If g is a general simple function, since (λ · g)+ = λ · g+ and (λ · g)− = λ · g−,
we have

∫

S

(λ · g)+ dµ = λ

∫

S

g+ dµ and

∫

S

(λ · g)− dµ = λ

∫

S

g− dµ.

So g is integrable over S if and only if λ · g is integrable over S, and
∫

S

λ · g dµ = λ

∫

S

g+ dµ− λ

∫

S

g− dµ = λ
(

∫

S

g+ dµ−

∫

S

g− dµ
)

= λ

∫

S

g dµ.

Finally, for λ < 0 the arguments are similar to the ones used for a positive
scalar and a general simple function, taking note that λ · g = (−λ) · (−g)
with −λ > 0, (λ · g)+ = (−λ) · g− and (λ · g)− = (−λ) · g+. �

Proposition 8.8. Let g, h ∈ SM(C(L)) be integrable over S ∈ S(L). If g+h
is also integrable over S, then

∫

S

g dµ+

∫

S

h dµ =

∫

S

(g + h) dµ.

Proof. Recalling Proposition 5.7 and the expression of g + h obtained in its
proof, this is a straightforward consequence of µ being a measure. �

In particular, we can apply Proposition 8.8 whenever g+h is nonnegative
for some g, h ∈ SM(C(L)). Combining Propositions 8.8 and 8.7, we get the
monotonicity of the integral.

Proposition 8.9. Let g, h ∈ SM(C(L)) with g ≤ h. If g and h are integrable

over S ∈ S(L), then
∫

S

g dµ ≤

∫

S

h dµ.

Proof. As h− g is nonnegative, and therefore integrable over S,

0 ≤

∫

S

h− g dµ =

∫

S

h dµ−

∫

S

g dµ. �
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A more technical proof allows us to weaken the assumption that g ≤ h
when we are taking the integral over a complemented σ-sublocale S. We
point out that h − g does not need to be integrable over S in the next
proposition.

Proposition 8.10. If g, h ∈ SM(C(L)) are integrable over a complemented

S ∈ S(L) such that θcS ∧ (h− g)(—, 0) = 0, then
∫

S

g dµ ≤

∫

S

h dµ.

Proof. Write g =
∑n

i=1 ri · χθc
Si

and h =
∑m

j=1 sj · χθc
Tj

in their canonical

representations. Recalling the proof of Proposition 5.7,

h− g =
m
∑

j=1

n
∑

i=1

(sj − ri) · χθc
Si

∧θc
Tj
,

g =
n
∑

i=1

m
∑

j=1

ri · χθc
Si

∧θc
Tj

and h =
m
∑

j=1

n
∑

i=1

sj · χθc
Si

∧θc
Tj
, (∗)

where θcSi
∧ θcTj

are pairwise disjoint elements with
∨n

i=1

∨m

j=1(θ
c
Si
∧ θcTj

) = 1.
For the previous representation of h − g to be canonical, all that is left

is to ensure that the coefficients are sorted in strict ascending order and to
remove the terms θcSi

∧ θcTj
= 0. After taking those steps (recall Proposition

5.3), the canonical representation of h− g will be a finite sum of the form

h− g =
∑

al · χθc
Rl
,

where al = sj − ri for some pair (i, j) and θcRl
≥ θcSi

∧ θcTj
.

If al ≥ 0 for all l, then g ≤ h and the claimed follows from the previous
proposition. If there is l such that al = sj − ri < 0, set k := max{l | al < 0}.
Since Q is dense in R, there is q ∈ Q such that sj − ri = al ≤ ak < q < 0.

By Corollary 5.5, (h− g)(—, q) =
∨k

n=1 θ
c
Rn

≥ θcRl
≥ θcSi

∧ θcTj
. Thus,

θcS ∧ θcSi
∧ θcTj

≤ θcS ∧ (h− g)(—, q) ≤ θcS ∧ (h− g)(—, 0) = 0.

This shows that sj − ri < 0 implies that Sc ∨ Sc
i ∨ T c

j = 1. In other words,
S ∧ Si ∧ Tj 6= 0 implies that sj ≥ ri. Hence, representations (∗) of g and h
and Proposition 8.4 yield the desired inequality. �

Finally, it follows from Propositions 8.8 and 8.9 that

Proposition 8.11. If g, h ∈ SM(C(L)) are summable over S ∈ S(L), then

g + h is also summable over S.

Proof. Set f := g + h. Then f+ − f− = g+ − g− + h+ − h− and

f+ + g− + h− = g+ + h+ + f−.
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As g and h are summable over S, f+ = (g + h) ∨ 000 ≤ g+ + h+ and f− ≤
f+ + g− + h−, it follows from fact that g+ + h+ and f+ + g− + h− are
nonnegative, and thus integrable over S, that f is summable over S:

∫

S

f+ dµ ≤

∫

S

g+ dµ+

∫

S

h+ dµ < ∞ and

∫

S

f− dµ ≤

∫

S

f+ dµ+

∫

S

g− dµ+

∫

S

h− dµ < ∞. �

As a result, the integral is linear on the class of summable simple functions,
in the sense that for any r, s ∈ Q and any g, h ∈ SM(C(L)) summable over
S ∈ S(L),

∫

S

(r · g + s · h) dµ = r

∫

S

g dµ + s

∫

S

hµ.

9. The indefinite integral

Given a simple function g ∈ F(L), the map η : S(L) → [0,∞] defined by

η(S) :=

∫

S

g dµ

is called the indefinite integral of g. In this section, we want to show that
whenever g is nonnegative, η is a measure on S(L).

Lemma 9.1. For any integrable g ∈ SM(C(L)) and any S, T ∈ S(L),
∫

S

g dµ+

∫

T

g dµ =

∫

S∨T

g dµ+

∫

S∧T

g dµ.

Proof. First, note that if g is integrable, then g is integrable over any σ-
sublocale of L. Now, write g =

∑n

i=1 ri · χθc
Si

with θcS1
, . . . , θcSn

∈ BC(L)

pairwise disjoint. Since µ is modular (M3), we have
∫

S

g dµ+

∫

T

g dµ =
n
∑

i=1

riµ(Si ∧ S) +
n
∑

i=1

riµ(Si ∧ T )

=
n
∑

i=1

ri[µ(Si ∧ S) + µ(Si ∧ T )]

=
n
∑

i=1

ri[µ(Si ∧ (S ∧ T )) + µ(Si ∧ (S ∨ T ))]

=
n
∑

i=1

riµ(Si ∧ (S ∧ T )) +
n
∑

i=1

riµ(Si ∧ (S ∨ T ))

=

∫

S∧T

g dµ+

∫

S∨T

g dµ. �
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Lemma 9.2. Let g ∈ SM(C(L)) be integrable. If (Bk)k∈N is an increasing

sequence in S(L) and B =
∨

k∈NBk, then
∫

B

g dµ = lim
k→+∞

∫

Bk

g dµ.

In particular, if g is nonnegative,
∫

B

g dµ = sup
k∈N

∫

Bk

g dµ.

Proof. Write g =
∑n

i=1 ri · χθc
Si

with θcS1
, . . . , θcSn

∈ BC(L) pairwise disjoint.

For each k ∈ N, g is integrable over Bk and
∫

Bk

g dµ =
n
∑

i=1

riµ(Si ∧Bk).

Moreover, (Si ∧ Bk)k∈N is increasing, µ is σ-continuous (M4), and each Si

being complemented implies that
∨

k∈N

(Si ∧ Bk) = Si ∧
∨

k∈N

Bk = Si ∧ B.

Therefore,

lim
k→+∞

∫

Bk

g dµ = lim
k→+∞

n
∑

i=1

riµ(Si ∧ Bk) =
n
∑

i=1

ri lim
k→+∞

µ(Si ∧Bk)

=
n
∑

i=1

ri sup
k∈N

µ(Si ∧ Bk) =
n
∑

i=1

riµ
(
∨

k∈N

(Si ∧ Bk)
)

=
n
∑

i=1

riµ(Si ∧ B) =

∫

B

g dµ. �

Theorem 9.3. The indefinite integral of a nonnegative function is a measure

on S(L).

Proof. Let g be a nonnegative simple function and η its indefinite integral.
By the definition of the integral over a σ-sublocale, (M1) holds trivially.
Further, (M2), (M3) and (M4) follow from Proposition 7.5, Lemma 9.1 and
Lemma 9.2, respectively. �

10. Point-free setting versus classic setting

In this section we show that our definition of integral for simple functions
extends the classic Lebesgue integral.

Let (X,A) be a measurable space, i.e., a set X equipped with a σ-algebra

A ⊆ P(X). Consider a simple function f̃ : X → R with codomain in Q, that
is, a function of the form

f̃ =
n
∑

i=1

ri1Ai
,
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for some n ∈ N and r1, . . . , rn ∈ Q, where 1Ai
: X → {0, 1} is the indicator

(characteristic) function of Ai and A1, . . . , An ∈ A are pairwise disjoint sub-
sets of X such that

⋃n

i=1 Ai = X. With no loss of generality, we may suppose

that r1 < r2 < · · · < rn. The following table lists the values of f̃−1(]−∞, r[)

and f̃−1(]r,+∞[) for each r ∈ Q:

f̃−1(]−∞, r[) f̃−1(]r,+∞[)

∅ if r ≤ r1 X if r < r1

A1 if r1 < r ≤ r2
n
⋃

i=2

Ai if r1 ≤ r < r2

A1 ∪ A2 if r2 < r ≤ r3
n
⋃

i=3

Ai if r2 ≤ r < r3

...
...

...
...

n−1
⋃

i=1

Ai if rn−1 < r ≤ rn An if rn−1 ≤ r < rn

X if r > rn ∅ if r ≥ rn

Now consider the σ-frame L = A. The localic counterpart of the classic
simple function f̃ is the localic function

f : L(R) → A ∈ M(A)

determined by the formulas f(—, q) := f̃−1(]−∞, q[) and f(p,—) := f̃−1(]p,+∞[)
for all p, q ∈ Q. In other words, f is the localic simple function

f =
n
∑

i=1

ri · χAi
.

Through the isomorphism ∇ : A → ∇[A] that embeds A in C(L), we can
identify f ∈ M(A) with

∇ ◦ f =
n
∑

i=1

ri · χ∇Ai
∈ F(A),

and regard f as an element of F(A).

This shows that every simple function f̃ : X → R with codomain in Q has
a localic counterpart in M(A) ⊆ F(A). It is then easy to check that simple

functions f̃ : X → R with codomain in Q are in a one-to-one correspondence
with the simple functions f : L(R) → C(A) that are measurable on A. Note
that, however, there may exist simple functions in F(A) which are not in
M(A).

Next, let λ : A → [0,∞] be a measure on (X,A). By definition, λ is a
σ-additive map such that λ(∅) = 0. As A is a σ-algebra, λ satisfies the
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axioms (M1)-(M4) ([24]), so it is a measure on the join-σ-complete lattice

L = A ∼= o[A] ⊆ S(A).

Remark 10.1. Since λ is a measure on A and every element of A is com-
plemented, we can apply Theorem 1 of [24] to obtain a measure

λ⋄ : S(A) → [0,∞]

on S(A) extending λ, in the sense that λ⋄(o(A)) = λ(A) for every A ∈ A.

Suppose that f̃ is nonnegative, i.e., 0 < r1 < · · · < rn. Recall that the
(Lebesgue) λ-integral of f̃ is the value

∫

X

f̃ dλ =
n
∑

i=1

riλ(Ai).

Then the Lebesgue λ-integral of f̃ is equal to the localic λ⋄-integral of f :
∫

A

f dλ⋄ =

∫

A

n
∑

i=1

ri · χ∇Ai
dλ⋄ =

n
∑

i=1

riλ
⋄(c(Ai)

c)

=
n
∑

i=1

riλ
⋄(o(Ai)) =

n
∑

i=1

riλ(Ai) =

∫

X

f̃ dλ.

If f̃ is a general simple function, we say that f̃ is λ-integrable ([13]) if
∫

X

f̃+ dλ < ∞ or

∫

X

f̃− dλ < ∞.

Since f̃+ and f̃− are nonnegative simple functions whose localic counterparts
are f+ and f−, respectively, we have

∫

X

f̃+ dλ =

∫

A

f+ dλ⋄ and

∫

X

f̃− dλ =

∫

A

f− dλ⋄.

Thus, not only f̃ is λ-integrable if and only if f is λ⋄-integrable, but we also
get that

∫

X

f̃ dλ =

∫

X

f̃+ dλ−

∫

X

f̃− dλ =

∫

A

f+ dλ⋄ −

∫

A

f− dλ⋄ =

∫

A

f dλ⋄

whenever they are integrable.

11. Integral of more general functions

We close with a brief comment on the possibility of extending our definition
of integral to a class of localic functions broader than the simple ones.

Let L be a σ-frame and let µ be a measure on S(L). In Corollary 6.3, we
proved that if f ∈ F(L) is a nonnegative function measurable on L, then

f = lim
n→+∞

gn = sup
n∈N

gn,
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for some increasing sequence (gn)n∈N in SM(C(L)) with 000 ≤ gn ≤ f for all
n ∈ N. This suggests that just as we can approximate f by a sequence of
simple functions, we can also approximate the integral of f by the integral
of simple functions. This motivates the following definition.

Definition 11.1 (Integral of a nonnegative function). Given a nonneg-
ative f ∈ F(L), the µ-integral of f over S ∈ S(L) is given by

∫

S

f dµ := sup
{

∫

S

g dµ | 000 ≤ g ≤ f, g ∈ SM(C(L))
}

.

The µ-integral of f over L = 1S(L) is called the µ-integral of f and we write
∫

f dµ :=

∫

L

f dµ = sup
{

∫

g dµ | 000 ≤ g ≤ f, g ∈ SM(C(L))
}

.

As f = f+− f− for any f ∈ F(L), we can extend the definition of integral
of a nonnegative function to a general function (similarly as in Section 8).

Definition 11.2 (Integral of a general function). A function f ∈ F(L)
is µ-integrable over S ∈ S(L) if

∫

S

f+ dµ < ∞ or

∫

S

f− dµ < ∞,

and its µ-integral over S is given by
∫

S

f dµ :=

∫

S

f+ dµ−

∫

S

f− dµ.

The µ-integral of f over L = 1S(L) is called the µ-integral of f .

It is straightforward to see that Definition 11.2 extends Definition 11.1,
and they both extend Definitions 7.1 and 8.1. A detailed study of these
integrals is left out to a subsequent paper [10].

Here, we only point out that some of the elementary properties of the
integral of an f ∈ F(L) may not look as neat as in the case of an f ∈
SM(C(L)). For instance, the indefinite integral of a nonnegative f ∈ F(L)
might not necessarily be a measure on S(L) because the modularity (axiom
(M3)) may fail. Even so, this definition generalises the classic Lebesgue

integral in the sense that given a measurable function f̃ : X → R on a
measure space (X,A, λ), the λ-integral of f̃ is equal to the λ⋄-integral of the

localic counterpart of f̃ for any measure λ⋄ on S(L) extending λ.

Remark 11.3. Since we work with the frame of reals, which is defined in
terms of the ordered field of rationals, we defined a localic simple function
using rational scalars (and not real scalars as it is standard in the classical
theory). However, this leads to no loss of generality in the proposed point-
free integration theory, as we show in [10].
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