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Abstract. We show that the dihedral group Z2 ×D3 of order twelve acts faithfully on
the set LR, either consisting of Littlewood–Richardson (LR) tableaux, or their compan-
ion tableaux, or Knutson–Tao (KT) hives or puzzles, via involutions which simultane-
ously conjugate or shuffle a Littlewood-Richardson (LR) triple of partitions. The action
of Z2×D3 carries a linear time index two subgroup H ≃ D3 action, where an involution
which goes from H into the other coset of H is difficult in the sense that it is not manifest
neither exhibited by simple means. Pak and Vallejo have earlier made this observation
with respect to the subgroup of index two in the symmetric group S3 consisting of cyclic
permutations which H extends. The other half LR symmetries, not in the range of the
H-action, are hidden and consist of commutativity and conjugation symmetries. Their
exhibition is reduced to the action of a remaining generator of Z2 ×D3, which belongs
to the other coset of H, and enables to reduce in linear time all known LR commuters
and transposers to each other, and to the Schützenberger–Luzstig involution. A hive
is specified by superimposing the companion tableau pair of an LR tableau, and its
Z2 × D3–symmetries are exhibited via the corresponding LR companion tableau pair.
The action of Z2 × D3 on KT puzzles, naturally in bijection with Purbhoo mosaics, is
consistent with the migration map on mosaics which translates to jeu de taquin slides
or tableau-switching on LR tableaux. Their H–symmetries are reduced to simple proce-
dures on a KT puzzle via label swapping together with simple reflections of an equilateral
triangle, that is, puzzle dualities, and rotations on an equilateral triangle. Finally, the
S3–symmetries under this action, distributed in the two H-cosets, are consistent with
the Thomas-Yong carton rule based on the infusion involution, a specific governance of
jeu de taquin slides in the tableau switching.

1. Introduction

This paper aims to fulfill the study by Pak and Vallejo with LR conjugation invo-
lutions (LR transposers), which have not been considered in [PV10], and thus to give a
complete and uniform picture of the LR symmetries under the action of the dihedral group
Z2×D3. Namely, one shows that all LR transposers known up to date coincide. Further-
more, the LR transposers and LR commutors are linear time reducible to each other, in
particular, to Schützenberger-Lusztig involution. This amounts to show the linear cost
computational complexity of the involutions exhibiting the H–symmetries which in a KT
puzzle consist of rotations and simple reflections on an equilateral triangle, the latter
together with the label swapping of the puzzle. This is consistent with the coincidence of
LR commutors known up to date [Az17].
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The Berenstein–Zelevinsky (BZ) triangles [BerZel92] give an interpretation of LR
coefficients which manifest allS3–symmetries except the commutativity, that is, the swap-
ping of two entries in the LR triple (see [BerZel92, Remarks (a)] ), and the conjugation
symmetry is also hidden in BZ triangles (see [P24] for a recent and comprehensive ac-
count of combinatorial interpretations of LR coefficients). Pak and Vallejo have defined
in [PV05] bijections, given by explicit linear maps, between LR tableaux, Knutson–Tao
hives [KT99], and BZ triangles, which combined with the symmetries of BZ triangles
give all the S3–symmetries except the commutativity. The conjugation symmetry is not
considered in their work. As pointed out in [PV05], [PV10, Section 7.6], regarding to the
S3–symmetries of LR triples, those defined by the index two subgroup R in S3, consisting
of cyclic permutations, can be given by easily computed involutions in every combinatorial
model. The analysis of the symmetries of LR triples in BZ triangles, under the aforesaid
action of Z2 × S3 [BerZel92, Remarks (a)], suggests that a larger subgroup H ⊇ R of
symmetries of LR triples, with index two, in Z2 ×S3, can be given by easily computed
involutions in every combinatorial model. The LR coefficients are preserved in linear time
by the action of H. The H–symmetries are manifest in a KT puzzle. They are exhibited
via rotations and reflections of the dihedral group D3 on an equilateral triangle together
with the label swapping of the puzzle. These involutions incur to simultaneously transpose
and commute entries of the LR triple of partitions. We thus consider the isomorphic group
Z2 × H ≃ Z2 × D3 – action on the set LR, either consisting of Littlewood-Richardson
(LR) tableaux, or their companion tableaux, or hives, or Knutson-Tao (KT) puzzles.

The symmetries outside of H are linear time reducible either to the commutativity
or to the transposition symmetries, and are given by the action of a remaining genera-
tor of Z2 × D3 in the other coset of H. More precisely, the other half LR symmetries,
realized by the action of the elements in the other coset of H, are hidden and consist of
commutativity and conjugation symmetries. They are given by the action of a remaining
generator, realized by the reversal involution [BSS96] or the Schützenberger-Lusztig in-
volution, which enables to reduce in linear time the bijections exhibiting commutativity
and conjugation symmetries to each other. Since all known LR commutors are involu-
tions and coincide, this incurs the coincidence and the involutory nature of all known LR
transposers. The LR commutors and the LR transposers are linear time reducible to the
Schützenberger-Lusztig involution or to the reversal involution. This amounts to show
that the computational complexity of the involutions exhibiting the H-symmetries is of
linear cost. This is consistent with the coincidence of LR commutors known up to date
[Az17].

Explicit constructions of the corresponding symmetry involutions on companion
tableaux of LR skew tableaux are provided as well. To pass from symmetries of LR
(skew) tableaux to symmetries of companion tableaux we use the action of the longest
element of a symmetric group on a crystal by sending an LR tableau to its reversal, and
Lascoux’s double crystal graph structure on biwords by relating the so called left and
right strings of the double crystal graph [L03]. This analysis also incurs in an explicit
relationship between two interlocking Gelfand–Tsetlin (GT) patterns in a hive, that is,
the left and the right companion of an LR tableau. Finally, one takes the linear time
index two subgroup H action on Knutson-Tao puzzles and Purbhoo mosaics and explains
what operations on LR (skew) tableaux they translate to and back.

1.1. LR coefficients as structure coefficients and symmetries. Schur functions sλ
where λ runs over all Young shapes (partitions) form a linear Z-basis for the ring Λ of
symmetric functions in countably many variables x1, x2, . . . . The LR coefficients are the
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structure coefficients in the Schur function product with respect to this basis. The product
sµsν in Λ is therefore a non–negative integral linear combination of Schur functions sλ,

sµsν =
∑

λ

cλµ νsλ, (1.1)

where the structure constants cλµ ν in this Schur basis expansion, depending only on the
three partitions µ, ν and λ, are called Littlewood–Richardson (LR) coefficients [LR34,
Ma95, Sa01, St01].

Let 0 ≤ d ≤ n be fixed integers, and fix Young shapes µ, ν, λ contained in the
ambient rectangle D := d × (n − d). Let cµ ν λ∨ := cλµ ν where λ∨ is the Young shape
defined by the set complement of λ in that rectangle. Henceforth, cµ ν λ∨ is the coefficient
of sd×(n−d) in the Schur expansion of sµsνsλ∨ in Λ, and clearly cµ,ν,λ is invariant under the
shuffling of the partition triple (µ, ν, λ):

cµ,ν,λ = cν µ λ = cµ λ ν = cλ ν µ (1.2)

cµ,ν,λ = cλ µ ν = cν λ µ. (1.3)

Let λt denote the conjugate or transpose of the partition λ with ambient rectangle
(n− d)× d. While the S3-symmetries (1.2), (1.3) are obvious from the Schur expansion
of sµsνsλ∨ , it is not the case from the Schur expansion of sµtsνtsλ∨t where cµt νt λ∨t is the
coefficient of s(n−d)×d in that expansion, that the LR conjugation symmetry,

cµ ν λ = cµt νt λt (1.4)

holds. This last symmetry is shown via the involutive Z-automorphism ω of the Z–algebra
Λ of symmetric functions [Ma95, St01].

On the other hand, LR coefficients enumerate several combinatorial objects de-
pending on three partitions µ, ν and λ, and the combinatorics of their symmetries is
rather uniform in the sense that in all combinatorial means the commutativity (1.2)
and the conjugation (1.4) symmetries are hidden, see [Az98, AzKiTe16, BerZel92, DK08,
KT99, PV05, PV10, TeKiA18]. Interestingly, commuting and transposing simultaneously
gives, cλµ ν = cλ

t

νt µt , a symmetry revealed by simple means. In Knutson-Tao (KT) puzzles

[KTW04], it means the puzzle duality, that is, one gets this symmetry via the vertical
reflection of a puzzle with label swapping. This simple involution, denoted ♠, Subsec-
tion 5.2, is in turn translated to LR tableaux through simple operations in Definition
5.1, as well as to LR companion tableaux (for the definition, see Subsection 2.9) in Al-
gorithm 5.4. The vertical reflection with labelling swapping followed with a clockwise
rotation of a KT puzzle by π/3 and 2π/3 radians gives the two remaining puzzle dual-
ities cµ ν λ = cλt νt µt and cµ ν λ = cµt λt νt . They are again translated to LR tableaux or
companion LR tableaux through simple involutions, denoted � and ♣ respectively. (For
the definitions, see algorithms 3.4, 3.6, Subsection 5.2, and Definition 5.2.) The three
symmetries consisting of puzzle dualities and the three symmetries consisting of puzzle
rotations cµ ν λ = cλ µ ν = cν λ µ (1.3) are exhibited by the faithful action of a two index
subgroup H ≃ D3 (5.2) of the dihedral group Z2 ×D3 on KT puzzles.

1.2. The set LR and a representation of Z2 ×D3 in Sym(LR). Let 0 ≤ d ≤ n be

fixed integers. Let
(
[n]
d

)
denote the set of binary words consisting of d ones and n − d

zeroes. Throughout, a partition is identified with its Young diagram which fits inside,
according to the French convention, a non empty rectangle D := d × (n − d). Our

partitions in the ambient rectangle space D are identified with the 01–words in
(
[n]
d

)
as

follows: the positions of the zeroes and ones in a 01–word are respectively the positions of
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the horizontal and vertical steps along the boundary of the corresponding Young diagram,
starting in the right lower corner of the rectangle and ending up at the upper left corner.
In particular, the empty partition ∅ is identified with 0n−d1d, and D with 1d0n−d.(See
picture (2.1) in Section 2.1).

Given µ, ν, λ be partitions with at most d parts, LRλ
µ,ν is the set of LR tableaux

of shape λ/µ and content ν and its cardinality is cλµ ν . Let LRd,n be the set of all LR
tableaux or KT puzzles of size n, that is,

LRd,n =
⊔

(µ,ν,λ)

LRλ∨

µ,ν , (1.5)

where (µ, ν, λ) ∈
(
[n]
d

)3
∪
(

[n]
n−d

)3
. (For some partition-triples (µ, ν, λ), we may have LRλ∨

µ,ν =
∅.) For simplicity we write LR := LRd,n.

Given (µ, ν, λ) ∈
(
[n]
d

)3
∪
(

[n]
n−d

)3
, the LR coefficients cµ ν λ are invariant under the

following action of the dihedral group Z2×D3: the non–identity element of Z2 transposes
simultaneously µ, ν and λ, and the reflections in D3 swap two entries in the triple (µ, ν, λ).
Denoting by τ the non–identity element of the cyclic group Z2, and by ς1, ς2 two swaps
or reflections of the dihedral group D3 of order six, consider Z2 ×D3, the dihedral group
of order twelve, as the free group generated by the involutions τ , ς1, ς2 subject to the
relations inherited from Z2 and D3 as a Coxeter group, and such that τ commutes with
both ς1 and ς2,

Z2 ×D3 = 〈τ, ς1, ς2 | τ
2 = ς21 = ς22 = (ς1ς2)

3 = 1 = (τς1)
2 = (τς2)

2〉. (1.6)

Let H be the two index subgroup of Z2 ×D3, defined by

H := 〈τς1, τ ς2〉 = {1, τ ς1, τ ς2, ς1ς2, ς2ς1, τ ς1ς2ς1} (1.7)

= 〈τςi, τ ς〉 = {1, τ ςi, τ ς, ςiς, ςςi, τ ςiςςi}, i = 1, 2,

where ς = ς1ς2ς1 = ς2ς1ς2. The subgroup H ≃ D3 contains the two index cyclic group
R = 〈ς1ς2〉 = {1, ς1ς2, ς2ς1} of D3. Since H is a subgroup of index 2 in Z2 × S3, H is
normal, the quotient group (Z2 ×S3) /H is cyclic and every element different from the
identity is a generator, i.e. ζH = Hζ 6= H, for ζ = ς1, ς2, τ , ς1ς2ς1, τς2ς1, τς1ς2 /∈ H.
Therefore, as a set, Z2 × D3 = H ⊔ ζH, for any ζ /∈ H, and H affords the following
presentations of Z2 ×D3 ≃ Z2 ×H useful for our purposes:

〈τ, τ ς1, τ ς2 : τ
2 = (τς1)

2 = (τς2)
2 = (τς1τς2)

3 = (τς1τ)
2 = (τς2τ)

2 = 1〉. (1.8)

〈τ, τ ςi, τ ς : τ
2 = (τςi)

2 = (τς)2 = (τςiτς)
3 = (τςiτ)

2 = (τςτ)2 = 1〉, i = 1, 2. (1.9)

〈ςi, τ ς1, τ ς2 : ς
2
i = (τς2)

2 = (τς1)
2 = (τς1τς2)

3 = (τςiςi)
2 = (τςjτςiςi)

2 = 1〉, 1 ≤ j 6= i ≤ 2.
(1.10)

〈ς, τ ς1, τ ς2 : ς
2 = (τς2)

2 = (τς1)
2 = (τς1τς2)

3 = 1〉, (1.11)

〈ςi, τ ςi, τ ς : ς
2
i = (τςi)

2 = (τς)2 = (τςiτς)
3 = (ςiτςi)

2 = (τςτ)2 = 1〉, i = 1, 2. (1.12)

We show that the group Z2 ×D3 acts faithfully on the set LR trough involutions
which conjugate or shuffle the entries of a partition-triple (µ, ν, λ). Using the presentation
(1.9), the following is an injective group homomorphism where SLR is the group of all
bijections from LR to itself or permutations of LR

̟ : Z2 ×D3 −→ SLR (1.13)

τ 7→ ̺

τς1ς2ς1 7→ �

τς1 7→ ♠
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realized by the involutions �, ♠ and ̺ on LR. More precisely, � is an involution on
LR(µ, ν, λ) ⊔ LR(λt, νt, µt) (3.1) and on the union of KTW puzzles of boundary (µ, ν, λ)
and (λt, νt, µt), Subsection 5.2, which agrees with Tao’s bijection between KT puzzles and
LR tableaux, see Example 5.3; ♠ denotes the vertical puzzle duality in Subsection 5.2,
and the involution on LR(µ, ν, λ)⊔LR(νt, µt, λt) given by the procedure in Definition 5.1;
and ̺ = •� η in Theorem 4.3, with • the rotation map (2.1), and η the Schützenberger
involution or reversal, is an involution in LR(µ, ν, λ) ⊔ LR(µt, νt, λt).

Observe that for any nonempty partition γ, LR(∅, γ, γ∨) consists of the sole straight
LR tableau of shape and weight γ, Y (γ), also called Yamanouchi tableau of shape γ. For
any g 6= h ∈ Z2 × D3, ̟(g)(T ) 6= ̟(h)(T ) for some T ∈ LR(ǫ, δ, α) where (ǫ, δ, α) is a
shuffle or a shuffle and a transposition of the entries of (∅, γ, γ∨) providing γ 6= γ∨. The
monomorphism̟ shows that Z2×D3 is a group of symmetries of LR coefficients regarding
to the conjugation and the shuffling of the boundary partition-triple of an element in LR,
and thereby

Z2 ×D3 ≃ 〈♠,�, ̺〉 := 〈♠,�, ̺ : ̺2 = ♠2 = �2 = (♠�)3 = (♠̺)2 = (�̺)2 = 1〉. (1.14)

1.3. The H-action and of a remaining generator of Z2×D3 on LR. The involutions
exhibiting the H-symmetries of LR triples, define a faithfully group action of H on KT
puzzles and LR tableaux. As for the computational complexity of our involutions, we
study the invariance of LR coefficients, under the action of the two-index subgroup H on
the set LR, where

H = 〈τς1, τ ς2〉 = 〈τς1, τ ς1ς2ς1〉 ≃ 〈♠,�〉 = {♠,� : ♠2 = �2 = 1 = (♠�)3} ≃ D3. (1.15)

The H-invariance of LR coefficients is proved through the exhibition of simple
involutions ♠,�,♣ on KT puzzles, called puzzle dualities, and simultaneously on LR
tableaux. Tao’s bijection shows how they do translate to each other. Example 5.3 clearly
illustrates this translation for the involution �. Puzzle dualities on KT puzzles are the
diagonal reflections (linear maps) together with 0 and 1 label swapping. Puzzle dualities
♠ and ♣ on a LR tableau T is obtained by an hybrid switching: a pair consisting of a row
strict Yamanouchi tableau (the transpose of a Yamanouchi tableau) and T that T extends
[BSS96, Section 2, p. 22]; and a pair consisting of T and the transpose of a Yamanouchi
tableau in the anti-normal form that extends T . In Appendix A, one considers the index
two subgroup H action on Knutson-Tao puzzles and Purbhoo mosaics and explains what
operations on LR (skew) tableaux they translate to.

The action of the elements in the coset ζH exhibit the hidden symmetries consisting
of the LR transposer (an involution exhibiting cµ ν λ = cµt νt λt) and the LR commutors (an
involution exhibiting cµ ν λ = cǫ δ θ with (ǫ, δ, θ) obtained by commuting two consecutive
entries in (µ, ν, λ) ) respectively. (See Section 5.5 for details.)

Recalling that BZ triangles, hives and LR tableaux are related through linear
bijections [PV05], we prove that the involutions exhibiting theH-symmetries or equalities

cµ ν λ = cµt λt νt , cµ ν λ = cνt µt λt , cµ ν λ = cλ µ ν = cν λ µ, cµ ν λ = cλt νt µt ,

are intrinsically easy to exhibit in every model under consideration.
While the H-symmetries are easy to exhibit the symmetries under the action of

ς1H = ς2H = ς1ς2ς1H = τH = τς2ς1H = τς1ς2H, i.e. the commutativity and the
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conjugation symmetries, giving the equalities

cµ ν λ = cν µ λ, cµ ν λ = cµ λ ν , cµ ν λ = cλ ν µ, (1.16)

cµ ν λ = cµt νt λt , cµ ν λ = cλt µt νt , cµ ν λ = cνt λt µt , (1.17)

are difficult to exhibit. The symmetries outside of H are reduced to the action of the
elements in the coset ςH where ς is an LR commutor or an LR transposer and exhibit any
of the six symmetries in (1.16). The LR commutors and transposers in ςH are therefore
linear time equivalent to each other and can be reduced to the Schützenberger–Luzstig
involution. The computational complexity analysis is uniform in the aforementioned
combinatorial models.

In addition we also exhibit the LR symmetry involutions on LR companion tableaux
[Nak05, Appendix, Theorem C]. For this aim we use the Lascoux’s double crystal structure
on biwords [L03] where for our purposes we adopt Burge correspondence, and observe that
reversal involution [BSS96] on LR tableaux can be computed by the action of the longest
element of the symmetric group on a type A crystal. In Lascoux’s double crystal graph on
biwords, one has a left and right structure. The left structure defines a Kashiwara crystal
with crystal operators acting on the words defining the second row of the biword. Using
the symmetry of Burge correspondence, reordering the billeters of the biword, we get the
left structure which is isomorphic as a graph to the left structure: crystal operators on
the left are transformed into jeu de taquin moves on consecutive rows on the right. Each
left string has a right string and therefore one has a double action of the symmetric group
through a reflection about the middle of each i-string. Each pair of left and right biwords
can be seen as a pair of left and right skew-tableaux . This defines a natural bijection
between skew-tableaux and companion tableaux. In particular, the bottom tableau pair
of the double crystal graph consists of taking the top tableau pair, an LR tableau with its
LR companion tableau, and the double action of the symmetric group on the left and the
right respectively, calculates the reversal of the LR tableau by the action of the longest
element of the symmetric group, and the anti normal form (contre-tableau) by the action
of jeu de taquin on consecutive rows of the corresponding LR companion tableau.

The LR commutor on LR companion tableaux is computed by the so called com-
binatorial R-matrix, a crystal isomorphism between B(µ)⊗B(ν) and B(ν)⊗B(µ) where
B(µ) and B(ν) are the crystals of all semistandard tableaux of shape µ and ν respec-
tively, for a given finite alphabet [d]. In type A, the combinatorial R-matrix is re-
alized by several involutions as discussed in [AzKiTe16, Section 12], [TeKiA18], and
[Az17] (see also [LenLub15]). To each LR tableau T of shape λ/µ and content ν, we
may associate a pair (Lµ, Gν) of Gelfand-Tsetlin (GT) patterns of shapes µ and ν,
and weights rev(λ − ν) and λ − µ respectively [GelZel86, BerZel89]. Gelfand-Tsetlin
patterns are naturally in bijection with semi standard tableaux and so that pair is
also called left and right LR companion tableau pair of T . (We refer to [AzKiTe16,
Section 2.2] for details.) The crystal Littlewood-Richardson rule gives the decomposi-

tion Bµ ⊗ Bν
∼=

⊔

λ
T∈LRλ

µ,ν

Bλ(T ) ∼=
⊔

λ

B(λ)c
λ
µ,ν , where λ is a partition with at most d

parts. Each crystal connected component B(λ) × {T} ∼= Bλ has highest weight element
Yµ ⊗Gν

∼= Y (λ), and lowest weight element Lµ ⊗ Yrevν
∼= Y (rev(λ), whenever (Lµ, Gν) is

the LR companion pair of T . It will be also convenient to identify a skew shape, the set
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difference of two nested partitions, with the nonnegative vector of the difference of those
two partitions.

A type A version of theR combinatorial matrix is given by the Henriques-Kamnitzer
commutor [HeKa06a, HeKa06] realized through the Schützenberger involution E on left
companion tableaux Lµ of shape µ and weight (λ/ν)rev. That is, Lµ ⊗ Y (rev ν) is
the lowest weight element of the crystal connected component with highest element
Y (µ) ⊗ Gν

∼= Y (λ) in B(µ) ⊗ B(ν) if and only if GE
ν ⊗ Y (revµ) is the lowest weight

element of the crystal connected component with highest element Y (ν) ⊗ LE
µ
∼= Y (λ) in

B(ν)⊗B(µ). Equivalently, (Lµ, Gν) is a LR companion pair for LR(µ, ν, λ∨) if and only
if (GE

ν , L
E
µ ) is a LR companion pair of LR(ν, µ, λ∨).

We notice the pair of companion Gelfand-Tsetlin patterns or companion tableaux
associated with an LR tableau and the linear map to pass from skew LR tableaux to
their left and right companions of normal shape and recall its crystal characterization as
highest weight and lowest elements of a crystal respectively.

We show that the LR commutor may be computed directly over the companion
tableau Gν of shape ν and weight λ/µ, to obtain the companion tableau LE

µ = GE�♠
ν of

shape µ and content λ/ν. (We convention that the composition of maps when acting on
the right, written on the top right, is read left to right, for instance, GE�♠

ν := ♠�E(Gν).)
As a consequence of our analysis, we show that the involutions realising the LR

symmetries determine, in fact, a faithful action of the dihedral group Z2 ×S3 on the set
of all LR tableaux and KTW puzzles of degree n.

1.4. Organization and summary of our results. The rest of this paper is structured
into six sections as follows. In the next section we review operations on (skew) Young
diagrams, fitting, according to the French convention, the lower left corner of a non empty
rectangle D: complement, rotation, transposition and their compositions. Partitions,
identified with Young diagrams, along with the mentioned operations, are also translated
to 0−1 words of length defined by the size of D. We recall the definitions of semi standard
tableau its LR reading word, Yamanouchi word, the Littlewood-Richardson tableau as a
skew semi standard tableau filled with a Yamanouchi word, and the bijection between
Yamanouchi words and standard Young tableaux.

We notice the pair of companion Gelfand-Tsetlin patterns or companion tableaux
associated with an LR tableau and the linear map to pass from skew LR tableaux to
their left and right companions of normal shape and recall its crystal characterization as
highest weight and lowest elements of a crystal respectively.

In Section 3 we introduce the linear time bijections rotation and orthogonal trans-
pose (composition of rotation with transposition) on LR tableaux and in Section 4 we
study LR transposers coincidence and linear equivalence to an LR commutor. More pre-
cisely, we consider only linear time reductions; since the bijections we consider require
subquadratic time the reductions have to preserve that. Let A and B be two possibly
infinite sets of finite integer arrays, and let δ : A −→ B be an explicit map between
them. We say that δ has linear cost if δ computes δ(A) ∈ B in linear time O(〈A〉) for
all A ∈ A, where 〈A〉 is the bit–size of A. The transposition of the recording matrix
of a LR tableau is the recording matrix of a tableau of normal shape. We have then a
linear map ι which defines a bijection between tableaux of normal shape and LR tableaux,
see [Lee01, Ou05, PV10]. In Subsection 3.1, following the ideas of [PV10] we introduce the
ideas of Relative Computational Complexity as linear equivalence of bijections, utilizing
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what is known as Relative Complexity, an approach based on reduction of combinatorial
problems.

The conjugation symmetry map or a LR transposer is a bijection ̺ : LR(µ, ν, λ) −→
LR(µt, νt, λt). Benkart, Sottile, and Stroomer [BSS96] have described conjugation sym-
metry map by Knuth and dual Knuth equivalence, denoted ̺BSS,

̺BSS : LR(µ, ν, λ) −→ LR(µt, νt, λt)

T 7→ ̺BSS(T ) = [Y (νt)]K ∩ [(T̂ )t]d
,

where T̂ is the standardization of T , and [Y (νt)]K is the Knuth class of all tableaux with

rectification the Yamanouchi tableau Y (νt) of shape the conjugate of ν, and [T̂ t]d is the

dual Knuth class of all tableaux of shape (λt)∨/µt with Q–symbol the transpose of T̂ . The
image of T by the ̺BSS–bijection is the unique tableau of shape (λt)∨/µt in the intersection
of those two equivalence classes. Tableau–switching provides an algorithm to calculate it.
In [BSS96], it is observed that the White and the Hanlon–Sundaram maps [Wh90, HaSu92]
produce the same result, jointly denoted by ̺WHS. Thus ̺BSS(T ) can be obtained either
by tableau–switching or by the White–Hanlon–Sundaram transformation ̺WHS.

We explicitly exhibit the Yamanouchi word produced by the conjugation symmetry
map ̺BSS which in its turn leads to a new and very natural version of the same map already
considered independently [Az99, Az98, Za96]. A consequence of this latter construction is
that using notions of Relative Computational Complexity we are allowed to show that this
conjugation symmetry map is linear time reducible to the Schützenberger involution and
reciprocally. Thus the Benkart–Sottile–Stroomer conjugation symmetry map with the
two other mentioned versions, the various versions of the commutative symmetry map,
and Schützenberger involution, are linear time reducible to each other. This answers a
question posed by Pak and Vallejo in [PV10]. The column reading word of ̺BSS(T ) is the
Yamanouchi word of weight νt whose Q–symbol is given by the column reading word of

T̂ t. The following transformation ̺3 studied in [Az99, Az98, AzCoMa09, AzKiTe16, Za96]
makes clear the construction of that word and affords a simple way to construct ̺BSS(T ):

̺3 : LR(µ, ν, λ) −→ LR(µt, νt, λt)
T 7→ ̺3(T )

with word w with column word (σ0w)∗�,

where σ0 is the crystal reflection operator corresponding to the longest permutation of
Sℓ(ν), and thus σ0w is the word of the lowest weight element of the crystal containing
T ; ∗ is the reverse complement (or dualization) map; and � is the operator acting on
highest and lowest weight words, that is, Yamanouchi and reverse Yamanouchi words
which transforms a (reverse) Yamanouchi word of weight (reverse) ν, into a (reverse)
Yamanouchi word of (reverse) weight νt, by replacing the subword (iνi−i+1) iνi with (ν1 ν1−
1 · · · ν1 − νi + i ) 12 · · · νi, for all i. (See subsections 2.4 and 3.3 for definitions.)

More precisely, the � operator is a bijection between the Knuth class of the Ya-
manouchi tableau Y (ν) and the Knuth class of the Yamanouchi tableau Y (νt) and simi-
larly between their reverses. The reversal e of a LR tableau T , T e, can be computed by
the crystal reflection operator σ0 on the skew LR tableau T of shape λ∨/µ, it sends the
highest weight element T of the crystal containing it to the lowest element T e. Consider
the set of skew-tableaux B(λ∨/µ)• of shape µ∨/λ, as the image of B(λ∨/µ) under the
map • : U 7→ U• where U• is obtained from U under rotation of the skew–diagram by
π radians, with the dualization ∗ of its word. The map • : B(λ∨/µ) → B(λ∨/µ)• is a
set bijection preserving the connected components, and B(λ∨/µ)• has a crystal structure
by flipping upside down each connected of the crystal B(λ∨/µ), reverting the arrows and
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applying the operation • to the vertices. (In fact these crystals are isomorphic because
they have the same multiset of highest weights but the isomorphism is not canonical.)

Consider the set U of highest and lowest weight elements of B(λ∨/µ). The image
of U ∈ U under the rotation and transposition of the skew–diagram together with the
action of the operation � on its word, is denoted by U�. The maps • and � are involutive.
(Bijection �• appeared originally in [Za96] with a different formulation.) Then

̺3(T ) = T e •� = T �• e = T •� e and

(σ0w)
∗� = (σ0w)

� ∗ = σ0(w
� ∗) is the column word of T e•� = [Y (νt)]K ∩ [(T̂ )t]d.

Following the ideas introduced in [PV10], we address in § 3.3.1 the problem of
studying the computational cost of the conjugation symmetry map ̺BSS utilizing what is
known as Relative Complexity, an approach based on reduction of combinatorial problems.
To this aim we use the version ̺3.

Let ι be the linear map which sends a LR tableau to its companion (see Subsection
2.9). The maps •, e and � can also be translated to companion tableaux. Since the
rotation map • is also a linear map, so maps of linear cost, the reversal T e of a LR tableau
T can be linearly reduced to the evacuation E of the corresponding tableau ι(T ) = P
of normal shape, i.e. ι(PE) = T e •. Additionally, in Algorithm 3.4, it is proved that
the bijection �, exhibiting the symmetry cµ ν λ = cλt νt µt , is of linear cost. The following
commutative scheme shows that the conjugation symmetry map ̺3, and therefore ̺BSS

and ̺WHS, is linear equivalent to the Schützenberger involution or evacuation map on
tableaux of normal shape. Let ̺ denote an LR transposer, then

Theorem 1.1. The following commutative scheme holds

T
e
←→ T e •

←→ T e• �
←→ T e•� = ̺T

ι l ι l ι l ι l

P ←→
a

P a ←→
•

P a• = PE ←→ PE�
= ̺P.

Theorem 1.2. The conjugation symmetry maps ̺BSS, ̺WHS and ̺3 are identical, and
linear time equivalent with the Schützenberger involution E and with the reversal map e.

In Section 5 we study the Z2 ×S3–symmetries and the subgroup H of KT puzzle
dualities and rotations, and in Section 6 the action of Z2 ×S3 on LR companion pairs.
Finally in Appendix A we encompass our analysis with migration in Puhrboo mosaics.

Part of this work appears as an extended abstract [AzCoMa09] in the FPSAC
09 proceedings and in the preprint [AzCoMa09b]. This paper was intended to be the full
version.

2. Preliminaries

2.1. Young (skew) diagrams and linear transformations. Throughout we fix a non
empty rectangle D of size d × (n − d), n > d > 0 as an ambient space. A partition (or
straight shape, normal shape or normal form) λ is a finite weakly decreasing sequence
of non–negative integers λ = (λ1, λ2, . . . , λd), with at most d parts (positive entries),
λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. We assume λ1 ≤ n − d. The number of parts is the length
ℓ(λ) ≤ d, and the weight is |λ| = λ1 + λ2 + · · · + λd ≤ n. We use lower case Greek
letters such as λ to represent partitions. Often we drop the commas and parentheses
when writing a partition. For instance, 2210 is the partition (2, 2, 1, 0). We think of Z×Z

as consisting of boxes, and number the rows and columns of Z× Z so that rows number
increase bottom to top and columns number left to right. Compass directions are defined
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as usual according to the canonical basis of R2. The Young diagram of λ (normal shape)
is the collection of boxes {(i, j) ∈ Z2| 1 ≤ i ≤ d, 1 ≤ j ≤ λi} in French convention. We
do not make distinction between a partition λ and its Young diagram whose diagram
fits inside, according to the French convention, the lower left corner of the rectangle D
anchored at the origin of Z × Z. In particular, we regard this rectangle D as a Young
diagram with d parts of size n− d, and hence all our Young diagrams are subsets of the
Young diagram D.

We let
(
[n]
d

)
denote the set of 01–words of length n, with d 1’s and n − d 0’s.

There is a natural action of the symmetric group Sn on this set. In particular, the
longest permutation or reverse permutation rev acts on

(
[n]
d

)
by reversing the words. Our

partitions in D are identified with the 01–words in
(
[n]
d

)
as follows: the positions of the

zeroes and ones in a 01–word are respectively the positions of the horizontal and vertical
steps along the boundary of the corresponding Young diagram, starting in the right lower
corner of the rectangle and ending up at the upper left corner. In particular, the empty
partition ∅ is identified with 0n−d1d, and D with 1d0n−d. In the example below, with
d = 4, n = 10, the partition λ = 4210, depicted in green, is identified with the 01–word
0010010101 ∈

(
[10]
4

)
,

(2.1)

Reverting each word in
(
[n]
d

)
gives the complement of each partition in D. The complement

of λ = (λ1, . . . , λd) is the partition λ∨ = (n− d− λd, . . . , n− d− λ1). Equivalently, rotate
by π radians, the set complement of λ in D, and put it against to the lower left corner
to obtain the normal shape of λ∨. Since reversing is an involution on

(
[n]
d

)
, (λ∨)∨ = λ. In

particular, ∅∨ = D and D∨ = ∅. Considering λ in (2.1), the left hand side of (2.2), gives
the complement of λ in (2.1), λ∨ = 6542 = 1010100100 the reverse of the 01–word of λ
in (2.1).

Indeed
(
[n]
d

)
and

(
[n]
n−d

)
are in bijection. The transposition operation on partitions

realizes such a bijection. The transpose (or conjugate) of the partition λ is the partition
λt obtained by reflecting λ about the line y = x. The transpose (or conjugate) of a
partition λ in D, λt, is given by the 01–word with n− d 1’s and d zeroes, obtained from
λ by reversing its 01 word and swapping zeroes and ones. In particular, Dt denotes the
(n − d) × d rectangle, and λt is contained Dt. Since transposing is an involution on the

set
(
[n]
d

)
∪
(

[n]
n−d

)
, (λt)t = λ. Considering λ in (2.1), the middle picture in (2.2), illustrates

λt = 321100 = 0101011011. The complement transpose (or transpose complement) of λ,
λ∨ t = λt∨, is the complement of the transpose (or the transpose of the complement) of
λ, identified with the 01–word word obtained from λ by swapping zeroes and ones. The
right hand side of (2.2) illustrates λt∨ = 1101101010 depicted in green.

λ∨ =
λt = (λ∨)t =

.

(2.2)
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A partition µ is said to be contained in a partition λ if the Young diagram of
µ is contained in the Young diagram of λ. In this case, one defines the skew shape (or
skew partition) λ/µ to be the set {(i, j) ∈ Z2| (i, j) ∈ λ, (i, j) /∈ µ} of boxes in the
Young diagram of λ that remains after one removes those boxes corresponding to µ. It
is convenient to identify λ/µ with the nonnegative vector λ − µ. When µ is the null
partition ∅, the skew–diagram λ/µ equals the normal shape λ. The number of boxes in
λ/µ is |λ/µ| = |λ|−|µ|. The antinormal shape (or antinormal form) of λ is the skew shape
D/λ∨. Equivalently, λ is π radians-rotated and placed against the upper right corner of
D. We also think of it as the reverse of λ fitting the upper right corner of D.

The transpose (conjugate) of λ/µ is defined to be (λ/µ)t := λt/µt, or as the image
of the image of λ/µ under the linear transformation (i, j) 7→ (j, i). The rotate of λ/µ,
(λ/µ)•, is the image of λ/µ under the linear transformation (i, j) 7→ (d−i+1, n−d−j+1).
Equivalently (λ/µ)• = µ∨/λ∨. In particular, (D/µ)• = µ∨, and λ• := (λ/∅)• = D/λ∨

is the anti-normal shape of λ and we think of λ• as the reverse of λ. The orthogonal
transpose or the rotate transpose is the composition of the transposition and the rotation
maps •t = t•. The rotate transpose shape (λ/µ)•t = (µ∨)t/(λ∨)t = (µt)∨/(λt)∨ = (λ/µ)t•

is then the image of λ/µ under the linear transformation (i, j) 7→ (n−d− j+1, d− i+1).
In particular, (D/µ)•t = µ∨t and λ/∅)•t = Dt/(λt)∨ is the anti-normal shape of λt. For
instance, if µ = 21 and λ = 4210 as above, we have

λ/µ = (λ/µ)• =
(λ/µ)t = (λ/µ)t• =

.
(2.3)

2.2. Tableaux and Littlewood-Richardson tableaux. A (semistandard) Young tableau
T of shape λ/µ on the alphabet [n], is a filling of the boxes of the skew diagram λ/µ with
positive integers such that the entries are strictly increasing in each column from bottom
to top, and weakly increasing in each row from left to right. When µ is the empty parti-
tion we say that T has normal shape λ. The (row reading) word w(T ) of a Young tableau
T is the sequence of positive integers obtained by reading the entries of T right–to–left,
the rows of T , from bottom to top. The column word wcol(T ) is the word obtained by
reading the entries of T , from right to left along each column, starting in the rightmost
column and moving upwards. The nonnegative vector m = (m1, . . . ,mn) is said to be the
content (or weight) of T if it is the content (weight) of its word, that is, mk is the number
of k’s in T . Denote by Y T (λ/µ,m) the set of Young tableaux of shape λ/µ and content
m. If µ = ∅ then we write Y T (λ,m) to indicate the Young tableaux of normal shape λ
and weight m.

Let δr denote the staircase shape partition δr = (r, r − 1, . . . , 1). A word w of
length r can be identified with the diagonally-shaped tableau with word w, a semistandard
tableau of shape δr/δr−1 with row reading word w.

For any skew diagram λ/µ a Littlewood–Richardson (LR) tableau is a Young
tableau of shape λ/µ such that any prefix of its word contains at least as many let-
ters i as letters i + 1, for all i. A word such that every prefix satisfies this property is
called a lattice permutation, ballot or Yamanouchi. Its content is always a partition. The
column word of an LR–tableau is also a Yamanouchi word of the same content. When
µ = 0 we get the the LR tableau of straight shape ν or the Yamanouchi tableau Y (ν),
the unique tableau of shape and weight ν, that is, the tableau of shape ν where each row i
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is filled with νi i’s. from right to left along each column, starting in the rightmost column
and moving upwards See Example 2.1.

For a given finite alphabet, say [r], a word is said to be opposite or anti-Yamanouchi
(ballot) if every suffix contains at least as many letters i as letters i − 1, for all i ≤ r.
Its content it is always the reverse of a partition. A Young tableau of shape λ/µ whose
word is anti-ballot is called an opposite (anti-) LR tableau. When µ = 0, we get the the
opposite LR tableau of straight shape ν or the opposite Yamanouchi tableau Y (ν•), the
unique tableau of shape ν and reverse weight ν•. See Example 2.2.

Given the rectangle D with µ, ν, λ ⊆ D, the boundary data of a LR tableau of
shape λ/µ and weight ν is (µ, ν, λ∨), and LR(µ, ν, λ∨) denotes the set of LR tableaux with
that boundary data. Let cµ,ν,λ∨ denote the cardinal of LR(µ, ν, λ∨). We define LR(µ, ν•, λ)
to be the set of opposite LR tableaux of shape λ∨/µ and weight ν•, and cµ,ν•,λ denotes its
cardinality. In Example 2.1, for n = 9 and d = 3, T is an LR tableau in LR(210, 532, 320)
with Yamanouchi word w(T ) = 1111221332.

Example 2.1. Let n = 9 and d = 3. T = 1 1 1 1
1 2 2

2 3 3

is an LR tableau with
boundary data (µ, ν, λ∨), where µ = 210, ν = 532 and λ∨ = 320. Its word is w(T ) =
1111221332 and its column word is wcol(T ) = 1112123132 both of content the partition

ν = 532. The Yamanouchi tableau Y (ν) =

3 3
2 2 2
1 1 1 1 1 .

Example 2.2. An opposite LR tableau S =

3 3 3
2 2 2

1 1 3 3 on the alphabet [3], with the
same boundary data, and opposite ballot word w(S) = 3311222333 of content ν• = 235,

the reverse partition ν. The opposite Yamanouchi tableau Y (ν•) =

3 3
2 2 3
1 1 2 3 3 .

The standard order of the boxes on a semistandard Young tableau is given by
the numerical ordering of the labels with priority, in the case of equality, given by rule
northwest=smaller, southeast=larger. A Young tableau with s boxes is standard if it
is filled with the numbers 1 through s without repetitions. The standardization of a

semistandard tableau T of content m, denoted by T̂ , is the enumeration of the labeled
boxes according to the standard order of the boxes in T . The standardization ŵ of a
word w is defined accordingly, from right to left. For instance, the standardization of the
tableau T above in Example 2.1 is

T̂ = 2 3 4 5
1 7 8

6 9 10

,

and ŵ(T ) := w(T̂ ) = 5432871(10)96. If w = w1w2 . . . ws is a word and α is a permutation
in the symmetric group Ss, define αw = wα(1) . . . wα(s). In the case T is standard we

have wcol(T̂ ) = rev w(T̂ t), with rev the longest permutation in Ss. The transposition of
a standard tableau T is still a standard tableau written T t. If T is a semistandard then
T t means a tableau strictly increasing eastward and weakly increasing northward.
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2.3. The recording matrix of a tableau. Given the tableau T ∈ Y T (λ/µ,m), where
m = (m1, . . . ,mn) and ℓ(λ) ≤ n, let M = (Mij) be the n × n matrix with non–negative
integer entries such that Mij is the number of j′s in the ith row of T , called the recording
matrix of T [Lee01, PV10]. The recording matrix of a Young tableau of normal shape is
an upper triangular matrix. Observe that in the case of a non straight shape the recording
matrix determines the skew tableau only up to a parallel shift on the skew shape λ/µ,
see [Lee01, PV10].

2.4. The linear involution rotation map • on SSYT’s and LR tableaux. Given
the alphabet [d], and an integer i in [d], let i• := d− i+1 the complement of i with respect
to [d]. Given the word w = w1w2 · · ·ws, over the alphabet [d], of weightm = (m1, . . . ,md),
w• := w•s · · ·w

•
2w
•
1 is the dual or reverse complement word of w and revm = (md, . . . ,m1),

the reverse of m, its weight. Indeed w•• = w. We next extend the map • on words to
skew tableaux recalling that a word is identified with a diagonally shaped tableau.

Given a Young tableau T of shape λ/µ and weight m and an ambient rectangle,
the rotate or dual of T , •(T ), is defined to be the Young tableau of shape (λ/µ)• and
reverse weight revm, obtained from T by rotating π radians the shape λ/µ while com-
plementing each entry, that is, replacing each entry i with i•. The word of T• satisfies
w(•(T )) = w(T )•, and • • (T ) =. The rotation map is involutive and commutes with

standardization •(T̂ ) = •̂(T ). It is also a linear map since M is the recording matrix of T
if and only if M• := PrevMPrev is the recording matrix of •(T ). Given the finite alphabet
[d], the rotation map • : T → •(T ), w(T ) 7→ w(T )• is a linear involution on the set
of semistandard Young tableaux over [d], which swaps the inner border with the outer
border and reverses the weight.

If w is a Yamanouchi word of weight ν = (ν1, . . . , νd), write νt = (νt
1, . . . , ν

t
ν1
) and

observe that w is a shuffle of the words 12 · · · νt
i for i = 1, . . . , ν1. Similarly, if w is an

opposite Yamanouchi word of weight ν•, w is a shuffle of the words d− νt
i + 1 · · · d− 1d,

for i = 1, . . . , ν1. Thus, fixing such a shuffle for w, we may obtain w•, in the Yamanouchi
case, by first replacing, for each i = 1, . . . , ν1, the word 12 · · · νt

i in the shuffle of w with
dd−1 · · · d−νt

i+1 and then reversing the resulting word; and, in the opposite Yamanouchi
case, by first replacing, for each i = 1, . . . , ν1, the word d− νt

i + 1 · · · d− 1d in the shuffle
of w with νt

i · · · 21 and then reversing the resulting word. (The result does not depend
on the chosen shuffle.) The dual Yamanouchi word w•, in the former case is a shuffle
of the words d − νt

i + 1 · · · d − 1d, for i = 1, . . . , ν1, that is, an opposite Yamanouchi
word, and a Yamanouchi word in the latter. Thus, a word is opposite Yamanouchi if
and only its dual word is Yamanouchi. Therefore, for a skew diagram λ/µ, an opposite
Littlewood–Richardson (LR) tableau is a Young tableau of shape λ/µ such that its dual
is an LR tableau or its word is the dual of a Yamanouchi word. When µ = 0, one obtains
the rotate Yamanouchi tableau •(Y (ν)).

The rotation • of LR(µ, ν•, λ), the set of opposite LR tableaux of shape λ/µ and
content ν•, gives LR(λ, ν, µ) the set of LR tableaux of shape (λ∨/µ)• = µ∨/λ and content
ν, and vice-versa.

Proposition 2.1. The rotation map

• : LR(µ, ν, λ) ∪ LR(λ, ν•, µ)→ LR(λ, ν•, µ) ∪ LR(µ, ν, λ), T 7→ •(T), (2.4)

is a linear involution on LR(µ, ν, λ) ∪ LR(λ, ν•, µ) that transforms the LR tableau T into
its dual •(T ), the opposite LR tableau of shape (λ∨/µ)• and content ν•, and vice versa.
It exhibits the symmetry cµ,ν,λ = cλ,ν•,µ.
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Example 2.3. For d = 3 and n = 7. Given ν = 421, the Yamanouchi Y (ν) and the
rotate Yamanouchi tableau •(Y (ν)) are displayed below

Y (ν) =

3
2 2
1 1 1 1 , w = 1111223, •(Y (ν)) =

3 3 3 3
2 2

1 , w• = 1223333.

For d = 4 and n = 8, ν = 4210, •(Y (ν)) =

4 4 4 4
3 3

2

, w• = 2334444.

2.5. Jeu de taquin and Burge correspondence.

2.5.1. Jeu de taquin. Whenever partitions ν ⊆ µ ⊆ λ, we say that the shape λ/µ extends
the shape µ/ν. An inside corner of λ/µ is a box in the diagram µ such that the boxes
above and to the right (if any) are not in µ. When a box extends λ/µ, this box is called
an outside corner. Let T be a (semi standard) Young tableau of shape λ/µ, and let b
be an inside corner for T . A contracting slide, see [BSS96, Sch63] of T into the box b is
performed by moving the empty box at b through T, successively interchanging it with
the neighbouring integers to the north and east according to the following rules: (i) if
the empty box has only one neighbour, interchange with that neighbour; (ii) if it has
two unequal neighbours, interchange with the smaller one; and (iii) if it has two equal
neighbours, interchange with that one to the north. The empty box moves in this fashion
until it becomes an outside corner. This contracting slide can be reversed by performing
an analogous procedure over the outside corner, called an expanding slide. This procedure
is known as Schützenberger jeu de taquin. Performing contracting slides over successive
inside corners in µ reduces T to a tableau rect(T ) of normal shape, called the rectification
or the normal form of T . The rectification of T is independent of the particular sequence
of inside corners used, [Th77], and so rect(T ) is well defined. When T ∈ LR(µ, ν, λ),
rectT = Y (ν), and if T ∈ LR(µ, ν•, λ), rectT = Y (ν•).

Similarly, inside the rectangle D, there exists exactly one tableau of anti-normal
shape T a := arectT produced by the reverse jeu de taquin by performing expanding
slides over each successive outside corner in D/λ [BSS96], called the anti-normal form (or
the contre-tableau or anti-rectification) of T . In particular, if µ = 0, the anti-rectification
of T produces λ∨. Applying reverse jeu de taquin slides to the canonical LR tableau or
Yamanouchi tableau Y (ν) of shape ν inside the D rectangle, we obtain its anti-normal
form arectY (ν). As arectY (ν) fits the upper right corner of D, arectY (ν) is the LR
tableau of anti-normal shape D/ν∨ and content ν. For instance,

Y (λ) =

3
2 2
1 1 1 1 ←→ arectY (λ) =

1 1 2 3
1 2

1 . (2.5)

The (anti) rectification of a word means the (anti) rectification of the diagonally shaped
tableau with that word.

2.5.2. Burge correspondence a variation of RSK. We consider a variation of the RSK–
correspondence on a two-line array known as the Burge correspondence, see [Bur74], and
[Fu97, Appendix A.4.1], where the ordering on the two-line array W =

( a1 a2 ... aN
b1 b2 ... bN

)
of

positive integers is such that ai < ai+1, or ai = ai+1 and bi ≥ bi+1, called Burge array. The
procedure to transform the biword W into the semistandard tableau pair (P (W ), Q(W ))
of the same shape is the column bump (· · · (b1 ← b2) · · · ) ← bN and place in a1, . . . , aN
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respectively. That is, Q(W ) is defined to be the semistandard tableau of shape λ such
that if P (W ) has shape λ and bi is inserted in (· · · (b1 ← b2) · · · ) ← bi−1 to create a
node in λ then we fill the node with ai. As usual, when the first line is the permutation
12 · · ·N (the standardization of the first row of W ), we identify W with the second line

word w := b1b2 · · · bN . In this case, P (w) = P (W ) and Q(w) = Q̂(W ). The insertion
tableau in the Burge and in the RSK correspondence coincide as follows: the column
bumping (· · · (b1 ← b2) · · · )← bN is equal to the row bumping (· · · (bN ← bN−1) · · · )← b1
giving P (w). Instead of biwords we may consider matrices of nonnegative integers. The
biword W may also be described by the m× t matrix whose (i, j) entry is the number of
times

(
i
j

)
, i ∈ [m] and j ∈ [t], occurs in the array. The Burge correspondence is then a

correspondence between matrices A with nonnegative entries and ordered pairs (P,Q) of
tableaux of the same shape.

From now on when we refer to the RSK-correspondence we mean the Burge cor-
respondence. Thanks to RSK–correspondence a word w is uniquely determined by a
tableau pair (P (w), Q(w)) of the same normal shape, where P (w) is the insertion tableau
obtained by column insertion of the letters of w from left to right, and Q(w) standard,
called the Q–symbol or recording tableau of w. Reciprocally, every tableau pair (P,Q) of
the same shape with Q standard determines a unique word on the alphabet of P and with
same weight. Given the alphabet [d], the RSK correspondence gives a bijection between
words(k) the set of words of length k ≥ 0 and pairs of tableaux

RSK : words(k) −→
⊔

|λ|=k

SSYT(λ)× SYT(λ), RSK(w) = (P(w),Q(w)). (2.6)

Insertion can be translated into the language of Knuth elementary transformations on a
word [Fu97]. Two words w and v are said Knuth equivalent if one can be transformed
into another by a sequence of Knuth moves. Two words are Knuth equivalent if and only
if they have the same insertion tableau. Each Knuth class is in bijection with the set of
all standard tableaux with normal shape given by the unique tableau of normal shape in
that Knuth class.

Two tableaux T and R of arbitrary shape are Knuth equivalent, written T ≡ R, if
and only if P (w(T )) = P (w(R)). Since row and column words of T are Knuth equivalent,
one also has P (w(T )) = P (wcol(T )) [Fu97]. Schützenberger sliding in a skew tableau
T preserves the Knuth class of its word. Thereby, P (w(T )) = T n, and T ≡ R if and
only if T n = Rn, i.e. one of them can be transformed into the other with a sequence
of contracting and expanding jeu de taquin slides. In particular, inside D, there exists
exactly one tableau T a of anti-normal shape Knuth equivalent to T . Hence T ≡ R if and
only if T n = Rn, equivalently, T ≡ R if and only if T a = Ra. Recall that T ≡ R if and

only if T̂ ≡ R̂, and P (w(T̂ )) = P̂ (w(T )), Q(w(T̂ )) = Q(w(T )).

2.5.3. The recording tableau in Burge correspondence and LR tableaux. Under Burge cor-
respondence, there is a bijection between Burge arrays ( y

w ), where w is a Yamanouchi
word of weight ν, and tableau pairs (Y (ν), G) where G is of shape ν and weight wt(y).
Let w = w1w2 · · ·ws be a Yamanouchi word of content ν such that RSK(( y

w )) = (Y (ν), G)
for some Burge array ( y

w ), and put the number k in the wkth row of the diagram ν. The
labels of the ith row are the k’s such that wk = i, thus its length is νi and its shape is
ν. We denote this standard tableau of shape ν by U(w). Hence, RSK(w) = (Y (ν), U(w))

where U(w) = Ĝ.
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Definition 2.1. Given the partition ν, Y(ν) denotes the set of Yamanouchi words of
weight ν.

Any tableau pair (Y (ν), P ) with P standard of shape ν produces a Yamanouchi
word of weight ν, and thus P = U(w). Then the map w 7→ U(w) defines a bijection
between Yamanouchi words of content ν and standard Young tableaux with shape ν.
Hence |Y(ν)| = |SYT|. In Example 2.1, w = 1111221332, a Yamanouchi word of content
ν = 532, gives

U(w) =

8 9
5 6 10
1 2 3 4 7 , (2.7)

where the entries of the ith row are the positions of the i’s in the word of T (according
to the LR numbering).

Let T ∈ LR(µ, ν, λ∨). We may associate to T two biwords (or matrices) W λ/µ and
W ν consisting of the same biletters but ordered differently. Consider the words y = 1λ1−µ1

2λ2−µ2 . . . ℓ(λ)λℓ(λ)−µℓ(λ) of weight λ/µ and x = 1ν12ν2 . . . ℓ(ν)νℓ(ν) of weight ν, both of length
|ν| = |λ| − |µ|, and put

W λ/µ :=
( y

w(T )

)
, Wν := ( g

x ) (2.8)

where Wν is a reordering of the biletters of W λ/µ such that g = g1g2 . . . g|ν| satisfies
gi ≥ gi+1 whenever xi = xi+1. The first, as a matrix, is a lower triangular matrix, and the
second, as a matrix, is the transpose of the former thus an upper triangular matrix. See
Example 2.5.2. The symmetry of Burge correspondence [Fu97, LLThi02, L03] gives the
following result.

Proposition 2.2. Let T ∈ LR(µ, ν, λ∨) with the Burge arrays (2.8). Then under RSK
correspondence one has:

(a) W λ/µ 7→ (Y (ν), G) and Wν 7→ (G, Y (ν)) where Q(Wν) = Y (ν) = P (w(T )) and
Q(W λ/µ) = G = P (g).

(b) w(G) = g, that is, Wν = ( w(G)
x

).

(c) Ĝ = ̂Q(W λ/µ) = Q(w(T )) = U(w(T )), that is, the Q-symbol of a Yamanouchi
word w, with respect to Burge correspondence, is U(w). That is, G is a semistandard
Young tableau of shape ν and content λ/µ, such that each row i tell us in which rows of
T the i’s are filled in.

Example 2.4. Let T be the LR tableau in Example 2.1. The Burge correspondence

gives: W λ/µ =
(

14 23 33

w(T )

)
= ( 1 1 1 1 2 2 2 3 3 3

1 1 1 1 2 2 1 3 3 2 ) =
(

4 0 0
1 2 0
0 1 2

)
→ (Y (ν), G), and Wν =

(
w(G)

15 23 32

)
= ( 2 1 1 1 1 3 2 2 3 3

1 1 1 1 1 2 2 2 3 3 ) =
(

4 1 0
0 2 1
0 0 2

)
→ (G, Y (ν)) where Y (ν) = P (w(T )) =

Q(W ν) where

G =

3 3
2 2 3
1 1 1 1 2 (2.9)

of normal shape ν = 532 and weight λ/µ = 643 − 210 = 433. The standardization of G

gives Ĝ = U(w(T )) in (2.7).

2.6. Evacuation, reverse complementation, rotation and RSK. Given a tableau
T of normal shape, the Schützenberger evacuation of T , evacT, is a tableau with the
shape and reverse weight of T that can be characterized in different ways: the normal
form of the rotation of T , T •n; the insertion tableau of the word w(T •) = w(T)• [Fu97];
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or the rotation of the anti–normal form T a. Thus evacT = Ta• = T•n = P(w(T)•) and
T a := arect(T ) = •evac(T ). Indeed evac evacT = T. Given the Yamanouchi tableau
Y (ν), its opposite satisfies Y (ν•) = Y (ν)a• = Y (ν)•n = evacY(ν). For instance, using
Example 2.3

Y (ν) =

3
2 2
1 1 1 1 w = 1111223, Y (ν)• =

3 3 3 3
2 2

1 , w• = 1223333,

Y (ν)a =

1 1 2 3
1 2

1 , Y (ν•) =

3
2 3
1 2 3 3 = Y (ν)a• = Y (ν)•n = evacY(ν) = P(w•).

Proposition 2.3. [Duality of Burge correspondence [Fu97, Appendix A 4.1].] Let w and
u be two words. Under Burge correspondence

(a) The word w corresponds to the tableau-pair (P,Q) if and only if w• corresponds
to (evacP, evacQ).

(b) For any tableau T , w(T ) corresponds to the tableau-pair (T n, Q) and w(T )• =
w(T •) to the pair (T •n = evacTn, evacQ).

(c) w ≡ u if and only if w• ≡ u•, and Q(u) = Q(v) if and only if Q(u•) = Q(v•).
Similarly, rev w corresponds to (P t, QEt).

2.7. Tableau switching and reversal involution. In this subsection we recall Haiman’s
result [Hai92, Theorem 2.13]: a skew tableau is uniquely determined by the skew shape,
dual Knuth class and Knuth class (rectification or anti normal form).

Two tableaux T and R of the same shape are said to be dual Knuth equivalent,

written T
d
≡ R, if for some sequence of contracting slides or/and expanding slides that

can be applied to one of them, can also be applied to the other, and the sequence of
shape changes is the same for both, see [Hai92]. In fact if two tableaux on the same shape
have the same shape changes for some sequence of jeu de taquin slides they also have
the same shape changes for any other. Hence, dual Knuth equivalent tableaux have the
same (skew) shape as well as the same shape of their normal forms and the same anti–
normal shape of their anti–normal forms. Moreover, two tableaux of the same normal
shape or anti–normal shape are dual Knuth equivalent [Hai92, Proposition 2.14]. Dual
Knuth equivalence on tableaux of the same shape may also be characterized by the Q

symbols or recording tableaux of their words in the RSK correspondence: T
d
≡ R if and

only if Q(w(T )) = Q(w(R)). In addition, either row or column words may be used,
Q(w(T )) = Q(w(R)) if and only if Q(wcol(T )) = Q(wcol(R)). Dual Knuth equivalence on
words of the same length is defined by identifying two words of the same length with the
same Q-symbol. Alternatively, we may identify a word of length r with the the diagonal
shape tableau δr/δr−1 with that word, where δi = (i, i− 1, . . . , 2, 1), for i = r − 1, r, and
apply the definition of dual Knuth equivalence on tableaux of the same shape.

Let S and T be tableaux such that T extends S, that is, the outer border of
S is the inner border of T , and consider the set union S ∪ T. The tableau switching,
see [BSS96], may be presented as a procedure based on jeu de taquin elementary moves,
for moving two tableaux past one another, transforming S ∪ T into A ∪ B, where B is
a tableau Knuth equivalent to T which extends A, and A is a tableau Knuth equivalent
to S. We write S ∪ T

s
−→ A ∪ B. In particular, if S is of normal shape, A = Tn, and

S = Bn. Switching of S with T may be described as follows: T̂ is a set of instructions

telling where expanding slides can be applied to S. (Similarly, Ŝ is a set of instructions
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telling where contracting slides can be applied to T .) Moreover, switching commutes with
standardization. Switching and dual Knuth equivalence are related as in the theorem
below. It combines tableau switching [BSS96] with Haiman dual equivalence [Hai92,
Corollaries 2.8, 2.9].

Theorem 2.4. [BSS96, Theorem 4.3], [Hai92, Corollaries 2.8, 2.9]. Let T and U be
tableaux with the same shape and dual equivalent and let W be a tableau which extends

T (or T extends). If T ∪ W
s
−→ Z ∪ X and U ∪ W

s
−→ Z ∪ Y , then X

d
≡ Y . If

W ∪ T
s
−→ Z ∪X and W ∪ U

s
−→ Z ∪ Y , then X

d
≡ Y .

Theorem 2.5. [Hai92, Theorem 2.13]. Let D be a dual Knuth equivalence class and K
be a Knuth equivalence class, both corresponding to the same normal shape (that is, the
elements of D rectify to the normal shape of the unique tableau of normal shape in K).
Then, there is a unique tableau in D∩K which is the unique tableau in D that rectifies to
the normal shape of the unique tableau of normal shape in K. Tableau switching s allows
to compute D ∩ K.

Algorithm 2.6. [BSS96] Computation of D∩K with D and K corresponding to the same
normal shape. Let Q ∈ D and let V ∈ K be the unique tableau with normal shape in
this Knuth class (V and Qn have the same normal shape), and W any tableau of normal
shape that Q extends:

Step 1. Compute
W ∪Q W ∪X

s↓ ↑ s
Qn ∪ Z → V ∪ Z.

(2.10)

Step 2. X
d
≡ Q, X ≡ V , and D ∩K = {X} where X is the only tableau in D that

rectifies to V .

In particular, if K is the Yamanouchi Knuth class given by the normal shape
corresponding to D, X is the only LR tableau in D whose content is the normal shape
corresponding to D.

Remark 2.1. In Algorithm 2.6, D and K also correspond to the same anti normal shape.
If in (2.10) we consider V a ∈ K, the anti-normal form of V , and W any tableau with

anti-normal shape that extends Q ∈ D, then Q ∪W
s
→ Z ∪Qa → Z ∪ V a s

→ X ∪W (Qa

and V a have the same anti-normal shape) to obtain D∩K = {X}. Note that X
d
≡ Qa d

≡ Q
and X ≡ V a≡V . Note also that Qa = •evacQn.

Corollary 2.7. LR tableaux form a complete transversal for the set of dual Knuth equiv-
alence classes. Moreover, the LR coefficient cλµν counts the number of dual Knuth equiva-
lence classes of tableaux of shape λ/µ whose rectification has shape ν.

2.7.1. The reversal involution.

Definition 2.2. [BSS96] Given a tableau T of any shape, the reversal of T , T e, is defined
to be the unique tableau Knuth equivalent to T• (T• ≡ T •n = evacTn), and dual Knuth
equivalent to T. In other words, T e is the unique tableau dual equivalent to T that rectifies
to the evacuation of T n, that is, T e n = evacTn. If T has normal shape, evacT = Te.

Algorithm 2.6 calculates T e = [evacTn]K ∩ [T]dK (by abuse of notation we omit
the brackets in {T e}), where [ ]K denotes Knuth class and [ ]dK dual Knuth class. That
is, we choose any W of straight shape that T extends, to form W ∪ T , we rectify T ,
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using W as a set of jeu taquin instructions to obtain T n ∪ Z, replace T n with evacT to
obtain evacT ∪ Z. Then by reverse jeu de taquin instructed by Z, we obtain W ∪ T e.
Alternatively, if RSK(w(T)) = (T n, Q)) and since RSK(w(T e)) = (evacTn,Q) then T e can
be calculated as RSK−1(evacTn,Q) = w(Te).

The mapping T → T e is called reversal and is an involution on the set of SSYT
which preserves the shape and reverses the weight. Observe that T e e = [T e nE]K∩[T e]dK =
[T •nE]K ∩ [T ]dK = [T nEE]K ∩ [T ]dK = T .

Corollary 2.8. Let T ∈ LR(µ, ν, λ∨). The reversal of T , T e = [Y (ν•)]K∩[T ]dK is the only
opposite LR tableau in LR(µ, ν•, λ∨) dual Knuth equivalent to T . Opposite LR tableaux
form another complete transversal for the set of dual Knuth equivalence classes. The LR
coefficient cλµν = cλµν• also counts the number of dual Knuth equivalence classes of tableaux
of shape λ/µ whose anti–normal form has shape ν•.

2.8. Crystals of tableaux and Luzstig involution. Kashiwara and Nakashima has
shown that semistandard tableaux can be arranged into crystals. We recall briefly.

A gld-crystal is a finite set B along with maps wt : B → Zr ei, fi : B → B ∪ {0}
for i = 1, . . . , d obeying the following axioms for any b, b′ ∈ B,

(i) if ei(b) 6= 0 then wt(ei(b)) = wt(b) + αi,
(ii) if fi(b) 6= 0 then wt(fi(b)) = wt(b)− αi,
(iii) b′ = ei(b) if and only if b = fi(b

′), and
(iv) if b, b′ ∈ B such that ei(b) = fi(b

′) = 0 and fk
i (b) = b′ for some k ≥ 0, then

wt(b′) = siwt(b)
where αi = ei − ei+1, and si is the simple transposition of Sd, i = 1, . . . , d − 1.

The crystals that we deal with also allow to define length functions εi, ϕi : B → Z

i = 1, . . . , d− 1,

εi(b) = max{a : eai (b) 6= 0}, ϕi(b) = max{a : fa
i (b) 6= 0}.

Let Bd = {1, . . . , d} be the standard gld-crystal consisting of the words of a sole
letter on the alphabet [d] whose coloured crystal graph is

1
1
−→ 2

2
−→ · · ·

d−1
−→ d− 1

d−1
−→ d.

The Kashiwara raising operators fi and lowering operators ei are defined for i ∈ I = [d−1]
as follows: fi(i) = i + 1, fd−1(d) = 0, and ei(i + 1) = i, e1(1) = 0, otherwise, the letters
are unchanged. The weight wt(b) = ǫb, for b = 1, . . . , d, the canonical basis of Rd. The
highest (lowest) weight element of Bd is the word 1 (d), and the highest (lowest) weight
is ǫ1 (ǫd).

The tensor product of crystals allows us to define the crystal Wd =
⊔
k>0

Bd
⊗k ⊔{∅}

of all finite words on [d] where ∅ is the empty word and the vertex w1⊗· · ·⊗wk ∈ Bd
⊗k is

identified with the word w = w1 · · ·wk of length k on [d]. We describe the crystal of Bd
⊗k

as the crystal structure on the set word(k) of all words of length k on [d]. Following the
tensor product rule, the action of the Kashiwara raising and lowering operators ei and
fi on w, for i ∈ [d − 1], is given by the i-signature rule [KasNak94, Kwo09, BumSch16]
which is induced from those operators on Bd. We substitute each i by + and each i+1 by
−, and erase the letter in any other case. Then successively erase any pair +− until all
the remaining letters form a word sign(w)i = −

a+b. We define ϕi(w) := b and εi(w) := a.
If a = 0, ei(w) = 0, and if a > 0, ei changes to i the letter i+1 of w corresponding to the
rightmost unbracketed − (i.e., not erased), whereas if b = 0, fi(w) = 0, and if b > 0, fi
changes to i+ 1 the letter i corresponding to the leftmost unbracketed +.
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The crystal Bd
⊗k, as a graph, is the union of connected components. The con-

nected components of Bd
⊗k are the coplactic classes or dual Knuth classes in the RSK

correspondence that identify words with the same recording tableau in SY T (λ) for some
λ. For each standard tableau Q ∈ SY T (λ) there is an embedding of SSY T (λ) in Bd

⊗k,

readQ = RSK−1(., Q) : SSY T (λ) −→ Bd
⊗k.

Furthermore, given w ∈ Bd
⊗k there exists some λ and R ∈ SY T (λ) such that readS = w.

The crystal Bd(λ) is defined as the crystal structure on the set SSYT(λ) on the
alphabet d] induced by the map readQ for any Q ∈ SYT(λ) which does not depend on the
choice of Q. We have a crystal isomorphism afforded by RSK correspondence

Bd
⊗k −→

⊔

|λ|=k

B(λ)× SYT(λ), w 7→ (P (w), Q)

Choose a word w on [d] such that the shape of P (w) is λ. If we replace every word of its
coplactic class with its insertion tableau we obtain the crystal of tableaux Bd(λ) that has
all semistandard tableaux of shape λ on the alphabet [d],

Bd
⊗k ≈

⊔

|λ|=k

B(λ)|SYT(λ)| ≈
⊔

|λ|=k

B(λ)|Y(λ)|, (2.11)

where Y(λ) denotes the set of Yamanouchi words of weight λ. Each connected component
of Bd

⊗k has a unique highest weight word which is a Yamanouch word and a unique lowest
weight word which is the reversal of that Yamanouchi word. The highest weight element of
B(λ) is the Yamanouchi tableau Y (λ), and the lowest weight element Y (λ•) = evacY(λ).
Two connected components are isomorphic if and only if they have the same highest
(lowest) weight [Kas95]. Two words on [d] belong to the same connected component of
Wd if and only if they are dual equivalent. This means that both words are obtained
from the same highest weight word, through a sequence of crystal operators fi, or one
is obtained from another by some sequence of crystal operators fi and ej, i, j ∈ [d − 1].
Also, two words w1, w2 on [d] are Knuth equivalent if and only if they occur in the same
place in two isomorphic connected components of Wd, that is, they are obtained from
two highest words with the same weight through a same sequence of crystal operators.
Crystal operators preserve dual Knuth classes and commute with any admissible sequence
of jeu de taquin moves.

2.8.1. Crystal of a skew-tableau. For µ ⊆ λ ⊆ D, let B(λ/µ) be the set of all semi-
standard tableaux of shape λ/µ on the alphabet [d]. The column reading of each tableau
in B(λ/µ) embeds it in B⊗|λ|−|µ| the crystal of words of length |λ| − |µ| on the alphabet
[d]. From (2.11) it decomposes

B(λ/µ) ∼=
⊔

ν, ℓ(ν)≤d

T∈LRλ
µ,ν

B(T ) ∼=
⊔

ν, ℓ(ν)≤d

B(ν)cµ,ν,λ ,

where B(T ) is the crystal connected component of B(λ/µ) containing the LR tableau
T ∈ LR(µ, ν, λ∨) for some partition ν ⊆ λ. Each crystal B(T ) with T ∈ LR(µ, ν, λ∨) is
gld-crystal isomorphic to B(ν). It consists of all tableaux with the same shape as T on
the alphabet [d] whose normal forms define the set B(ν), with highest weight element
Y (ν) ≡ T . That is, for each T ∈ LR(µ, ν, λ∨), B(T ) is a dual Knuth class with highest
weight element T . Let T low be the lowest weight element of B(T ), the unique opposite
LR tableau in B(T ) Knuth equivalent to Y (ν•).
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2.8.2. The rotated crystal graph and the reversal. Consider the set of skew-tableaux
B(λ/µ)rotate of shape µ∨/λ∨ as the image of B(λ/µ) under the map rotate, U 7→
rotate(U), where rotate(U) is obtained from U ∈ B(λ/µ under rotation by π radi-
ans while dualizing its word. The map rotate : B(λ/µ) → B(λ/µ)rotate is a set bi-
jection preserving the connected components but not a crystal isomorphism. The set
B(λ/µ)rotate = B(µ∨/λ∨) has a crystal structure by flipping upside down each connected
component of the crystal B(λ/µ), reverting the arrows and applying the operation rotate

to the vertices. If T is the highest weight of a connected component of B(λ/µ) then
rotate(T low) ≡ Y (ν) and rotate(T ) ≡ rotate(T )n = Y (rotate(ν)) are respectively the
highest and the lowest weights elements of a same connected component of B(λ/µ)rotate.
The crystals are isomorphic B(λ/µ) ≅ B(λ/µ)• are isomorphic because they have the
same multiset of highest weights but the isomorphism is not canonical. Reversal is a set
involution on each connected component of B(λ/µ),

e : B(λ/µ)→ B(λ/µ), T 7→ e(T ) ≡ rotate(T ),

is the unique element of the connected component B(T ) Knuth equivalent to rotate(T ).
In particular, evacuation is a set involution on B(λ)

evac : B(λ)→ B(λ), T 7→ evac(T ) = rotate(T )n,

that is, is the unique element of B(λ) Knuth equivalent to T •. Reversal interchanges the
lowest and highest weight elements in each connected component.

2.8.3. The action of the symmetric group on a crystal and partial Schützenberger involu-
tions. Given the word w = w1 · · ·wk ∈ Bd

⊗k with i-signature −a+b = xj1 · · · xja · · · xja+b
,

we define the crystal (Kashiwara) reflection operator σi on w by putting σi(i
a i+ 1b) =

ib i+ 1a = x′j1 · · · x
′
ja · · · x

′
ja+b

and σi(w) = y1 · · · yk where yj = x′j if j ∈ {j1, . . . , ja+b}
and yj = xj otherwise. The operators σi, i ∈ [d− 1] are involutions and define an action
of the symmetric group Sd on Wd by acting on its connected components isomorphic to
B(λ), for some λ. They commute with any meaningful sequence of jeu de taquin moves.
The subgraph obtained from Bd(λ) by erasing all edges of colour 6= i is a disjoint union
of i-strings of various lengths

•
i

99K •
i

99K · · · •
i

99K •

The operator σi is the involution on B(λ) which reverses each i-string, that is, σi(w) is
the vertex on the i string of w such that εi(σi(w)) = ϕi(w). It coincides with the action
of the partial Schützenberger involution on the alphabet {i, i + 1} on the i-strings. The
i-string is itself a crystal graph with highest weight the top and lowest weight the bottom
of the i-string, thus σi interchanges the highest with the lowest weight. Each simple
transposition si ∈ Sd acts in a i-string so that wt(σiw) = siwt(w). Therefore, the action
of the longest Weyl group element (in type A, the reverse permutation) on a connected
component of Wd isomorphic to B(λ) agrees with the action of the Schützenberger’s
involution (or evacuation) on Yamanouchi or opposite Yamanouchi tableaux and with
the reversal on Yamanouchi or opposite Yamanouchi words. The highest weight element
is the Yamanouchi tableau Y (ν), and the lowest weight element σ0Y (ν) = Y (ν•), with
σ0 ∈ Sd. Crystal operators and crystal reflection operators acting on words (for definitions
see [LLThi02, LS81, Kwo09, BumSch16]) preserve Knuth equivalence and the Q–symbol,
and, henceforth, also the dual Knuth class, when acting on the word of a tableau. Let
w be a Yamanouchi word of weight ν, with ℓ(ν) ≤ d, and let σi denote the crystal
reflection operator (for definitions see [LLThi02, Section 5.5] or [BumSch16, Definition
2.35]) acting on the subword over the alphabet {i, i+ 1}, for 1 ≤ i < d. The operators σi
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satisfy the Coxeter relations of the symmetric group. If ω0 := siN · · · si1 is the Sd long
element, put σ0 := σiN · · · σi1 . Then σ0w is the opposite Yamanouchi word of weight ν•,
σ0w ≡ w• ≡ Y (ν•), and Q(σ0w) = Q(w) = U(w) (whereas Q(w•) = evacQ(w)).

For µ ⊆ λ ⊆ D, let B(λ/µ) be the set of all semi-standard tableaux of shape λ/µ
on the alphabet [d].

B(λ/µ) ≃
⊕

ν, ℓ(ν)≤d

T∈LRλ
µ,ν

B(T ),

where B(T ) is the crystal connected component of B(λ/µ) containing the LR tableau
T ∈ LR(µ, ν, λ∨) for some partition ν ⊆ λ. Each crystal B(T ) with T ∈ LR(µ, ν, λ∨) is
gld-crystal isomorphic to B(ν). That is, B(T ) is a dual Knuth class. Since σ0T is dual
Knuth equivalent to T , the lowest weight element of B(T ) is the reversal LR tableau
eT = σ0T ≡ Y (ν•) in LR(µ, ν•, λ) and T e e = σ0σ0T = T .

For LR tableaux we may provide another procedure used in [Az99] to calculate the
reversal. This procedure is illuminated by the action of the longest permutation of the
symmetric group Sd on the crystal Bd(T ) of a skew tableau T of shape λ/µ and content
ν [Kwo09, BumSch16] over the alphabet {1, . . . , d}, with ℓ(ν) ≤ d.

2.9. Left and right LR companion tableaux, crystals and hives. The recording
matrix M of an LR tableau T ∈ LR(µ, ν, λ∨) is the d×d lower triangular matrix identified
with the LHS of (2.8). Its transposition M t is the upper triangular matrix identified with
the RHS of (2.8). M t is the recording matrix of the semistandard Young tableau G of
shape ν and weight λ/µ, the recording tableau of RSK(M) = (Y (ν), G) in Proposition
2.2. The semistandard Young tableau G of shape ν and content λ/µ is such that each
row i tell us in which rows of T the i’s are filled in, Proposition 2.2, (c), and is called the
right Gelfand-Tsetlin (GT) pattern, or the right LR companion tableau of T . It satisfies

Ĝ = U(w(T )).

A GT pattern, G, is a triangular array of non-negative integers G = (ν
(i)
j )1≤j≤i≤d

displayed as below (for more details and references therein we refer to [AzKiTe16, TeKiA18]):

ν
(d)
1 ν

(d)
2 · · · ν

(d)
d−1 ν

(d)
n

ν
(d−1)
1 ν

(d−1)
2 · · · ν

(d−1)
d−1

· · · · · · · · ·

ν
(2)
1 ν

(2)
2

ν
(1)
1

(2.12)

where entries satisfy the betweenness conditions ν
(i+1)
j ≥ ν

(i)
j ≥ ν

(i+1)
j+1 for 1 ≤ j ≤ i < d.

The ith row, enumerated from bottom to top, necessarily constitutes a partition ν(i)

of length ≤ i. Such a GT pattern is said to be of shape (or type) ν(d) and of weight
γ = (γ1, γ2, . . . , γn) where γi = |ν(i)| − |ν(i−1)| for i = 1, 2, . . . , d, with |ν(0)| = 0. There is
a natural bijection between GT patterns and semistandard tableaux of the same shape and
weight: a semistandard tableau of shape ν is a nested sequence of partitions ν(1) ⊆ ν(2) ⊆
· · · ⊆ ν(d) where ν(i) specify the shape of that part of the semistandard tableau consisting

of entries ≤ i, that is to say having ν
(i)
j − ν

(i−1)
j entries i in row j for 1 ≤ j ≤ i ≤ d.

Definition 2.3. Denote by LRν,λ/µ the set of right LR companion tableaux of LR(µ, ν, λ∨).
The elements of LRν,λ/µ are called right LR companion tableaux of shape ν and content
λ/µ.
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Thanks to Proposition 2.2, the linear transformation M 7→ M t, where M is the
recording matrix of an LR tableau, defines a linear bijection ι between LR tableaux of
boundary data (µ, ν, λ) and their right companions. Let

ι : LR(µ, ν, λ∨)→ LRν,λ/µ, T 7→ ι(T ) = G, (2.13)

where G is the semistandard tableau of shape ν and content λ/µ with recording matrix
M t given that T has recording matrix M .

The left LR companion tableau (or left Gelfand-Tsetlin pattern) of T ∈ LR(µ, ν, λ∨)
is defined to be the semistandard tableau L of shape µ and content rev(λ/ν) which
records the sequence of partitions giving the shapes occupied by the entries < r in rows
r, r+1, . . . , d of T , for r = 1, 2, . . . , d (for more details we refer to [AzKiTe16, TeKiA18] and
references therein). Given the recording matrix M = (Mij)1≤i,j≤d of T , the semistandard
tableau L is given by the nested sequence of partitions

(µd +
d−1∑

j=1

mdj) ⊆ · · · ⊆ (µr +
r−1∑

j=1

mrj, . . . , µd−1 +
r−1∑

j=1

md−1,j, µd +
r−1∑

j=1

md,j) ⊆ · · · ⊆ µ,

(2.14)

where µ = (µ1, . . . , µd) and 1 ≤ r ≤ d. This is equivalent to the linear transformation
given in [PV10, Proposition 12] to obtain the recording matrix of the LR left companion
L of T given its recording matrix.

Definition 2.4. Denote by LR−ν,λ/µ the set of left LR companion tableaux of LR(µ, ν, λ∨).

Clearly the sets LR−µ,λ/ν , LRν,λ/µ and LR(µ, ν, λ∨) are mutually in linear bijection.

Given a semistandard tableau G of shape ν and content γ = λ−µ the transpose of
its recording matrix determines an LR skew tableau only up to a parallel shift of the skew
shape. Given a semistandard tableau G of shape ν and content λ/µ how do we check
whether G is in LRν,λ/µ? The same question for L of shape µ and content rev(λ− ν) to
be in LR−µ,λ/ν .

The elements of LRν,λ/µ are those tableaux (GT patterns) G = ν1 ⊇ ν2 ⊇ · · · ⊇
νd = (ν1, . . . , νd) and content λ/µ [GelZel86, Theorem 1] (we refer to [AzKiTe16, Section
2.4] for more details) such that

i∑

k=1

(ν
(j)
k − ν

(j−1)
k )−

i−1∑

k=1

(νj−1
k − νj−2

k ) ≤ µj−1 − µj, 1 ≤ i < j ≤ d. (2.15)

Alternatively, let B(µ) and B(ν) be the crystals of all semistandard tableaux of
shape µ and ν, on the alphabet [d], respectively. Let us consider B(µ) ⊗ B(ν) and their
highest weight elements. Given G ∈ B(ν) of weight λ/µ, Y (µ)⊗G is the highest weight
element of weight λ of a connected component, isomorphic to B(λ), of B(µ)⊗B(ν) if and
only if εj(G) ≤ µj−1 − µj, for all 1 < j ≤ d, where εj(G) = max{k ∈ Z≥0 : eki (G) 6= 0}
and ei is a raising operator [Nak05, Appendix], [Kwo09]. The only if part of the former
statement is equivalent to (2.15) holds. Therefore G ∈ LRν,λ/µ if and only if Y (µ)⊗G is
a highest weight element of B(λ if and only if G is a vertex of B(ν) of weight λ/µ such
that εj(G) ≤ µj−1−µj, for all 1 < j ≤ d if and only if (2.15) holds. Equivalently, LRν,λ/µ

is the set of semistandard tableaux G of shape ν and content λ/µ satisfying the equation
Y (µ).G = Y (λ) where ”.” refers to the column insertion of G in Y (µ) [Th78, Kwo09].

The elements of LR−µ,λ/ν are those tableaux (GT patterns) L = µ1 ⊇ µ2 ⊇ · · · ⊇

µd = (µ1, . . . , µd) and content rev(λ/ν) such that [BerZel89] (see also [AzKiTe16, Section
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2.4] for details)

d∑

k=j

(µ
(d−i)
k−i − µ

(d−i+1)
k−i+1 )−

d∑

k=j+1

(µ
(d−i−1)
k−i−1 − µ

(d−i)
k−i ) ≤ νi − νi+1, 1 ≤ i < j ≤ d. (2.16)

Similarly, under considerations of the lowest weight elements of B(µ)⊗B(ν), given
L ∈ B(µ) of weight rev(λ/ν), L ⊗ Y (revν) is the lowest weight element of weight revλ
of a connected component, isomorphic to B(λ), of B(µ)⊗ B(ν) if and only if ϕd−i(L) ≤
νi − νi+1, for 1 ≤ i < d, where ϕj(L) = max{k ∈ Z≥0 : fk

j (L) 6= 0} and fj is a
lowering operator [Kwo09]. The only if part of the former statement is equivalent to
(2.16). Therefore L ∈ LR−ν,λ/µ if and only if L⊗Y (revν) is a lowest weight element of B(λ

if and only if L is a vertex of B(µ) of weight revλ/ν such that ϕd−i(L) ≤ νi − νi+1, for
all 1 < i < d if and only if (2.16) holds. Equivalently, L of shape µ and content rev(λ/ν)
satisfies the equation L.Y (revν) = Y (revλ) where ”.” refers to the column insertion of
Y (revν) in L [Kwo09].

2.9.1. LR companion pairs and hives. Thanks to [HeKa06], a pair (Lµ, Gν) of semistan-
dard tableaux of shapes µ and ν and weights rev(λ/ν) and λ/ν respectively, is said to be
a LR companion pair of LR(µ, ν, λ∨) if and only if Lµ ⊗ Y (revν) and Y (µ)⊗Gν are the
lowest and the highest weight elements of a connected component, isomorphic to B(λ),
of B(µ) ⊗ B(ν) (see [AzKiTe16, Subsection 12.1] for more details). That is Y (µ).G and
L.Y (revν) have the same recording tableau Q (an LR tableau of shape λ/µ and content
ν) [Th78, Kwo09]. Alternatively, (L,G) satisfy certain linear equalities which can be
expressed by the triangle condition in a hive [AzKiTe16, Section 2.4].

In [PV10, Proposition 12], given T ∈ LR(µ, ν, λ∨), it is given a linear transforma-
tion [PV10, Proposition 12] to transform recording matrix of T into the left companion.
Thereby given a right companion the corresponding left companion can be obtained from
that by a linear transformation. Later we give another relation using the action of S3×Z2

on LR.

Example 2.5. Consider T ∈ LR(210, 532, 320) in Example 2.1. The recording matrix of

T is M =
(

4 0 0
1 2 0
0 1 2

)
. Its transposition M t =

(
4 1 0
0 2 1
0 0 2

)
encodes the right companion tableau

G =

3 3
2 2 3
1 1 1 1 2 (2.17)

of normal shape ν = 532 and weight λ/µ = 643 − 210 = 433. The standardization of G

gives Ĝ = U(w(T )) in (2.7). The left companion of T is given by the sequence of shapes
(1) ⊆ (20) ⊆ (210), equivalently,

L =

3
1 2 (2.18)

of normal shape µ = 210 and weight revλ/ν = rev(643− 532) = 111.

2.9.2. Companion tableau of an opposite LR tableau. The recording matrix M of an oppo-
site LR tableau T ∈ LR(µ, ν•, λ∨) is a d× d upper triangular matrix M . Its transposition
M t, a lower triangular matrix, is the recording matrix of the antitableau H of shape ν•

and weight λ/µ such that the row i entries of H tell us which rows of T are filled with
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i’s. The antitableau H is the companion of T . In Example 2.2 the recording matrix of S

is M(S) =
(

2 0 2
0 3 0
0 0 3

)
and M(S)t =

(
2 0 0
0 3 0
2 0 3

)
with companion tableau H =

1 1 3 3 3
2 2 2

1 1

3. The linear rotation and orthogonal transpose maps on LR tableaux

and companions

3.1. Linear reduction and linear equivalence of bijections. We follow closely [PV10]
for this section. Using ideas and techniques of Theoretical Computer Science, see [AHU75,
CLRS01], each bijection can be seen as an algorithm having one type of combinatorial
objects as input, and another as output. We define a correspondence as a one–to–one
map established by a bijection; therefore, obviously several different defined bijections
can produce the same correspondence. In this way one can think of a correspondence
as a function which is computed by the algorithm, viz. the bijection. The computa-
tional complexity is, roughly, the number of steps in the bijection. Two bijections are
identical if and only if they define the same correspondence. Obviously one task can be
performed by several different algorithms, each one having its own computational com-
plexity, see [AHU75, CLRS01]. For example we recall that there are several ways to
multiply large integers, from naive algorithms, e.g. the Russian peasant algorithm, to
that ones using FFT (Fast Fourier Transform), e.g. Schönhage–Strassen algorithm; see
e.g. [GG03] for a comprehensive and update reference. Formally, a function f reduces
linearly to g, if it is possible to compute f in time linear in the time it takes to compute
g; f and g are linearly equivalent if f reduces linearly to g and vice versa. This defines
an equivalence relation on functions, which can be translated into a linear equivalence on
bijections.

Let D = (d1, . . . , dn) be an array of integers, and let m = m(D) := maxi di. The
bit–size of D, denoted by 〈D〉, is the amount of space required to store D; for simplicity
from now on we assume that 〈D〉 = n ⌈log2 m+ 1⌉. We view a bijection δ : A −→ B
as an algorithm which inputs A ∈ A and outputs B = δ (A) ∈ B. We need to present
Young tableaux as arrays of integers so that we can store them and compute their bit–size.
Suppose A ∈ Y T (µ,m, λ): a way to encode A is through its recording matrix (ci,j), which
is defined by ci,j = ai,j − ai,j−1; in other words, ci,j is the number of j’s in the i–th row
of A; this is the way Young tableaux will be presented in the input and output of the

algorithms. Finally, we say that a map γ : A −→ B is size–neutral if the ratio 〈γ(A)〉
〈A〉

is

bounded for all A ∈ A. Throughout the paper we consider only size–neutral maps, so we
can investigate the linear equivalence of maps comparing them by the number of times
other maps are used, without be bothered by the timing. In fact, if we drop the condition
of being size–neutral, it can happen that a map increases the bit–size of combinatorial
objects, when it transforms the input into the output, and this affects the timing of its
subsequent applications. Let A and B be two possibly infinite sets of finite integer arrays,
and let δ : A −→ B be an explicit map between them. We say that δ has linear cost
if δ computes δ (A) ∈ B in linear time O (〈A〉) for all A ∈ A. There are many ways to
construct new bijections out of existing ones: we call such algorithms circuits and we
define below several of them that we need.

: ◦ Suppose δ1 : A1 −→ X1, γ : X1 −→ X2 and δ2 : X2 −→ B, such that δ1 and δ2
have linear cost, and consider χ = δ2 ◦ γ ◦ δ1 : A −→ B. We call this circuit trivial
and denote it by I (δ1, γ, δ2).
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: ◦ Suppose γ1 : A −→ X and γ2 : X −→ B, and let χ = γ2 ◦ γ1 : A −→ B. We call
this circuit sequential and denote it by S (γ1, γ2).

: ◦ Suppose δ1 : A −→ X1×X2, γ1 : X1 −→ Y1, γ2 : X2 −→ Y2, and δ2 : Y1×Y2 −→
B, such that δ1 and δ1 have linear cost. Consider χ = δ2 ◦ (γ1 × γ2) ◦ δ1 : A −→ B:
we call this circuit parallel and denote it by P (δ1, γ1, γ2, δ2).

For a fixed bijection α, we say that i is an α–based ps–circuit if one of the following
holds:

: • i = δ, where δ is a bijection having linear cost.
: • i = I (δ1, α, δ2), where δ1, δ2 are bijections having linear cost.
: • i = P (δ1, γ1, γ2, δ2), where γ1, γ2 are α–based ps–circuits and δ1, δ2 are bijections
having linear cost.

: • i = S (γ1, γ2), where γ1, γ2 are α–based ps–circuits.

In other words, i is an α–based ps–circuit if there is a parallel–sequential algorithm
which uses only a finite number of linear cost maps and a finite number of application of
map α. The α–cost of i is the number of times the map α is used; we denote it by s (i).

Let γ : A −→ B be a map produced by the α–based ps–circuit i. We say that i
computes γ at cost s (i) of α. A map β is linearly reducible to α, write β →֒ α, if there
exist a finite α–based ps–circuit i which computes β. In this case we say that β can be
computed in at most s (i) cost of α. We say that maps α and β are linearly equivalent,
write α ∼ β, if α is linearly reducible to β, and β is linearly reducible to α. We recall,
gluing together, results proved in Section 4.2 of [PV10].

Proposition 3.1. Suppose α1 →֒ α2 and α2 →֒ α3, then α1 →֒ α3. Moreover, if α1 can
be computed in at most s1 cost of α2, and α2 can be computed in at most s2 cost of α3,
then α1 can be computed in at most s1s2 cost of α3. Suppose α1 ∼ α2 and α2 ∼ α3, then
α1 ∼ α3 Suppose α1 →֒ α2 →֒ . . . →֒ αn →֒ α1, then α1 ∼ α2 ∼ . . . ∼ αn ∼ α1.

3.2. The linear involution rotation on LR and companion tableaux. Given a
Yamanouchi word w = w1 · · ·ws of weight ν, define the standard tableau U(w•) of anti-
normal shape ν• such that the label k is in row i if and only if w•s−i+1 = k where w• =
w•s · · ·w

•
1. Thus U(w•) = U(w)• and w 7→ U(w)• defines a bijection between Yamanouchi

words and standard tableaux of anti-normal shape given by the reverse content of the
Yamanouchi word.

If T ∈ LR(µ, ν, λ) and M is the recording matrix of T , M• := PrevMPrev, the π
radians rotation of M , is the recording matrix of •T ∈ LR(λ, ν•, µ). Since M• t = M t•, if
G is the companion of T then M• t is the recording matrix of •G which we define to be the

companion of •T . Therefore U(w(T )•) = U(w(T )) • = •Ĝ = •̂G. Let LRν•,(λ/µ)• be the
set of companion tableaux of the opposite LR tableaux of shape λ/µ and content ν•. Then
LRν•,(λ/µ)• := •LRν,λ/µ. The map • is an involution on the set LR(µ, ν, λ) ⊔ LR(λ, ν•, µ)
and on the set of LR companion tableaux LRν,λ/µ ⊔ LRν•,(λ/µ)• .

Proposition 3.2. If G is the right companion tableau of T , the companion tableau of •T
is the semistandard tableau •G of anti-normal shape ν•, the rotated of G, whose i-th row
tell us in which rows of •T the i’s are filled in.

Example 3.1. Let T ∈ LR(µ, ν, λ∨), in Example 2.1, with recording matrixM =
(

4 0 0
1 2 0
0 1 2

)
,

and companion tableau G =

3 3
2 2 3
1 1 1 1 2 of shape ν = 532 and weight λ/µ = 433
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encoded by M t. Then •T =

3 3 3 3
2 2 3

1 1 2 is in LR(λ∨, ν•, µ) with dual Yamanouchi

word w• = 2113223333, and has recording matrix M• := PrevMPrev =
(

2 1 0
0 2 1
0 0 4

)
, with

Prev the rev permutation matrix. The matrix M•t = M t• =
(

2 0 0
1 2 0
0 1 4

)
encodes •G =

2 3 3 3 3
1 2 2

1 1 of anti normal shape ν• = 235 and weight (λ/µ)• = µ∨/λ∨ = 334 =
(λ− µ)rev. The antitableau •G gives explicit information of •T namely the row i entries
of •G tell us which rows of •T are filled with i’s. One has

•̂G = •Ĝ = U(w) • = U(w•) =

4 7 8 9 10
1 5 6

2 3 .

3.3. The linear cost orthogonal transpose involution �. There is another simple
bijection, denoted �, between LR tableaux of conjugate weights and rotate conjugate
shapes [Az99, Az98, Za96]. Given a Yamanouchi word w on the alphabet [d] of weight
ν = (ν1, . . . , νd), let ν

t = (νt
1, . . . , ν

t
ν1
). We define w� to be the Yamanouchi word, on the

alphabet [ν1], of weight ν
t obtained by replacing in w the subword of length νi, consisting

of all letters i, with the subword 12 · · · νi, for each i = 1, . . . , d. When w is opposite
Yamanouchi word, w� is defined to be the opposite Yamanouchi word, on the alphabet
[ν1], of weight ν

t• obtained by replacing in w for each i, for each i = 1, . . . , d, the subword
of length νi, consisting of all letters d− i+1 with the subword (ν1− νi+1) · · · (ν1− 1) ν1.

If w is a Yamanouchi word, the word w�• is calculated by first replacing in w
each string iνi with 12 · · · νi in w, for i = 1, . . . , d, to obtain w�. Then, after reversing
w�, for i = 1, . . . , d, our string 12 · · · νi is transformed into νi · · · 21 which we replace
with (ν1 − νi + 1) · · · (ν1 − 1) ν1. On the other hand, the word w•� is calculated by first
replacing in w each string iνi with (d − i + 1)νi , for i = 1, . . . , d, and then reversing the
word to obtain w•. Then, for i = 1, . . . , d, our string (d − i + 1)νi in w• is transformed
into (ν1 − νi + 1) · · · (ν1 − 1) ν1. Thereby, w

•� = w�• is an opposite Yamanouchi word of
weight νt• = ν•t (2.3). Henceforth, if w is Yamanouchi, the word w�• can be obtained in
just one single step by replacing in w, for each i, the subword of length νi, consisting of
all letters i with the subword ν1 (ν1− 1) · · · (ν1− νi + 1), and then reversing the resulting
word. See Example 3.2. If w is opposite Yamanouchi word, we also have w•� = w�•

by reducing to the previous case because every opposite Yamanouchi word is the dual of
some Yamanouchi word and • is an involution. The Yamanouchi word w�• is obtained
by replacing each string iνi with νi · · · 21 and then reverse the resulting word.

The map w 7→ w� defines a bijection between (opposite) Yamanouchi words of
conjugate content. Clearly, U(w�) = U(w)t has shape νt, and U(w•�) = U(w�•) =
U(w)•t = U(w)t• has shape ν•.

The operation � on Yamanouchi or opposite Yamanouchi words is now extended
to LR or opposite LR tableaux in the sense that � can be seen as defined on diagonally-
shaped LR or opposite LR tableaux. The orthogonal transpose map � is defined on LR
and opposite LR tableaux as follows. Given T ∈ LR(µ, ν, λ) (respectively LR(µ, ν•, λ))
with (opposite) Yamanouchi word w , the orthogonal transpose of T , �T, is the (opposite)
LR tableau of shape (λ/µ)t• = (µ∨)t/(λ∨)t and (opposite) Yamanouchi column word w�

of weight νt (ν•t). It is obtained from T by replacing the word w with w�, and then
transpose and rotate the shape λ/µ by π radians,
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� : LR(µ, ν, λ) ∪ LR(µ, ν•, λ)) −→ LR(λt, νt, µt) ∪ LR(λt, ν•t, µt),
T 7→ T �, wcol(T

�) = w(T )�.
(3.1)

The map � is an involution on LR(µ, ν, λ)∪LR(λt, νt, µt) and on LR(µ, ν•, λ)∪LR(λt, ν•t, µt)
that transposes inner shape, outer shape and weight, and simultaneously swaps the inner
and the outer shapes. In subsection 3.3.1, one proves that � is a linear time involution.
It exhibits the symmetries cµ,ν,λ = cλt,νt,µt , cµ,ν•,λ = cλt,ν•t,µt in linear time.

Let T ∈ LR(µ, ν, λ)∪LR(µt, ν•t, λt). Because •�T and �•T have the same column
word w(T )�• = w(T )•�, it follows that

•� = �• : LR(µ, ν, λ) ∪ LR(µ, ν•, λ) −→ LR(µt, ν•t, λt) ∪ LR(µt, νt, λt)
w(T ) 7→ wcol(T

�•) = w(T )�•.
(3.2)

is an involution which transposes the inner shape, outer shape and reverses and transposes
the weight.

Remark 3.1. If T is an LR tableau, (•�T )t is obtained from T by replacing the horizontal
strip iνi , from SE to NW, with ν1ν1 − 1 · · · ν1 − νi + 1, for all i.

If T is a opposite LR tableau, (•�T )t is obtained from T by replacing the horizontal
strip (d− i+ 1)νi , from NW to SE, with 12 · · · νi, for all i.

From the discussion above, it follows the next proposition.

Proposition 3.3. The rotation • and the orthogonal transpose � maps commute on the
set of LR and opposite LR tableaux, �• = •�, that is, (�•)2 = 1.

Example 3.2. Let n = 7 and d = 3. Let T =

1 3
1 2 2

1 1 be an LR tableau of shape
λ∨/µ, weight ν = 421, where λ = 200, λ∨ = 442, µ = 210, and with word w = 1122131.
Then w• = 3132233, w� = 1212314, column word of T �, and w�• = 1423434 = w•�,
νt = 3211, column word of T •�,

T =

1 3
1 2 2

1 1 ←→

4 1
3 2 1

2 1 rotate & transpose diagram
←→

4
1 3

2 2
1 1 = T�←→

•

4 4
3 3

2 4
1 = •�T .

T ←→ T • =

3 3
2 2 3

1 3 ←→

4 3
4 3 2

4 1 rotate & transpose diagram
←→

4 4
3 3

2 4
1 = T •�.

T� is an LR tableau with shape (λ∨/µ)• t and column word w� = 1212314 of weight
νt, while T�• = T•� is a opposite LR tableau with shape (λ/µ)t and column word

w�• = 1423434 of weight νt•, where U(w) =

6
3 4
1 2 5 7 , U(w�) =

7
5
2 4
1 3 6 = U(w)t,

and U(w�•) =

2 5 7
4 6

3
1 = U(w)•t.
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Let T =

3 3
2 2 3

1 2 be a opposite LR tableau with word w = 2132233. Following

the remark above, (� • T)t =

1 2
1 2 3

1 3 and � • T is a LR tableau with column word
w�• = 1212313.

3.3.1. Computational complexity of bijection � on LR tableaux. We now show that the
computational complexity of bijection � is linear on the input where we use skew LR
tableaux. Hence, recalling the definition of a linear cost bijection in Subsection 3.1, the
bijection � is of linear cost.

Algorithm 3.4. [Bijection �.]
Input: LR tableau T of skew shape λ/µ, with λ = (λ1 ≥ . . . ≥ λn),
µ = (µ1 ≥ . . . ≥ µn), and filling ν = (ν1 ≥ . . . ≥ νn), having A = (ai,j) ∈ Mn×n(N)
(ai,j = 0 if j > i) as (lower triangular) recording matrix.

Write Ã, a copy of the matrix A.
For j := n down to 2 do
For i := 1 to n do
Begin
If i = j then ãi,i := ãi,i + λ1 − λi

else
If j > i then ãi,j = 0 else ãi,j := ãi,j + ãi,j+1.

End

So far the computational cost is O(n2) = O(〈A〉).

Set a matrix B = (bi,j) ∈Mλ1×λ1(N) such that bi,j = 0 for all i, j.
For i := 1 to n do
Begin
Set c := 0.
For j := 0 to n do
Begin
r := ãi+j,i − ai+j,i, see Remark 3.2.
For t := 1 to ai+j,i do br+t,c+t := br+t,c+t + 1.
c := c+ ai+j,i.

End
End

This part has total computational cost at most equal to

O

( ∑

1≤i.j≤n

ai,j

)
= O (|λ \ µ|) = O (|λ| − |µ|) = O (〈T 〉) .

Output: B recording matrix of the output tableau T �.

Remark 3.2. For all 1 ≤ i ≤ n and 0 ≤ j ≤ n− i+ 1, we have

ãi+j+1,i − ãi+j,i ≥ ai+j+1,i.

Corollary 3.5. The composition �• = •� is a linear cost involution on LR(µ, ν, λ) ∪
LR(µt, ν•t, λt). It exhibits the symmetry cµ,ν,λ = cµt,ν•t,λt in linear time.
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3.4. The linear cost involution orthogonal transpose on LR companion tableaux.
If G is the right companion of T ∈ LR(µ, ν, λ) and ι(T �) =: G�, where ι is the linear map
bijection (2.13), then if B is the recording matrix of T �, Algorithm 3.4, Bt is the recording

matrix of G� and G
ι−1

→ T
�
→ T � ι

→ G� is a linear cost bijection. It is then not difficult to
define a linear cost algorithm to directly calculate G� from G without making recourse
of the recording matrix. We now recall the involution on LR companion tableaux, also
denoted �, as described in Steps 2 and 3 in Section 6.1 of [LecLen17]

� : LRν,λ∨/µ → LRνt,(λ∨/µ)t• , G 7→ G� (3.3)

such that ι(T �) = ι(T )� whenever T ∈ LR(µ, ν, λ). We reproduce it below with slightly
different notation.

Algorithm 3.6. [Construction of G�.] Let G ∈ LRν,λ∨/µ. The construction of G� has
the following two steps.

Step 1. Transpose the tableau G and denote the resulting filling of shape νt by Gt.
Step 2. For each i = 1, . . . , d, consider in Gt the vertical strip of i′s with size

λ∨i − µi, and replace these entries, from southeast to northwest, with (λ•)i + 1, (λ•)i +
2, . . . , (λ•)i + λ∨i − µi respectively. The resulting tableau is G� of shape νt and weight
(λ∨t/µt)•.

Example 3.3. In the previous example, T ∈ LR(µ, ν, λ) has recording matrix A =

(
2 0 0 0
1 2 0 0
1 0 1 0
0 0 0 0

)
and At is the recording matrix of the companion tableau G =

3
2 2
1 1 2 3 of

shape ν = 421 and weight λ∨/µ = 232, where λ = 200, λ∨ = 442, µ = 210. One has Gt =
3
2
1 2
1 2 3 , λ• = 002 and (λ•)1+1 = 1, (λ•)1+2 = 2, (λ•)2+1 = 1, (λ•)2+2 = 2, (λ•)2+3 = 3,

(λ•)3 +1 = 3, (λ•)3 +2 = 4. Then B = A� =

(
2 0 0 0
0 2 0 0
1 0 1 0
0 0 0 1

)
is the recording matrix of T � and

Bt is the recording matrix of G� =

4
3
2 2
1 1 3 = ι(T �) with shape νt = 3211 and weight

(λ∨t/µt)• = (3322− 2100)rev = 2221 is the companion tableau of T �.

From the second part of Proposition 2.2 and duality of Burge correspondence, it
follows

Proposition 3.7. Let w and u be two Yamanouchi words such that w ≡ Y (ν). Then
(a) w� ≡ Y (νt), and w ≡ u if and only if w� ≡ u�.
(b) w• ≡ Y (ν•), and w•� = w�• ≡ Y (νt•).
(c) Q(w•) = evacQ(w) = evacU(w) = U(w)•n = U(w•)n = U(w)a•.
(d) Q(w�) = Q(w)t = U(w)t.
(e) Q(w•�) = Q(w�•) = evacQ(w) t = (evacQ(w))t = evacU(w) t = (evacU(w))t .

4. LR transposers coincidence and linear equivalence to an LR

commutor

In this section we work in LR as a set of LR tableaux or their companions.



SYMMETRIES OF LITTLEWOOD–RICHARDSON COEFFICIENTS 31

4.1. An LR commutor for the symmetry cµ,ν,λ = cλ,ν,µ. Let T ∈ LR(µ, ν, λ) and
B(T ) the crystal connected component of B(λ/µ) containing T . The highest and lowest
weight elements of B(T ) are T and e(T ) respectively, and henceforth the highest and
lowest weight elements of B(T )• = B(•T ) are •e(T ) and •(T ) respectively. Since highest
and lowest weight elements in a connected crystal component are related by reversal e,

e • T = •eT. (4.1)

Theorem 4.1. Let ρ := • e = e•. Then the involution

ρ : LR(µ, ν, λ) −→ LR(λ, ν, µ), T 7→ ρ(T ) = e • T

is an LR commutor that exhibits the symmetry cµ,ν,λ = cλ,ν,µ.

Remark 4.1. We may also use Knuth and dual Knuth equivalence to characterize •e(T )
and e• (T ). That is we may use tableau switching as in Algorithm 2.6 to calculate e• (T ).
In fact T • ∈ LR(λ, ν•, µ), and, from Corollary 2.8, T • e = [Y (ν)]K ∩ [T •]dK , is the unique
LR tableau in LR(λ, ν, µ) of the crystal connected component B(T •) in B(µ∨/λ). On the
other hand, T e• = [Y (ν•)•]K ∩ [T •]dK = [Y (ν)a]K ∩ [T •]dK = T •e.

4.2. Coincidence of LR transposers and linear equivalence to an LR commuter.
Recall that σ0 coincides with the reversal on the T high and on the T low of B(T high, d). The
reversal(T high) may be computed by the action of σ0 on B(T high, d). Recall that σ0w
coincides with the reversal e on the LR or opposite LR diagonally-shaped tableau with
word w. Thus the column word of •�eT is (σ0w)

� •.

Proposition 4.2. The following holds on LR as a set of LR tableaux:
(a) σ0(w

�) = (σ0w)
�, where w is a Yamanouchi or opposite Yamanouchi word.

(b) e� = � e, that is, (e�)2 = 1.
(c) the involutions �, e, • pairwise commute.

Proof. (a) Suppose that w ≡ Y (ν). Then, from Proposition 3.7, w� ≡ Y (νt) and Subsec-
tion 2.8.3, σ0w ≡ w• ≡ Y (ν•). Thereby, (σ0w)

⋄ ≡ w•� = w� • ≡ σ0(w
�) ≡ Y (νt•). On

the other hand, σ0(w
�) and (σ0w)

� are dual equivalent because their Q-symbol is Q(w)t.
In fact Q(w)t = Q(w�) = Q(σ0(w

�)) and Q(w)t = Q(σ0w)
t = Q((σ0w)

�). Therefore
σ0(w

�) = (σ0w)
�.

(b) Let T be an LR tableau where T ∈ Bd(λ/µ). The row and the column reading
of the tableaux in B(T ) embeds B(T ) into usually different subcrystals of B|λ|−|µ| but
isomorphic. Henceforth, either we consider the row reading or the column reading of T ,
one always has, σ0(wcol(T )) = wcol(T

e), and σ0(w(T )) = w(T e), with ω0 ∈ Sd . Then the
(row reading) word of T e is σ0w(T ), the column reading word of T � ∈ Bν1(µ

t∨/λt∨) ⊆
Bn−d(µ

t∨/λt∨) is w(T )� on the alphabet [ν1], and the column reading word of T � e is
σ0(w(T )

�) with with ω0 ∈ Sν1 . Henceforth, from (a), wcol(T
e�) = (σ0w)

� = σ0(w
�) =

σ0(wcol(T
�)) = wcol(T

� e).
(c) It follows from (b), Theorem 4.1 and Proposition 3.3. �

The following is an illustration of the previous result.

Example 4.1. Let w = 1111221332 on the alphabet [3] with weight ν = 532, and
w� = 1234125123 on the alphabet [ν1 = 5] of weight νt = 33211. Then σ0w = σ1σ2σ1w =
σ1σ2(2211221332) = σ1(3311221333) = 3311222333 and (σ0w)

� = 1245345345. On the
other hand,

σ0(w
�) = σ1.σ2σ1.σ3σ2σ1.σ4σ3σ2σ1(w

�) = σ1.σ2σ1.σ3σ2σ1.σ4σ31234135123
= σ1.σ2σ1.σ3σ2σ1.σ41234145124 = σ1.σ2σ1.σ3σ2σ11235145125
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= σ1.σ2σ1.σ3σ21235245125 = σ1.σ2σ1.σ31235345135 = σ1.σ2σ11245345145
= σ1.σ21245345245 = σ11245345345 = 1245345345 = (σ0w)

�.
If one considers the alphabet [4], one has σ0w = σ1σ2σ1σ3σ2σ1w = 4422333444 but

still (σ0w)
� = σ0w

�.

From this discussion, Section 3, and the computational complexity of the reversal
involution e [PV10], it then follows

Theorem 4.3. Let T be a LR tableau with shape λ/µ and word w. Let ̺ := �ρ = �• e =
•� e = • e� = ρ� where ρ = • e. Then

e : LR(µ, ν, λ)→ LR(µ, ν•, λ), T 7→ eT, w(eT ) = σ0w;

ρ : LR(µ, ν, λ)→ LR(λ, ν, µ), T 7→ ρ(T ) = •eT, w(ρ(T )) = (σ0w)
•;

and

̺ : LR(µ, ν, λ)→ LR(µt, νt, λt), T 7→ ̺(T ) = �ρ(T ) = � • eT, wcol(̺(T )) = (σ0w)
� •

are involutions exhibiting the symmetries cµ ν λ = cµ ν• λ, cµ ν λ = cλ ν µ and cµ ν λ = cµt νt λt

respectively. The three involutions e, ρ, and ̺ are linear time equivalent to each other and
in particular to the reversal e.

Remark 4.2. From the identity ̺ = �ρ = (�•)e we conclude that ̺(T ) can be obtained
from T e by replacing, for i = 1, . . . , ℓ(ν), from NW to SE, the entries of the i-horizontal
strip of length ℓ(ν)− i + 1 in T e, with 1, . . . , νi − i + 1. This gives (̺(T ))t = (�ρ(T ))t a
row semistandard tableau.

We may also use Knuth and dual Knuth equivalence to characterize the bijection
̺. This shows that ̺(T ) can also be calculated using tableau switching as in Algorithm
2.6. This is the procedure offered in [BSS96].

Corollary 4.4. Let T be a LR tableau with shape λ/µ and weight ν. Then ̺(T ) = T e�•

is the unique tableau Knuth equivalent to Y (νt) and dual Knuth equivalent to T̂ t. That

is, ̺(T ) = T e�• = [Y (νt)]K ∩ [T̂ t]dK.

Proof. Let w be the word of T with weight ν. One has σ0w ≡ w•, and (σ0w)
• ≡ w ≡

Y (ν). Then (σ0w)
� • = ((σ0w)

•)� = (σ0(w
•))� ≡ w� ≡ Y (νt). Recall that dual Knuth

equivalence between tableaux can be checked either by using row or column words.

From Haiman’s theorem, Theorem 2.5, [Y (νt)]K ∩ [T̂ t]dK has a sole tableau dual

Knuth equivalent to T̂ t and Knuth equivalent to Y (νt). Since T e�• ≡ Y (νt), it is enough

to see that the column words of T e�• and T̂ t have the same Q–symbol, that is, T e�• is the

highest weight element of the connected component B(T̂ t) in B((λ/µ)t), on the alphabet

|λ| − |µ|. Let ŵ be the word of T̂ . As rev ŵ, the reverse word of T̂ , is the column word

of T̂ t, we want to show that Q(revŵ) = Q((σ0w)
� •).

We know that any word u is dual Knuth equivalent to σ0u, Q(u) = Q(σ0u) and,
from Proposition 3.7, Q(u•) = Q(u)E and Q(rev u) = Q(u)Et [St01]. Recalling Proposi-
tion 3.7, Q(rev ŵ) = Q(ŵ)E t = Q(w)E t = Q(σ0w)

Et = Q((σ0w)
� •). �

In [BSS96], it is observed that the White and the Hanlon–Sundaram maps [Wh90,
HaSu92] produce the same result, denoted by ̺WHS. Thus ̺BSS(T ) can be obtained either
by tableau–switching or by the White–Hanlon–Sundaram transformation ̺WHS or by ̺.

Theorem 4.5. The LR transposers ̺BSS, ̺WHS and ̺ are identical, and linear time
equivalent to the reversal involution e.
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Remark 4.3. The Schützenberger’s jeu de taquin formulation of the LR rule says: Fix
Tν ∈ SYT(ν). The number of T ∈ SYT(λ∨/µ) such that rectification(T) = Tν equals
cµ,ν,λ [St01, Appendix 1]. Equivalently, since Tν is Knuth equivalent to Ta

ν , the number of
T ∈ SYT(λ∨/µ) such that arectification(T) = Ta

ν equals cµ,ν,λ. The definition only depends
on the shapes µ, ν, λ and not on a particular choice of the filling of the Young diagram
of ν. However, choosing a certain filling of Tν ∈ SYT(ν) allows to relate this definition
with LR tableaux [St01, Appendix 1]. That is, choosing Tν to be a standardization of
the Yamanouchi tableau Y(ν) incurs that rectification(T) = Tν , with T ∈ SYT(λ∨/µ),
holds only if the ν-semistandardization of T is an LR tableau of shape λ∨/µ and weight
ν [St01, Lemma A1.3.6, Lemma A1.3.7 ].

Fix the tableaux Tµ ∈ SYT(µ), Tν ∈ SYT(ν) and Tλ ∈ SYT(λ) to be the stan-
dardizations of the Yamanouchi tableaux Y(µ), Y(ν), and Y(λ) respectively. Choose T ∈
SYT(λ∨/µ) to be the standardization of an LR tableau that rectifies to Tν , to initialize
a Thomas-Yong carton filling [TY08], built upon Fomin’s jeu de taquin growth-diagrams
and the infusion involution [TY16], a particular case of Benkart-Sottille-Stroomer tableau-
switching on pairs of standard tableaux. Let CARTONSµ,ν,λ be the set of all carton fillings
built in this way with initial data Tµ,Tν ,Tλ. The number of carton fillings is equal to
the number of standard tableaux of shape λ∨/ν which rectify to Tν , that is, cµ,ν,λ. For
this particular choice of Tµ, Tν and Tλ the carton filling besides to showing the S3-
symmetries of LR coefficients cµ,ν,λ = cǫ,δ,γ, where (ǫ, δ, γ) is any permutation of (µ, ν, λ),
also gives tableau-switching bijections on LR tableaux exhibiting such symmetries. More
precisely, composing the infusion involution with the semistandardization of those stan-
dard tableaux in the carton filling , one obtains the tableau-switching on LR tableaux
and thus the carton filling gives tableau-switching bijections on LR tableaux exhibiting
such symmetries.

Let R(λ∨/µ,Tν) be the set of standard tableaux of shape λ∨/ν which rectify to Tν .
Taking transposes there is an obvious bijection between R(λ∨/µ,Tν) and R(λt∨/µt,Tt

ν),
that is, T ∈ R(λ∨/µ,Tν) if and only if Tt ∈ R(λt∨/µt,Tt

ν) [Fu97, Section.5.1], and thus
that bijection exhibits cµνλ = cµtνtλt . Transposing all the Young diagrams defining a car-
ton filling in CARTONSµ,ν,λ with initial data Tµ,Tν ,Tλ, one obtains another carton filling in
CARTONSµt,νt,λt with initial data Tt

µ,T
t
ν ,T

t
λ, showing the identities cµ,ν,λ = cǫ,δ,γ = cǫt,δt,γt ,

where (ǫ, δ, γ) is any permutation of (µ, ν, λ). However, in this case, the initial data
Tt

µ,T
t
ν ,T

t
λ is not given by the standardization of Yamanouchi tableaux, and applying

semistandardization after transposing does not give semistandard tableau growth dia-
grams and thereby such a procedure bijection between CARTONSµ,ν,λ and CARTONSµt,νt,λt ,
with the aforesaid initial data, does not provide LR transposers.

Any carton filling gives a growth diagram on the face ∅ − ν − λ∨ − µ for which
the edge µ − λ∨ is a standard tableau Tλ∨/µ of shape λ∨/µ rectifying to Tν . By the
jeu de taquin Littlewood-Richardson rule, fillings of this face count cµ,ν,λ. Any such
growth-diagram of this face extends uniquely to a filling of the entire carton. The carton
initialized with Tµ,Tν ,Tλ and with Tλ∨/µ on the edge µ − λ∨, by the symmetry of jeu
de taquin, also contains a standard tableau Tλ∨/ν on the edge ν − λ∨. Denoting by
ρ1 the infusion corresponding to rectification and by ρ2 the infusion corresponding to
antirectification, each of the six faces has a pair of skew standard tableaux and a pair of
standard tableaux of normal shape or of antinormal shape: ρ2(Tλ∨/µ,T

a
λ) = (Tν∨/µ,T

a
ν),

ρ1(Tµ,Tν∨/µ) = (Tλ,Tν∨/λ), ρ2(Tν∨/λ,T
a
ν) = (Tµ∨/λ,T

a
µ) or ρ1(Tµ,Tλ∨/µ) = (Tν ,Tλ∨/ν),

ρ2(Tλ∨/ν ,T
a
λ) = (Tµ∨/ν ,T

a
µ), ρ1(Tν ,Tµ∨/ν) = (Tλ,Tµ∨/λ). That is ρ1ρ2ρ1(Tµ,Tλ∨/µ,Tλ =

ρ2ρ1ρ2(Tµ,Tλ∨/µ,Tλ) = (Tλ,Tµ∨/λ,T
a
µ) CARTONSµ,ν,λ → CARTONSλ,ν,µ
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4.3. LR companion tableaux and Lascoux’s double crystal graph. Let T be an
LR tableau of shape λ/µ with companion G. We recall Lascoux’s double crystal graph
structure on biwords [L03] where a crystal operator consists of a left and a right operator,
and a crystal string of a left and a right string. Let B(T,G) be the crystal graph whose
vertices consist of the collection of biwords whose recording tableau is G in the RSK-
correspondence, Subsection 2.5.3, with highest weight element the biword W λ/µ =

( y

w(T )

)

on the LHS of (2.8) identified with the LR tableau T , and lowest weight element the
biword

( y

σ0w(T )

)
identified with σ0T = T e. The vertices of B(T,G) describe simultaneously

integer matrices and tableaux. The latter have the former as recording matrices. Instead
of biwords we may consider integer matrices which are the recording matrices of the
tableaux that they do describe.

Proposition 2.2, exhibits the Lascoux’s double crystal graph structure on biwords
[L03]. It shows that the strings of the crystal graph B(T,G), are transformed, by re-
ordering the biwords (or transposing the corresponding matrices) as on the RHS of (2.8),
into the strings of the cocrystal CB(T,G), the set of biwords whose insertion tableau is
G [L03, p.103], with top biword W ν = ( w(G)

x
), and bottom biword ( w(Ga)

x
) with Ga the

anti–normal form of G. Under this reordering of the biletters, the Kashiwara operators
in B(T,G) are translated to the cocrystal operators or right operators, elementary jeu de
taquin (reverse jeu de taquin) operations on two–row tableaux (see also [Az06]). Again
instead of biwords we may consider as vertices of CB(T,G) the transpose of the matri-
ces as the vertices of the crystal B(T,G). The matrices as vertices of CB(T,G) are the
recording matrices of the tableaux that they do describe.

An i-string in CB(T,G) is an ordered string of two–row words in the plactic class
of a two–row tableau [L03, p.100]. The two-row words being ordered according to the
length of their bottom row, such that the two–row word on the top is a two-row tableau
of partition shape (νi, νi+1), and on the bottom is the anti-normal form of the two-row
tableau on the top, see [L03, Section 2]. Let θi be translation of the crystal reflection op-
erators σi on the cocrystal under the reordering of the billeters in the biwords as explained
above. Thus the symmetric group also acts on the cocrystal through the involutions θi
which reflects each i-string about the middle, for i ∈ 1, . . . , n− 1. In particular, θi sends
the top of a i-string, a two–row tableau, to its anti-normal form in the bottom and vice
versa. Indeed the entries of the j–th row of θiG are precisely the k’s telling us in which
rows of σiT the j’s are filled in. Indeed ι(σiT ) = θiG and put θ0 := θiN . . . θi1 where
σ0 = σiN . . . σi1 . Thus ι(σ0T ) = ι(T e) = θ0G = Ga. This defines the commutative scheme

T ←→ σi1T ←→ σi2σi1T ←→ · · · ←→ σ0T = T e

ι l ι l ι l ι l
G ←→ θi1G ←→ θi2θi1G ←→ · · · ←→ θ0G = Ga.

Example 4.2. Consider Example 2.4. The following exhibits the action of S3 on the key
tableaux (straight shape tableaux whose weight is a reordering of the partition shape) of
B(ν,G) whose weight is a reordering of the partition shape)

Reordering the biletters so that the biword bottom row is a row word, equivalently,
transposing the matrices defined by the biwords above, one obtains

Thus and taking into account Algorithm 3.6, we have the following result relat-
ing the tableaux T , T e, T e• and T e•� respectively with their corresponding companion
tableaux G, Ga, GE and GE� = G�E. See also the construction of GE� in [LecLen17,
Section 6.1].
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T ≡ W λ/µ = ( 1 1 1 1 2 2 2 3 3 3
1 1 1 1 2 2 1 3 3 2 )

σ1 σ2

σ1T ≡ ( 1 1 1 1 2 2 2 3 3 3
2 2 1 1 2 2 1 3 3 2 ) σ2T ≡ ( 1 1 1 1 2 2 2 3 3 3

1 1 1 1 2 2 1 3 3 3 )

σ2 σ1

σ2σ1T ≡ ( 1 1 1 1 2 2 2 3 3 3
3 3 1 1 2 2 1 3 3 3 ) σ1σ2T ≡ ( 1 1 1 1 2 2 2 3 3 3

2 2 1 1 2 2 2 3 3 3 )

σ1 σ2

σ0T ≡ ( 1 1 1 1 2 2 2 3 3 3
3 3 1 1 2 2 2 3 3 3 )

G ≡ W ν = ( 2 1 1 1 1 3 2 2 3 3
1 1 1 1 1 2 2 2 3 3 )

θ1 θ2

θ1G ≡ ( 2 1 1 3 2 2 1 1 3 3
1 1 1 2 2 2 2 2 3 3 ) θ2G ≡ ( 2 1 1 1 1 2 2 3 3 3

1 1 1 1 1 2 2 3 3 3 )

θ2 θ1

θ2θ1G ≡ ( 2 1 1 2 2 3 3 3 1 1
1 1 1 2 2 3 3 3 3 3 ) θ1θ2G ≡ ( 1 1 2 2 2 1 1 3 3 3

1 1 2 2 2 2 2 3 3 3 )

θ1 θ2

θ0G ≡ ( 1 1 2 2 2 1 1 3 3 3
1 1 2 2 2 3 3 3 3 3 )

Theorem 4.6. Let T be a LR tableau with shape λ/µ and right LR companion tableau
G. Then

(a) the following diagram is commutative:

T
e
←→ T e •

←→ ρ(T ) = T e• �
←→ ̺(T ) = T e•�

ι l ι l ι l ι l
G ←→

a
Ga ←→

•
Ga• = evacG ←→

�
�evacG.

(b) the involution symmetries ρ and ̺ translate to companion LR tableaux as follows

ρ : LRν,λ/µ −→ LRν,(λ/µ)• : G 7→ evacG such that evac ι(T) = ι(ρ(T));

̺ : LRν,λ/µ −→ LRνt,(λ/µ)t : G 7→ �evacG = evac�G such that evac�ι(T) = ι(̺(T)).

4.4. Illustration. Consider the BSS’LR transposer [BSS96]

̺BSS : LR(µ, ν, λ) → LR(µt, νt, λt)

T 7→ ̺BSS(T ) = [Y (νt)]K ∩ [T̂ t]dK
.

The image of T by the BSS–bijection is the unique tableau of shape λt/µt whose recti-
fication is Y (νt) and the Q–symbol of the column reading word is Q(w(T ))Et. The idea
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behind this bijection can be told as follows: T̂ constitutes a set of instructions telling

where expanding slides can be applied to Y (µ). Then T̂ t is a set of instructions telling
where expanding slides can be applied to Y (µ)t. Tableau–switching provides an algorithm
to give way to those instructions. In the following, s denotes switching:

Y (µ) ∪ T
standardization
−→
of T

Y (µ) ∪ T̂
transposition
−→
of T̂

Y (µt) ∪ T̂ t Y (µt) ∪ ̺BSS(T )

↓ s ↑ s

(T̂ t)n ∪ Z 7→ Y (νt) ∪ Z

.

Then ̺BSS(T ) ≡ Y (νt) and ̺BSS(T )
d
≡ T̂ t.

Example 4.3. Let T in LR(µ, ν, λ) with µ = 21, ν = 532 and λ = 643.

T =

2 3 3
1 2 2

1 1 1 1 → T̂ =

6 9 10
1 7 8

2 3 4 5 → T̂ t =

5
4
3 8
2 7 10

1 9
6 →

→ Y (µt) ∪ T̂ t =

5
4
3 8
2 7 10
2 1 9
1 1 6

5
4
2 3
1 2 3
2 1 2
1 1 1 = Y (νt) ∪ ̺BSS(T )

s↓ ↑ s

(T̂ t)n ∪ Z =

1
5
4 2
3 8 1
2 7 10
1 6 9 →

1
5
4 2
3 3 1
2 2 2
1 1 1 = Y (νt) ∪ Z

.

Consider the involution ̺ = e • �,

Example 4.4. Recall Example 4.1. Letting T as in the previous example, we get

T =

2 3 3
1 2 2

1 1 1 1 e
→ Te =

3 3 3
2 2 2

1 1 3 3 •
→ Te• =

1 1 3 3
2 2 2

1 1 1 �
→

w = 1111221332 → σ0w = 3311222333
∗
→ (σ0w)

• = 1112223311
�
→

�
→ ̺(T ) = Te•� =

5
4
2 3
1 2 3

1 2
1 .

�
→ (σ0w)

•� = 1231231245 column word of ̺(T ) = ̺BSS(T ).
On the left hand side one has the biwords associated to T and T e and on the

right hand side the reordered biwords giving the companions G, Example 2.5, and Ga



SYMMETRIES OF LITTLEWOOD–RICHARDSON COEFFICIENTS 37

respectively

W λ/µ = ( 1 1 1 1 2 2 2 3 3 3
1 1 1 1 2 2 1 3 3 2 ) → W ν = ( 2 1 1 1 1 3 2 2 3 3

1 1 1 1 1 2 2 2 3 3 )
↓σ0 ↓θ0

( 1 1 1 1 2 2 2 3 3 3
3 3 1 1 2 2 2 3 3 3 ) → ( 1 1 2 2 2 3 3 3 1 1

1 1 2 2 2 3 3 3 3 3 ) .

The companions of T e ∈ LR(µ, ν•, λ), T e• ∈ LR(λ, ν, µ) and T e•� ∈ LR(µt, νt, λt) are
respectively

Ga =

1 1 3 3 3
2 2 2

1 1 , Ga• = G•n = GE =

3 3
2 2 2
1 1 1 3 3 , GE� =

6
5
3 4
2 3 4
1 2 3 , µ• = 012

5. The Z2 ×S3–symmetries and the subgroup H of KT puzzle dualities

and rotations

5.1. Knutson–Tao puzzles and Tao’s bijection. A KT puzzle of size n [KTW04] is a
tiling of an equilateral triangle of side length n with three kind of puzzle pieces: (a) unit
equilateral triangles with all edges labeled 1 (here also represented in blue colour); (b) unit
equilateral triangles with all edges labeled 0 (here also represented in pink colour); and
(c) unit rhombi (two equilateral triangles joined together) with the two edges, clockwise,
of acute vertices labeled 0, and the other two labeled 1,

1

1 1

0

0 0 1 0

0 1

such that whenever two pieces share an edge, the labels on the edge must agree. Puzzle
pieces may be rotated in any orientation but rhombi can not be reflected. The boundary
data of the KT puzzle is the partition triple (µ, ν, λ) where the partitions µ, ν and λ
appear clockwise, starting in the lower-left corner, as 01–words. The partitions µ, ν and
λ as 01–words have exactly d 1’s and n−d 0’s. This means that the blue unitary triangles
constitute a triangle of size d, the d-triangle, and the pink unitary triangles a triangle
of size n − d, the (n − d)-triangle. For instance, the following is a puzzle with n = 5,
d = 3 and boundary µ = 01011 = (100), ν = 01101 = (110) and λ = 10101 = (210), read
clockwise starting in the lower-left corner.

(5.1)

The number of puzzles with µ, ν and λ appearing clockwise as 01–strings along
the boundary is equal to cµ ν λ [KTW04]. KT puzzles are in bijection with LR tableaux
[KTW04]. We use Tao’s bijection ”without words” in [Va06] also used in [Pu08, Figure
9]. Tao’s bijection defines a one-to-one correspondence between puzzles of size n and
boundary (µ, ν, λ) as 01 strings with d 1’s and n−d’s 0’s, and LR tableaux with boundary
(λ, µ, ν), inside a rectangle D of size d × (n − d). From now on we just write puzzle to
mean KT puzzle, as no other puzzles will be considered. To get the LR tableau filling
from a puzzle, as illustrated in Example 5.1, we follow Pechenik’s wording [Pe16]. We
construct disjoint trails of puzzle pieces, one for each 1 along the bottom side, the λ-edge.
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Then these trails will be read to produce the row fillings of the LR tableau. We think of
the puzzle pieces as rooms and the 1-labeled edges as doorways. We enter through one of
the doors on the λ-edge. Whenever we enter a room, we leave it by a different door edge.
We traverse right leaned rhombi from bottom to to top and left leaned rhombi from left
to right. When we enter the base of a triangle, we exit through the door on our right,
and when we enter the lower left door of a upsidedown triangle, we exit through the door
on our left. Thus we will be always moving northeast and eventually we exit through a
door on the ν-side. The recording of the rooms together with the filling along this walk
gives the track of the initial door on the λ-side. Reading the filling of the track of each
basement door gives the row filling of each row in the LR tableau.

Example 5.1. Tao’s bijection on the puzzle below, with n = 20, d = 4 and boundary
(µ = (10, 7, 3, 2), ν = 8522, λ = (11, 8, 5, 1)), gives, on the right, the LR tableau T with
boundary (λ = (11, 8, 5, 1); µ = (10, 7, 3, 2); ν = 8522), inside the rectangle D of size
4× 16. From bottom to top, there are exactly ℓ(µ) = 4 left leaned rhombi corridors, SE
to NW, of lengths µ1, µ2, µ3 and µ4 respectively. Those corridors are filled in with µi, i’s,
respectively. In our example, the filling of the track in each base door, left to right, gives
the words 1122344, 112233, 111222, and 111.

1 11 1

1 1 1 1
222 1

111
11

11
1

22

22

1 3
4 4 1

3 3 1

1

1

T =

1 1 2 2 3 4 4
1 1 2 2 3 3

1 1 1 2 2 2
1 1 1

(µ, ν, λ) (λ, µ, ν).

5.2. The KT puzzle H–subgroup of symmetries. The reflection of a (upright or left
or right leaned) rhombus in a puzzle swaps 0 and 1 labels which propagates in a unique
way through the puzzle and eventually swaps 0 and 1 labels in the boundary. To get a
puzzle again we have to make one of three diagonal reflections of the puzzle (a diagonal is
a line joining a vertex to the midpoint of the opposite side). Recalling Section 2.1, with
respect to operations on 01 words and partitions, this procedure defines, according to the
chosen diagonal, an involution on puzzles. The vertical reflection while swapping all 01 la-
bels of a puzzle of boundary (µ, ν, λ), defines the dual puzzle of boundary (νt, µt, λt). This
procedure is an involution, denoted ♠, on puzzles. It exhibits the symmetry cµνλ = cνtµtλt

on puzzles. Performing the two remaining diagonal left and right reflections, respectively,
with 01 swapping, these procedures define the involutions � (left) and ♣ (right) respec-
tively. They exhibit the symmetries (puzzle dualities) cµνλ = cλtνtµt and cµ,ν,λ = cµtλtνt on
puzzles, respectively. The duals of the puzzles counted by cµνλ are exactly those counted
by cνtµtλt or cλtνtµt or cµtλtνt . The involutions �, ♠ and ♣ are the unique involutions
which swap pink (label 0) and blue (label 1) colours in a puzzle such that the resulting
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tiled triangle is still a puzzle, equivalently, which swap the blue d-triangle with the pink
(n − d)-triangle. As an apart, one observes that the symmetry with respect to comple-
ment operation on partitions, equivalently, reversing the 01 word, Section 2.1, is indeed
not easy to exhibit due to the restriction of the reflection operation on rhombi. The same
difficulty has been already observed in [BerZel92, Remarks] in the case of BZ triangles.
The same difficulty applies to the transposition of partitions, reversing and 01 swapping
a 01 string.

The action of H = 〈τς1, τ ς2〉 = 〈τς1, τ ς〉 = 〈τς2, τ ς〉 on puzzles is defined via any
two of the involutions �,♠,♣. The compositions ♣� = �♠ = ♠♣ and �♣ = ♠� = ♣♠
rotate the puzzle clockwise 2π/3 and 4π/3 radians about the center respectively, and
realize the corresponding rotational (cycle) symmetries cµ,ν,λ = cλ,µ,ν and cµ,ν,λ = cν,λ,µ.
The group of symmetries of a puzzle, generated by the action of H, is realized by the three
diagonal reflections with 01 swapping and clockwise 0, 2π/3 and 4π/3 radians rotations
about the center.

Example 5.2. Illustration of the action of τς1 ∈ H on puzzles through the involution ♠.
The involution ♠ on the puzzle (5.1), realizes the action of τς1 on that puzzle, giving the
puzzle

whose boundary data is (νt = 01001; µt = 00101;λt = 01010).

The group action of H on puzzles is faithful and we may identify H with its
representation in Sym(LR), H ≃ 〈♠,�〉 = 〈♣,�〉 = 〈♠,♣〉, and a possible presentation
is

H = {♠,� : ♠2 = �2 = 1 = (�♠)3} ≃ D3 = S3, (5.2)

the dihedral group of an equilateral triangle. Since through Tao’s bijection, LR tableau
and puzzle boundaries differ by a cyclic permutation, first rotate counterclockwise the
puzzle 2π/3 radians about the center, follow with the involution �, ♠ or ♣, and then apply
Tao’s bijection to obtain the involutions �, ♠ or ♣ on LR tableaux respectively. That
is, on puzzles, ♣ = �(�♣), � = ♠(♠�) and ♠ = ♣(♣♠) are translated to LR tableaux,
by Tao’s bijection, to �, ♠ or ♣, respectively. In particular, we show that the bijection
� : LR(µ, ν, λ) → LR(λt, νt, µt), defined in Section 3.3, exhibiting the identity cµνλ =
cλtνtµt on LR tableaux is translated to puzzles in this fashion by exhibiting the identity
cµ,ν,λ = cµt,λt,νt . We also define bijections ♠ : LR(µ, ν, λ)→ LR(ν, µ, λ), ♣ : LR(µ, ν, λ)→
LR(µ, λ, ν), exhibiting the identities cµ,ν,λ = cµt,νt,λt , cµ,ν,λ = cµtλtνt respectively, which are
also translated to puzzles in the same fashion by exhibiting the identities cµ,ν,λ = cλt,µt,νt ,
cµ,ν,λ = cνt,µt,λt .

Example 5.3. If we first rotate clockwise the puzzle 4π/3 radians about the center and
then apply �, that is, we perform �(�♣), it is not difficult to see that Tao’s bijection
translates the involution � (the left diagonal reflection with 01 swapping) on the 4π/3
radians clockwise rotated puzzle to the involution � on LR tableaux as we have defined
in Subsection 3.3. Consider the puzzle in Example 5.1 together with the left leaned
rhombi filling. After rotating the puzzle clockwise 4

3
π radians about the center, to obtain

a puzzle of boundary (ν, λ, µ), apply the involution � (left diagonal reflection while 01
label swapping) to give a puzzle of boundary (µt, λt, νt). Then replace East-West: (i) the
ten 1’s word, inside the left leaned rhombi, with the word 123456789 (10); (ii) the seven
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2’s word with the word 1234567; (iii) the three 3’s word by 123; and (iv) the two 4’s word
with 12. The puzzle-LR tableau pair with boundaries (µ, ν, λ) and (λ, µ, ν) respectively,
in Example 5.1, is transformed into a puzzle-LR tableau pair of boundaries (µt, λt, νt) and
(νt, µt, λt), where µt = 4232413 and ℓ(µt) = 10, respectively. See figure below

�(�♣)

0

0

9
10

0

0

6
77

8

0

0

0

0

01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0
1 1 1 1

2 2 2 2

3
3 3

4 4
5 5

6

1
1

1

1

1

1

1

1
1
1

1

1

1
1
1

1

1
1

1
1

1

1

1

1

1
1

1

1

1

1
1

1

�T =

10
9
7
6
3 8
2 7
1 5

4 6
2 5
1 4

3 3
2 2
1 1

(µt, λt, νt) (νt, µt, λt)

Performing ♠(♠�) = ♠(�♣) on the puzzle in Example 5.1, or, equivalently, rotate
counter clockwise the puzzle just above by 2π/3 radians about the center ♠(♠�) =
♠�(�(�♣)) to get a puzzle of boundary (νt, λt, µt). Tao’s bijection translates the action
of ♠ on puzzles to LR tableaux. The puzzle-LR tableau pair with boundaries (µ, ν, λ)
and (λ, µ, ν) respectively, in Example 5.1, is transformed into a puzzle-LR tableau pair
of boundaries (λt, νt, µt) and (µt, λt, νt) respectively. See figure below, to obtain the LR
filling on the right, one has to rotate the puzzle counterclockwise 2π/3 radians about the
center, where λt = 4342313, and ℓ(λt) = 11, and ignore the old filling in gray

♠(♠�) ♣(♣♠)

0

0

9
10

0

0

6
77

8

0

0

0

0

01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0
1 1 1 1

2 2 2 2

3
3 3

4 4
5 5

6

1
1

1

1

1

1

1

1
1
1

1

1

1
1
1

1

1
1

1
1

1

1

1

1

1
1

1

1

1

1
1

1

1 2 3 4 5 6 7 8 9

1
0

1
1

1 2 3 4 5

6 7

8

1 2 3

4 5

1

♠T =

8 11
5 10
4 7
1 6 9

3 8
2 7
1 5 6

4 5
3 4
2 3
1 2

1

(µt, λt, νt)
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Performing ♣(�♣) = ♣(♣♠) on the puzzle in Example 5.1 (or �♠(�(�♣)), that
is, rotating the previous puzzle clockwise 2π/3 radians about the center), we get a puzzle
of boundary (νt, µt, λt) where νt = 422313. It is not difficult to see that the corridors
consisting of upright rhombi, in the previous puzzle, now filled in blue below, give rise to
the filling of ♣T of boundary (λt, νt, µt).

0

0

9
10

0

0

6
77

8

0

0

0

0

01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0
1 1 1 1

2 2 2 2

3
3 3

4 4
5 5

6

1
1

1

1

1

1

1

1
1
1

1

1

1
1
1

1

1
1

1
1

1

1

1

1

1
1

1

1

1

1
1

1

1 2 3 4 5 6 7 8 9

1
0

1
1

1 2 3 4 5

6 7

8

1 2 3

4 5

1

1
2

3

4
5

6

7

8

1

2

3

4

5

1

2

1
2

♣T =

5
2 8
1 7

4
2
1 6

3
2
1 5

4
3
2
1

(λt, νt, µt)

Tao’s bijection translates the involutions ♠, ♣ and � on puzzles to LR tableaux
which in turn can also be explained using Puhrboo’s mosaics [Pu08] naturally in bijection
with puzzles. In [Pu08, Section 5.1] it is discussed how the operation migration of a single
rhombus in a mosaic is related with jeu de taquin slides on tableaux. Migration is an
invertible operation on tableau-like structures on the rhombi of a mosaic, called flocks,
that allows to identify a mosaic (equivalently, a puzzle) with an LR tableau. It gives a
bijection between mosaics (equivalently puzzles) and LR tableaux, and, with appropriate
orientation of the flocks in the mosaic, it coincides with Tao’s bijection. More importantly,
migration allows to relate operations on puzzles with jeu de taquin operations, like tableau-
switching [BSS96], on LR tableaux. This explains the correspondence between the action
of H on puzzles and on LR tableaux. Technical details and illustrations on mosaics are
deferred to Appendix A. Our concern next is to show that although involutions ♠, ♣
and � may be executed using jeu de taquin slides on LR tableaux, those slides do not
need to be performed upon a scan of the neighbours. The slides are independent of the
relative size of the neighbours and are reduced to simple procedures defining linear cost
involutions.

5.3. The LR tableau H–symmetries. Migration on Puhrboo’s mosaics [Pu08] is re-
lated with jeu de taquin and translates H-symmetries on puzzles to LR tableaux through
tableau switching and standardization. This translation coincides with Tao’s bijection as
illustrated in Example 5.3. We want to avoid the computational complexity of standard-
ization and jeu de taquin procedure which we succeed through hybrid tableau pairs.

Given a decomposition of the rectangle D into shapes µ, λ∨/µ, and D/λ∨, a triple
of tableaux (U1, U2, U3) is said to be a three–fold multitableau of shape (µ, λ∨/µ,D/λ∨)
if U1 is a filling of the shape µ, U2 is a filling of λ∨/µ, and U3 is a filling of D/λ∨. A
three–fold LR multitableau of boundary data (µ, ν, λ) is a three–fold multitableau where
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the inner tableau is the Yamanouchi tableau Y (µ), the middle one is the LR tableau of
shape λ∨/µ and content ν, and the outer tableau is Y (λ)a the anti-normal form of Y (λ),
defined to be the filling of the anti-normal shape of λ such that each column, right to left,
is filled with consecutive integers bottom to top starting with 1. For instance, see (2.5).
Tableau switching can be adjusted to move a pair of tableaux through each other where
one is a column strict tableau and the other is a row strict tableau see [BSS96, Section 2,
pp. 22 ]. Our next definitions are just a particular case where the left or right tableau is
the transpose of a (or antinormal) Yamanouchi tableau row strict) and therefore switch
moves can a priori be prescribed.

We define the bijection ♠ : LR(µ, ν, λ) −→ LR(νt, µt, λt) as a five step procedure.

Definition 5.1 (Map ♠). Let T ∈ LR(µ, ν, λ) inside the rectangle D of size d× (n− d).

(1) Fill the inner shape µ, using a completely ordered alphabet different from the
“numerical” filling of T , so that its transpose is the Yamanouchi tableau Y (µt).

(2) For i = 1, . . . , d, slide down vertically the i’s in the filling of T to the ith row.
(3) For i = 1, . . . , d, slide horizontally all the numbers i’s to the left so that we get

the Yamanouchi tableau Y (ν). Erase Y (ν).
(4) Transpose the resulting filling to obtain T♠ ∈ LR(νt, µt, λt).

Clearly, the last step can also be the first step with obvious adaptations in the
next steps. An illustration of this procedure follows.

Example 5.4. Let T ∈ LR(µ, ν, λ) with d = 4, n = 11, µ = 4210, ν = 5420 and
λ = 5320. Then considering the twofold hybrid tableau

T =

1 3
2 2 3

1 2 2
1 1 1 → ([Y (µ)]t, T ) =

1 3
a 2 2 3
a b 1 2 2
a b c d 1 1 1 →

1
1
1 2
d 2 3
c 1 2
b b 2 3
a a a 1 = (Y (µt), T t)

→

1
1
1 2
d 2 3
1 2 c
b 2 3 b
1 a a a →

d
b
1 a
1 2 c
1 2 a
1 2 3 b
1 2 3 a = ([Y (ν)]t, T♠)→

d
b

a
c
a

b
a = T♠.

The procedure is clearly reversible and an involution on LR. Next we check that
it yields the desired tableau. Let si, i = 1, 2, denote the tableau–switching operation on
the LR–multitableau of boundary data (µ, ν, λ) (recall Subsection 2.9) which switches the
first two LR tableaux and the last two respectively, see [BSS96]. Compare the procedure
with the explanation given by the migration for the operation ♠ on mosaics in Appendix.

Proposition 5.1. The map ♠ is such that

T−→(Y (µt), T t, Y (λt)a) −→ s1(Y (µt), T t, Y (λt)a) = ([Y (ν)]t, T♠, Y (λt)a).

Proof. Since T is column strict then T t is row strict The second and third steps of the
definition of the map ♠ coincides with the action of the switching operation s1 on the
hybrid twofold tableau (Y (µt), T t), that is, s1(Y (µt), T t) = ([Y (ν)]t, T♠), see [BSS96,
Section 2]. �
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The bijection LR(µ, ν, λ)
♣
−→ LR(µt, λt, νt) is defined similarly as a five step pro-

cedure.

Definition 5.2 (Map ♣). Let T ∈ LR(µ, ν, λ) inside the rectangle D of size d× (n− d)
and νt = (νt

1, ν
t
2, . . . , ν

t
ν1
).

(1) Fill the outer shape λ, using a completely ordered alphabet different from the
“numerical” filling of T , so that its transpose is Y (λt)a.

(2) For i = 1, . . . , νt
1, slide horizontally the rightmost i of T to the (n − d)th column

of D; for i = 1, . . . , νt
2, slide horizontally the rightmost i in the first (n − d − 1)

columns of T to the (n − d − 1)th column of D; . . . , lastly slide horizontally the
remaining ν1th 1 to the (n− d− ν1 + 1)th column of D.

(3) Slide up vertically the numbers along each column so that we get Y (ν)a. Erase
Y (ν)a.

(4) Transpose the resulting filling to obtain T♣ ∈ LR(µt, λt, νt).

The example illustrates the procedure.

Example 5.5. Consider again the LR tableau T of Example 5.4 with d = 4 and n−d = 7.
One has ν = 542, νt = 33221, λ = 532, λt = 33211, and

T =

1 3
2 2 3

1 2 2
1 1 1 →

1 3 a b c d e
2 2 3 a b c

1 2 2 a b
1 1 1 →

a b 1 c d 3 e
a b 2 2 c 3

a 1 b 2 2
1 1 1 →

a b 1 2 2 3 3
a b 1 1 2 2

a c d 1 1
b c e →

e
c
b d

c
a b

a b
a = T♣.

The procedure is clearly an involution on LR and as before we check that it yields
the desired tableau. Compare the procedure with the explanation given by the migration
on mosaics for the operation ♣ in Appendix. Again we have avoided the standardization
of T .

Proposition 5.2. The map ♣ is such that

T−→(Y (µt), T t, Y (λt)a)−→s2(Y (µt), T t, Y (λt)a) = (Y (µt), T♣, [Y (ν)a]t).

Proof. The second and third steps of the definition of the map ♣ correspond exactly to
the action of the switching operation s2 on the hybrid two-fold tableau (T t, Y (λt)a). �

Theorem 5.3. The involutions ♠ and ♣ on LR have linear cost.

Proof. The use of hybrid tableaux show clearly that the maps are performed using jeu de
taquin without need to scan the neighbours. �

The rotation symmetries on puzzles are explicit and exhibit the cyclic symmetries
of LR coefficients cµ ν λ = cλµ ν = cν λµ. On LR tableaux although less explicitly they
are easily performed, noting that ♣� = �♠ = ♠♣ and �♣ = ♠� = ♣♠. Migration
on mosaics explains with jeu de taquin the rotation symmetries of LR tableaux using
standardisation. For instance, the rotation below �♣ = ♠� = ♣♠ on puzzles is translated
to LR tableaux in [Pu08, Corollary 5.3]. Again we may avoid standardisation operation
with hybrid tableau pairs as shown next.
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Definition 5.3 (2π/3 radians counterclockwise rotation symmetry map �♣ = ♠� = ♣♠).
Let T ∈ LR(µ, ν, λ) inside the rectangle D of size d× (n− d).

(1) Rotate T by π radians.
(2) Fill the inner shape λ using a completely ordered alphabet different from the

“numerical” filling of T so that we get the Yamanouchi tableau Y (λ).
(3) For each i, replace the νi i’s with 1, 2, . . . , νi according to the standard order on

the boxes.
(4) Slide horizontally each 1 to the first column, each 2 to the second column, each 3

to the third column and so on.
(5) Slide down vertically along each column the numbers.
(6) Erase the numerical filling to obtain ♠�T ∈ LR(ν, λ, µ).

The example illustrates the procedure from which we see that it is reversible.

Example 5.6.

T =

1 3
2 2 3

1 2 2
1 1 1 π−rotation

−→

1 1 1
c c 2 2 1
b b b 3 2 2
a a a a a 3 1 →

1 2 3
c c 1 2 4
b b b 1 3 4
a a a a a 2 5 = Y (λ) ∪ (�T )t

→

1 2 3
1 2 c 4 c
1 b 3 4 b b
a 2 a a 5 a a →

a b c
1 2 a a c
1 2 3 4 b b
1 2 3 4 5 a a →

a b c
a a c

b b
a a = ♠�T

The 4π/3 radians counterclockwise rotation symmetry ♣� = �♠ can be performed
in a similar way, considering Y (µ)a as the filling of the outer shape µ after rotating T
by π radians. We may now observe that all these symmetries can be exhibited using the
hybrid tableau–switching involution where the slides are executed without scanning the
neighbours.

The H action on puzzles (equivalently mosaics) or LR–tableaux is defined by the
group with presentation (5.2) or 〈♣,♠ : ♣2 = ♠2 = 1 = (♠♣)3〉 = {1,♠,♣,♠♣, ♣♠,
♣♠♣ = ♠♣♠} ≃ D3, where �, ♠ and ♣ are given for LR tableaux in (3.1) and def-
initions 5.1 and 5.2 respectively. From Theorem 5.3 (which agrees with the computa-
tional cost of Algorithm 3.4), we may say that H is a linear time subgroup of index 2
of Z2 ×S3. In particular, the S3 index two subgroup of symmetries given by the cyclic
group R ≃ {♠♣ : (♠♣)3 = 1} = {1,♠♣, (♠♣)2 = ♣♠} is of linear cost as already shown
in [PV05]. Since ♣♠♣ = ♠♣♠ is equivalent to (♠♣)3 = 1, from propositions 5.1 and 5.2,
we may conclude the following identity in the hybrid threefold

s1s2s1(Y (µt), T t, Y (λt)a) = s2s1s2(Y (µt), T t, Y (λt)a) = (Y (λt), T♣♠♣ = T♠♣♠, Y (µt)a).

Therefore, switching in a three fold multi-tableau consisting of Yamanouchi tableaux on
the left and right and a standard tableau in the middle satisfy braid relations, s1s2s1(Y (α),
U, Y (γ)a) = s2s1s2(Y (α), U, Y (γ)a) where U is a standard tableau. (In general, braid
relations are not satisfied and the result depends on the factorization of the permutation,
see [BSS96, Lemma 3.2, Section 3].)

5.4. The LR companion tableau H–symmetries. As in the case of the map �, Sub-
section 3.3, the linear cost of the maps ♠ and ♣ allows to give bijections between the
companion tableaux of T and T♠ or T♣ whenever T ∈ LR(µ, ν, λ∨). We describe the
procedure for the map ♠ on companion tableaux. We construct a bijection between the
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sets of companion LR tableaux of shape ν and weight λ/µ and those of shape µt and
content λt/νt,

♠ : LRν,λ/µ → LRµt,λt/νt ,Gν 7→ G♠µt (5.3)

where G is the right LR companion of some T ∈ LR(µ, ν, λ∨) and ι(T♠) = (ι(T ))♠, that is,
the recording matrix of ♠G is the transpose of the recording matrix of ♠T , equivalently, G
is the LR companion of T if and only if ♠G is the LR companion of ♠T . The construction
has the following three steps.

Algorithm 5.4. [Construction of G♠.] Let G ∈ LRν,λ/µ and T ∈ LR(µ, ν, λ∨) with right
LR companion G. The construction of G♠ has the following three steps on the track of
Definition 5.1 to construct T♠.

Step 1: For i = 1, . . . , ℓ(λ), consider the i-horizontal strip (the horizontal strip
consisting of all boxes filled with i) of G of size λi − µi and replace the entries with
µi + 1, µi + 2, . . . , λi, scanned from SE to NW. In the resulting filling of shape ν and
content λt/µt, sort by decreasing order the entries of the rows to obtain the companion
plane partition C of T t.

The entries in row r of C tell which columns of T contain r as an entry.
Step 2: For k = 1, . . . , ℓ(λt), let Rk consists of the row indices of C containing the

entry k,

Rk := {r ∈ {1, . . . , ℓ(ν)} : k is an entry in row r of C},

with #Rk = λt
k − µt

k. Rk consists of the entries in the column k of T . Put

Fk := [λt
k] \Rk,

with #Fk = µt
k. Note that Fk = ∅, for k > ℓ(µt).

Step 3: Define the filling of shape µt = (|F1|, . . . , |Fµt
k
|, 0, . . . , 0) whose i-th row

consists of the elements in Fi by decreasing order, for i = 1, . . . , ℓ(µt). Its content is

(ǫj)
λt
1

j=1 the multiplicity vector of the multiset union
⋃ℓ(µt)

i=1 Fi. For each j = 1, . . . , λt
1,

replace the entries of the j-vertical strip of size ǫj with νj + 1, . . . , νj + ǫj scanned from
bottom to top. The resulting tableau is G♠ of shape µt and content λt/νt.

It is easy to see that ifG is the companion of T ∈ LR(µ, ν, λ), then our construction
of G♠ gives the companion of T♠ ∈ LR(νt, µt, λt).

Example 5.7. Consider the LR tableau T of shape λ∨/µ and content ν in Example 5.4,
where d = 4, µ = 4210, ν = 5420, λ = 5320, λ∨ = 7542; µt = 3211000, νt = 3322100,
λ∨t = 4433211, ℓ(λ∨t) = 7, and its right companion tableau G ∈ LRν,λ∨/µ of shape ν and
content λ∨/µ,

T =

1 3
2 2 3

1 2 2
1 1 1 G =

3 4
2 2 3 3
1 1 1 2 4

.

We explain Algorithm 5.4 as a track of Example 5.4.
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Step 1 produces the companion plane partition C of T t of shape ν and content
α := λ∨t/µt = 1222211,

T t =

1
1
1 2

2 3
1 2

2 3
1 C =

4 2
5 4 3 2
7 6 5 3 1

The entries in row r of C tell which rows of T t contain r as an entry.
Step 2 produces the sets R1 = {1}, R2 = {2, 3}, R3 = {1, 2}, R4 = {2, 3}, R5 =

{1, 2}, R6 = {1}, R7 = {1} where Rk consists of the row indices of C containing the entry
k, for k = 1, . . . , 7 = ℓ(λ∨t). Rk also consists of the entries in column k of T (that is, in
row k of T t).

Let F1 = [4] \ R1 = {2, 3, 4}, F2 = [4] \ R2 = {1, 4}, F3 = [3] \ {1, 2} = {3},
F4 = [3] \ {2, 3} = {1}, ℓ(µt) = 4. That is, µt = (|F1|, |F2|, |F3|, |F4|, 0, 0, 0).

Step 3 constructs the filling of shape µt, below on the right, whose row i en-
tries, bottom to top, consist of the elements in Fi, i = 1, . . . , ℓ(µt) = 4, with content
(12, 2, 32, 42, 03),

1
1
1 2
d 2 3
1 2 c
b 2 3 b
1 a a a

1
3
4 1
4 3 2

The number of j’s in the jth column of the tableau on the left is νj, for j = 1, . . . , ℓ(ν).
The second part of Step 3, equivalent to push down the νj’s j’s in column j of the tableau
above on the left

d
b
1 a
1 2 c
1 2 a
1 2 3 b
1 2 3 a , constructs G♠ =

7
4
2 6
1 3 5

of shape µt = 3211 and content λ∨t/νt = 17, the companion tableau of T♠. Note that

A =

(
3 0 0 0
1 2 0 0
0 2 1 0
1 0 1 0

)
is the recording matrix of T , At is the recording matrix of G, B =

(
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0

)
is the recording matrix of ♠T and Bt is the recording matrix of ♠G, that

is ♠ι(T ) = ι(♠T ).

5.5. The symmetries outside of H. We have discussed the H-symmetries of KT puz-
zles, LR tableaux, and LR companion tableaux and how do they do translate to each
other. We now discuss the symmetries under the action of the other coset in Z2×S3/H,
that is, the coset Z2 × S3 − H = ζH = Hζ 6= H, for ζ = ς1, ς2, τ , ς = ς1ς2ς1, τς2ς1,
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τς1ς2. On KT puzzles the symmetries outside of H are also explained by the migra-
tion on Purbhoo mosaics which correspond to jeu de taquin slides and tableau switching
on LR tableaux. Recall theorems 4.1, 4.3, and the LR commuter involution ρ = •e,
ρ : LR(µ, ν, λ) −→ LR(λ, ν, µ), ρ(T ) = •e T , and the LR transposer (involution) ̺ = �ρ,
̺ : LR(µ, ν, λ) −→ LR(µt, νt, λt), ̺(T ) = � • eT . Let us now denote by ρ1 and ρ2 the LR
commutativity bijections ρ1 : LR(µ, ν, λ)→ LR(ν, µ, λ) and ρ2 : LR(µ, ν, λ)→ LR(µ, λ, ν)
defined by the tableau switching involutions s1 and s2 respectively. In [Az17] it has been
shown that all known LR commutors, known in the literature, exhibiting the identity
cµ ν λ = cν µλ coincide with the tableau switching involution, that is, with ρ1. In [Pu08,
Corollary 3.4], the proof of the commutativity for LR tableaux, using migration on mo-
saics, is equivalent to tableau switching. We have seen in theorems 4.3 and 4.5 that the
LR commutor ρ and the LR transposer ̺ on LR tableaux are related through the linear
cost involution �, ̺ = �ρ = ρ�. We next show that the same holds for the LR commutors
ρ1, ρ2 and ρ and the LR transposer ̺ via the linear cost involutions ♠, ♣ and � in H,

♠ ρ1 = ρ1♠ = � ρ = ρ� = ̺ = ♣ ρ2 = ρ2♣. (5.4)

Theorem 5.5. Consider the set up as above. Then
(a) ρ1 = ♠� ρ = ♣♠ ρ = �♣ρ = ♠̺.
(b) ρ2 = �♠ ρ = ♠♣ ρ = ♣� ρ = ♣̺ = �♠� ̺.
All known LR commutors and LR transposers are linear time reducible to each

other and to the tableau switching involution, in particular, to the reversal involution,
equivalently, Schützenberger involution.

Proof. We use the LR tableau model.
(a) We prove ♠ ρ1 = � ρ = ̺. The key ingredient is to show that, in Algorithm

2.6, the second stage of the calculation of the reversal of an LR tableau, performed by
the switching involution s1 on the right hand side of (5.5) below, can be performed
in a special way, without scanning the neighbours, and thus is a linear cost involution.
That is, when W = Y (µ) is a Yamanouchi tableau, Q ≡ Y (ν) is an LR tableau, and
V = QnE = Y (ν•), Algorithm 2.6 calculates Qe = [QnE]K ∩ [Q]dK = [Y (ν•)]K ∩ [Q]dK ,

Y (µ) ∪Q Y (µ) ∪Qe

s1 ↓ ↑ s1
Y (ν) ∪ ρ1(Q) → Y (ν•) ∪ ρ1(Q).

(5.5)

First, we observe that the last step of (5.5), Y (ν•) ∪ ρ1(Q)
s1←→ Y (µ) ∪ Qe can

be performed by a linear cost map as follows: first, for i = 1, . . . , ℓ(µ), the i-horizontal
strip of length µi of ρ1(Q), an LR tableau of weight µ, slides down to the ith row (see
Example 5.8); then, for i = 1, . . . , ℓ(µ), sliding horizontally, justify to the left the µi, i’s,
to get Y (µ). Simultaneously it produces Qe. This is possible thanks to the filling of
inner tableau, the reverse Yamanouchi Y (ν•).

Let νt = (n1, n2, . . . , nν1). The column i of Y (ν•) is Ci := n1 > n1 − 1 > · · · >
n1 − ni + 1 for i = 1, . . . , ν1. When the 1 in column i of ρ1(Q) slides down to the first
row of Y (ν•), column i of Y (ν•) is shifted one box up. If there is an entry in column
i− 1 of ρ1(Q), an LR tableau, next to the left of 1, then this entry is also 1. In this case,
Ci−1 = Ci and Ci−1 is also shifted one box up. If there is no entry in column i−1 of ρ1(Q),
next to the left of 1, then ℓ(Ci−1 > ℓ(Ci) and the entry of Ci−1 next to the left of 1 is
≤ n1. Thus when Ci is shifted one box up the semistandardness along rows is preserved.
Since ℓ(Ci) ≥ ℓ(Ci+1), when column Ci is shifted one box up the semistandardness along
rows is preserved. Therefore when the 1’s of ρ1(Q) slide down to the first row of Y (ν•),
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we get a perforated tableau pair. This perforated tableau pair has the following property:
ignoring the first row the result is a tableau pair consisting of an opposite Yamanouchi
tableau and the LR tableau obtained from ρ1(Q) removing the border strip consisting
of 1’s. By induction on ℓ(µ) we conclude the validity of the procedure above. This is
illustrated in (5.9) and (5.10).

Second, thanks to remarks 3.1 and 4.2, for i = 1, . . . , ℓ(ν), replacing, from NW to
SE, the entries of the i-horizontal strip of length ℓ(ν)− i+1 in Qe, with 1, . . . , ℓ(ν)− i+1,
gives (�ρ(Q))t. We then get the sequence

Y (ν•) ∪ ρ1(Q)
s1←→ Y (µ) ∪Qe ←→ Y (µ) ∪ (�ρ(Q))t. (5.6)

In fact, to obtain (�ρ(Q))t, we do not need the last step Qe ←→ (�ρ(Q))t in the
sequence (5.6). Replace on the left hand side of (5.6) Y (ν•) with [Y (νt)]t (they have the
same shape ν) and apply the map involution ♠ without transposing (see Definition 5.1)
to [Y (νt)]t ∪ ρ1(Q). The sequence of instructions dictated by ♠, without transposing,
on [Y (νt)]t ∪ ρ1(Q), is exactly the same as the ones described above to realize Y (ν•) ∪
ρ1(Q)

s1←→ Y (µ)∪Qe in (5.6). At the end♠ produces Y (µ)∪(�ρ(Q))t instead of Y (µ)∪Qe,
that is,

[Y (νt)]t ∪ ρ1(Q)
♠
→ Y (µ) ∪ (♠ρ1(Q))t = Y (µ) ∪ (�ρ(Q))t.

Henceforth, ♠ρ1 = �ρ = ̺.
(b) We prove � ρ = ♣ ρ2. Thanks to Remark 2.1, Algorithm 2.6 also calculates

Qe = [Y (ν•)a]K ∩ [Q]dK ,

Q ∪ Y (λ)a Qe ∪ Y (λ)a

s2 ↓ ↑ s2
ρ2(Q) ∪ Y (ν)a → ρ2(Q) ∪ Y (ν•)a.

(5.7)

First, we observe that the last step of (5.7), ρ2(Q)∪Y (ν•)a
s2←→ Qe∪Y (λ)a can be

performed by a linear cost map as follows. Let λt = (m1,m2, . . . ,mλ1). For i = 1, . . . ,m1,
slide horizontally the rightmost i of ρ2(Q) to the (n − d)th column of D, and put
C1 := 12 · · ·m1; for i = 1, . . . ,m2, slide horizontally the rightmost i of ρ2(Q) , in the first
(n − d − 1) columns, to the (n − d − 1)th column of D, and put C2 := 12 · · ·m2; . . . ;
lastly, slide horizontally the remaining 1, 2, . . . ,mλ1 of ρ2(Q) to the (n − d − λ1 + 1)th
column of D, and put Cλ1 := 12 · · ·mλ1 . Then, for each for j = 1, 2, . . . , λ1, slide up
vertically the column word Cj := 12 · · ·mj in the n − d − j + 1 of D, to justify on the
Northeast corner of D the λi, i’s of ρ2(Q) so that we get Y (λ)a. Simultaneously one
produces Qe. The procedure is illustrated in Example 5.9.

Second, for i = 1, . . . , ℓ(ν), replacing, from NW to SE, the entries of the i-horizontal
strip of length νℓ(ν)−i+1 in Qe, with 1, . . . , νℓ(ν)−i+1, gives (�ρ(Q))t. We then get the
sequence

ρ2(Q) ∪ Y (ν•)a
s2←→ Qe ∪ Y (λ)a ←→ (�ρ(Q))t ∪ Y (λ)a. (5.8)

In fact, to obtain (�ρ(Q))t, we do not need the last step Qe ←→ (�ρ(Q))t in the
sequence (5.8). Replace on the left hand side of (5.8) Y (ν•)a with [Y (νt)a]t (they have the
same anti normal shape rev ν) and apply the map involution ♣ without transposing (see
Definition 5.2) to ρ2(Q). The sequence of instructions dictated by ♣, without transposing,
on ρ2(Q) ∪ [Y (νt)a]t, is exactly the same as the ones described above to produce ρ2(Q) ∪
Y (ν•)a

s2←→ Qe ∪ Y (λ)a in (5.8). At the end ♣ returns (�ρ(Q))t ∪ Y (λ)a instead of
Qe ∪ Y (λ)a, that is,

ρ2(Q) ∪ [Y (νt)a]t
♣
→ (♣ ρ2(Q))t ∪ Y (λ)a = (�ρ2(Q))t ∪ Y (λ)a.
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�

Example 5.8. Let ν = 552 and µ = 5321, Q ≡ Y (ν) and Y (µ) ∪ Q
s1←→ Y (ν) ∪ ρ1(Q),

where ρ1(Q) ≡ Y (µ). Then

Y (ν•) ∪ ρ1(Q) =

1 2 3 4
3 3 1 1 2 3
2 2 3 3 3 2
1 1 2 2 2 1 1 ↔

3 2 3 4
2 3 3 3 2 3
1 2 2 2 3 2
1 1 1 1 2 1 1 ↔

3 3 3 4
2 2 3 3 3 3
1 2 2 2 2 2
1 1 1 1 2 1 1 (5.9)

↔

3 3 3 4
2 2 3 3 3 3
1 2 2 2 2 2
1 1 1 1 2 1 1 ↔ Y (µ) ∪Qe =

4 3 3 3
3 3 2 2 3 3
2 2 2 1 2 2
1 1 1 1 1 1 2 (5.10)

On the righthand of (5.10), replacing, from NW to SE, the entries of the (ℓ(ν) − i + 1)-
horizontal strip of Qe, with 1, . . . , νi, for i = 1, . . . , ℓ(ν), gives

↔

4 1 2 3
3 3 1 2 4 5
2 2 2 1 3 4
1 1 1 1 1 2 5 = Y (µ) ∪ (�ρ(Q))t = Y (µ) ∪ (̺(Q))t.

This is equivalent to replace, on the left hand side of (5.9), Y (ν•) with [Y (νt)]t

(they have the same shape ν) and apply the map involution ♠, Definition 5.1, to [Y (νt)]t∪
ρ1(Q). It produces the same sequence of steps as in (5.9) and (5.10) with the appropriate
replacement of Y (ν•) by [Y (νt)]t,

[Y (νt)]t ∪ ρ1(Q) =

1 2 3 4
1 2 1 1 2 3
1 2 3 4 5 2
1 2 3 4 5 1 1 ↔

1 2 3 4
1 2 3 4 2 3
1 2 3 4 5 2
1 2 1 1 5 1 1 ↔

1 2 3 4
1 2 3 3 5 3
1 2 3 4 2 2
1 2 1 1 5 1 1

↔

1 2 3 4
1 2 3 4 5 3
1 2 3 4 2 2
1 2 1 1 5 1 1 ↔

4 1 2 3
3 3 1 2 4 5
2 2 2 1 3 4
1 1 1 1 1 2 5 = Y (µ) ∪ (♠ρ1(Q))t = Y (µ) ∪ (�ρ(Q))t.

Henceforth, ♠ρ1(Q) = �ρ(Q) = ̺(Q).

Example 5.9. Let λ = 542, λt = 33221 and ν• = 235, Q ≡ Y (ν) and ρ2(Q)∪Y (ν•)a
s2←→

Qe ∪ Y (λ)a, where ρ2(Q) ≡ Y (λ). Then

ρ2(Q) ∪ Y (ν•)a =

1 3 3 3 3 3 3
2 2 3 2 2 2

1 2 2 1 1
1 1 1 ↔

1 3 3 3 3 3 3
2 2 2 2 2 3

1 2 1 1 2
1 1 1 ↔

1 3 3 3 3 3 3
2 2 2 2 2 3

1 1 1 2 2
1 1 1 (5.11)

↔

1 3 3 3 3 3 3
2 2 2 2 2 3

1 1 1 2 2
1 1 1 ↔

1 3 3 3 3 3 3
2 2 2 2 2 3

1 1 1 2 2
1 1 1 ↔

3 3 1 3 3 3 3
2 2 2 2 2 3

1 1 1 2 2
1 1 1

↔ Qe ∪ Y (λ)a =

3 3 1 2 2 3 3
2 2 1 1 2 2

1 3 3 1 1
1 2 3 (5.12)
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On the righthand of (5.12), replacing, from NW to SE, the entries of the i-horizontal strip
of Qe, with 1, . . . , νℓ(ν)−i+1, for i = 1, . . . , ℓ(ν), gives

↔

1 2 1 2 2 3 3
1 2 1 1 2 2

1 3 4 1 1
2 3 5 = (�ρ(Q))t ∪ Y (λ)a = (̺(Q))t ∪ Y (λ)a.

This is equivalent to replace, on the left hand side of (5.11), Y (ν•)a with [Y (νt)a]t

(they have the same antinormal shape rev ν) and apply the map involution ♣, Definition
5.2, to ρ2(Q) ∪ [Y (νt)]t. It produces the same sequence of steps as in (5.11) and (5.12)
with the appropriate replacement of Y (ν•)a by [Y (νt)a]t,

ρ2(Q) ∪ [Y (νt)a]t =

1 3 1 2 3 4 5
2 2 3 1 2 3

1 2 2 1 2
1 1 1 ↔

1 3 1 2 3 4 5
2 2 1 2 3 3

1 2 1 2 2
1 1 1 ↔

1 1 2 3 4 3 5
2 2 1 2 3 3

1 1 2 2 2
1 1 1

↔

1 1 2 3 4 3 5
2 1 2 2 3 3

1 1 2 2 2
1 1 1 ↔

1 1 2 3 4 3 5
1 2 2 2 3 3

1 1 2 2 2
1 1 1 ↔

1 1 2 3 4 3 5
1 2 2 2 3 3

1 1 2 2 2
1 1 1 ↔

1 2 1 3 4 3 5
1 2 2 2 3 3

1 1 2 2 2
1 1 1

↔

1 2 1 2 2 3 3
1 2 1 1 2 2

1 3 4 1 1
2 3 5 = (♣ ρ2(Q))t ∪ Y (λ)a = (�ρ2(Q))t ∪ Y (λ)a.

Henceforth, ♣ρ2(Q) = �ρ2(Q) = ̺(Q).

Corollary 5.6. Consider the symmetries outside of H. The following holds in LR:
(a) ̺ = �ρ = ρ�, and ρ = ̺� = �̺.
(b) ρ1 = ♠�ρ = ρ�♠ = ♣♠ρ = ρ♠♣ = �♣ρ. = ρ♣� = ♠̺ = ̺♠.
(c) ρ2 = ρ♠� = �♠ρ = ρ♣♠ = ♠♣ρ = ρ�♣ = ♣�ρ = ̺♣ = ♣̺.
(d) ρ♠ = ♠�♠ρ = ♣ρ = �♠̺ = ̺�♠.
(e) ♠ρ = ρ♣ = ♠�̺ = ̺♠�.
(f) ρ1ρ2ρ1 = ρ2ρ1ρ2 = (♠�)3ρ = ρ = • e.
(g) (ρ1ρ2)

3 = 1.
(h) ρ1 and ρ2 generate a representation of S3 in Sym(LR).

Proof. (a) It follows from Theorem 4.3. (b) and (c) follow from Theorem 5.5, (a) and (b),
respectively: ρ21 = 1 = ♠�ρ♠�ρ = ♣♠ρ♣♠ρ = �♣ρ�♣ρ = ̺♠̺♠ ⇔ ρ�♠ = ♠�ρ =
♣♠ρ = ♠♣ρ = �♣ρ = ρ♣� = ̺♠ = ♠̺; ρ22 = 1 = �♠ρ�♠ρ ⇔ �♠ρ = ρ♠� and
̺♣ = ρ♠� = �♠ρ = ♣̺. (d)From (c), ♠ρ♠ = ♠�♠ρ� = ♣ρ� = ♣�ρ = �♠ρ. (e) From
(d) and (c), ♠ρ = ♠♣ρ♠ = ρ�♣♠ = ρ♣♠♠ = ρ♣. �

Remark 5.1. From the previous corollary, we conclude that the tableau-switching com-
position s1s2s1 = s2s1s2 on (three fold tableau model) LR satisfy braid relations and
coincides with reversal composed with rotation. That is, if T ∈ LR(µ, ν, λ) then

s1s2s1(Y (µ) ∪ T ∪ Y (λ)a) = s2s1s2(Y (µ) ∪ T ∪ Y (λ)a)

= Y (λ) ∪ ρ1ρ2ρ1(T ) ∪ Y (µ)a = Y (λ) ∪ ρ2ρ1ρ2(T ) ∪ Y (µ)a

= Y (λ) ∪ ρ(T ) ∪ Y (µ)a = Y (λ) ∪ • e(T ) ∪ Y (µ)a. (5.13)

The same happens for the tableau switching on pairs of Yamanouchi and antinormal
Yamanouchi tableaux inside D. From (5.13), s1s2s1(∅ ∪ Y (µ) ∪ Y (µ∨)a) = Y (µ∨) ∪
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•evacY (µ) ∪ ∅ = s2s1s2( Y (µ) ∪ Y (µ∨)a ∪ ∅) = ∅ ∪ evac • Y (µ∨)a ∪ Y (µ)a. Therefore,
Y (µ∨) ∪ •evacY (µ) = evac • Y (µ∨)a ∪ Y (µ)a, and Y (µ)a = •evacY (µ) ⇔ Y (µ) = evac •
Y (µ)a. On the other hand, s(Y (µ) ∪ Y (µ∨)a) = Y (µ∨) ∪ Y (µ)a = Y (µ∨) ∪ •evacY (µ).

Taking into account Theorem 4.6 and algorithms 3.6 and 5.4, replacing ρ with evac
in the previous corollary, in particular, one has

Corollary 5.7. The following holds on LR companions
(a) �evac = evac�.
(b) ♠�evac = evac�♠ = ♣♠evac = evac♠♣ = �♣evac = evac♣�.
(c) evac♠� = �♠evac = evac♣♠ = ♠♣evac = evac�♣ = ♣�evac.
(d) evac♠ = ♠�♠evac = ♣evac.
(e) ♠evac = evac♣.

Remark 5.2. From Theorem 4.6 and algorithms 3.6 and 5.4, if G is the companion of
T , the companion of ρ1(T ) = ♠�ρ(T ) = ρ�♠(T ) is evac�♠G = ♠�evacG. Similarly, for
ρ2 and ̺. This identity does not depend on the straight shape tableau G because every
tableau of straight shape is the right companion of some LR tableau with appropriate
inner shape and outer shape. Henceforth, the identities above are valid for any tableaux
of straight shape.

The cyclic group R ≃ {♠♣ : (♠♣)3 = 1} = {1,♠♣, (♠♣)2 = ♣♠} of rotations in-
volutions, where ♣� = �♠ = ♠♣ is the 4π/3 radians counterclockwise rotation symmetry
involution, and �♣ = ♠� = ♣♠ is the 2π/3 radians counterclockwise rotation symme-
try involution, is an index two subgroup of S3 ≃< ρ1, ρ2 : ρ21 = ρ22 = (ρ1ρ2)

3 = 1 >=
{1, ρ1, ρ2, ρ1ρ2, ρ2ρ1, ρ1ρ2ρ1 = ρ2ρ1ρ2 = ρ} = R ∪ ρ1R with ρ1R = Rρ1 = ρ2R = Rρ2 =
ρR = Rρ = {ρ1, ρ2, ρ} = {♠�ρ,�♠ρ, ρ} = {♠� • e,�♠ • e, •e}. That is,

S3 ≃ {1,♠�,�♠,♠� • e,�♠ • e, •e}, (5.14)

and, from Corollary 5.6, �S3 = S3� = �S3 = S3♠ = ♠S3 = S3♣ = ♣S3, where

Z2 ×S3 −S3 = �S3 = S3� = {�,♣,♠,�♠̺,♠�̺, ̺}. (5.15)

The faithful permutation representation of Z2 ×S3 affords the following presentation

Z2 ×S3 =< �, ρ1, ρ2 : �
2 = ρ21 = ρ22 = (ρ1ρ2)

3 = (�ρ2)
2 = (�ρ1)

2 = 1 > .

therefore, ς1R = Rς1 = ς2R = Rς2 = ςR = Rς = S3 −R.
The symmetries outside of H, commutativity and conjugation symmetries, (1.16),

are given by the involutions ρ, ρ1, ρ2 and ̺, and the two others combining rotation
and conjugation, (1.17), cµ ν λ = cλt µt νt , cµ ν λ = cνt λt µt , and are given by the bijections
♣♠̺ = �♣̺ = ♠�̺ = ♠ρ and ♠♣̺ = �♣̺ = �♠̺ = ♣ρ respectively. That is,

Z2 ×S3 −H = ρ1H = Hρ1 = ρ2H = Hρ2 = ρH = Hρ = ̺H

= H̺ = ♠ρH = H♠ρ = ♣ρH = H♣ρ

= {ρ1, ρ2, ρ, ̺,♣ρ,♠ρ} = {ρ1, ρ2, ρ,�ρ,♣ρ,♠ρ} (5.16)

Equivalently,

Z2 ×S3 −H = {♠� • e,�♠ • e, •e,� • e,♣ • e,♠ • e}. (5.17)

The symmetries outside of H are therefore linearly reducible to each other, and, in par-
ticular, to the reversal involution e. On its turn, as shown in Section 3.2, the reversal
map e is linearly reducible to the Schützenberger involution E. The linear time maps ι
and �♠ι define bijections between tableaux of normal (straight) shape and LR tableaux,
see [?, Lee01, Ou05, PV10]. We can thus state the following result.
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Theorem 5.8. LR transposers and commutors are linearly reducible to each other, in
particular, to the reversal involution e, equivalently, Schützenberger involution evac.

Hence, we may use two involutions of H and an LR commutor or an LR trans-
poser to realize the action of Z2 × S3 on LR. For instance, Z2 × S3 has the following
presentations

Z2 ×S3 ≃ 〈♠,�, ̺〉 = 〈♠,�, ̺ : ̺2 = ♠2 = �2 = (♠�)3 = (♠̺)2 = (�̺)2 = 1〉

= 〈�,♠, ρ : ρ2 = ♠2 = �2 = (♠�)3 = (♠�ρ)2 = (�ρ)2 = 1〉,

= 〈�,♠, ρi : ρ
2
i = ♠

2 = �2 = (♠�)3 = (♠�ρi)
2 = (�ρi)

2 = 1〉, i = 1, 2

= 〈�,♠, ̺♠� : ♠2 = �2 = (♠�)3 = (♠̺♠�)2 = (�̺♠�)2 = 1〉,

where ♠̺,� ̺ determine an action of S3 on puzzles and LR tableaux.

6. The action of Z2 ×S3 on LR companion pairs and hives

Theorems 4.1 and 5.5 show that LR commutors and LR transposers are linear time
reducible to each other, in particular, to the Schützenberger involution. As for the LR
companion tableaux, the Henriques-Kamnitzer LR commutor version of ρ1 shows that if
(L,G) is the companion pair (left and right) of T ∈ LR(µ, ν, λ) then (evacG, evacL) is
the companion pair (left and right) of ρ1(T ) ∈ LR(ν, µ, λ). On the other hand, Theorem
4.6 shows that evacG is also the right companion of ρ(T ). We now translate the action
of Z2 ×S3 on LR tableaux to their companion pairs.

Proposition 6.1. Let (Lµ, Gν) be the companion pair of T in LR(µ, ν, λ). The following
holds

(a) the companion pair of ρ1(T ) ∈ LR(ν, µ, λ) is

(�♠evacLµ, evacLµ) = (evacGν ,♠�evacGν).

(b) Gν = ♠�Lµ, equivalently, Lµ = �♠Gν.

Proof. From Henriques-Kamnitzer LR commutor version of ρ1 and Theorem 4.6, if G is
the right companion of T in LR(µ, ν, λ) then evacG is simultaneously the left companion of
ρ1(T ) ∈ LR(ν, µ, λ) and the right companion of ρ(T ) ∈ LR(λ, ν, µ). Being evacG the right
companion of ρ(T ) ∈ LR(λ, ν, µ), Algorithm 3.6 says that �evacG is the right compan-
ion of �ρ(T ) ∈ LR(µt, νt, λt). Then, from Algorithm 5.4 and Corollary 5.6, ♠�evacG =
evac�♠G is the right companion of ρ1(T ) = ♠�ρ(T ) = ρ�♠(T ) ∈ LR(ν, µ, λ). Fi-
nally from Henriques-Kamnitzer LR commutor version of ρ1, (evacGν , evacLµ) is the
companion pair of ρ1(T ). Henceforth, evacLµ = ♠�evacGν = evac�♠Gν and thereby
Lµ = �♠Gν and (evacGν ,♠�evacGν) is the companion pair of ρ1(T ) in LR(ν, µ, λ). Sim-
ilarly, since Gν = ♠�Lµ, from Corollary 5.6 one has evacGν = �♠evacLµ, and then
(�♠evacLµ, evacLµ) = (evacGν ,♠�evacGν) is the companion pair of ρ1(T ). �

Corollary 6.2. Let T ∈ LR(µ, ν, λ) and (L,G) be a pair of straight semistandard tableaux
of shape µ, weight rev(λ/ν), and shape ν, weight λ∨/µ respectively. The pair (L,G) is a
companion pair of T if and only if L = �♠G and L or G is the left or right companion
of T respectively.

Proof. The ”only if ” part is the content of previous proposition. We now prove the
”if” part. We assume that L = �♠G and G is the right companion of T . Then from
previous proposition (evacG,♠�evacG) is the companion pair of ρ1(T ). In particular,
♠�evacG = evac�♠G = evacL is the right companion of ρ1(T ). From the Henriques-
Kamnitzer commutor, L is the left companion of T . �



SYMMETRIES OF LITTLEWOOD–RICHARDSON COEFFICIENTS 53

Example 6.1. Considering Example 5.4, one has �♠G =

3
2 4
1 1 2 4 = Lµ of shape µ

and content (λ∨/ν)• = (7542 − 5420)rev = 2212. The left companion tableau of T in
Example 5.4.

ρ1 : LRν,λ/µ → LRµ,λ/ν : G 7→ ♠� evacG (6.1)

such that ι(ρ1(T )) = ρ1(ι(T )) = ♠�evacG = evac L.

ρ2 : LRν,λ/µ → LRλ∨,ν∨/µ : G 7→ �♠ evacG (6.2)

such that ι(ρ2(T )) = ρ2(ι(T )) = �♠evacG.

6.1. The action of Z2 × S3 on hives. Hives were first introduced by Knutson and
Tao [KT99] with properties described in more detail by Buch [Buc00]. Hives have also
a edge representation as introduced by [KiTolTou06] and used in [KiTolTou09]. In this
representation, a hive is specified by superposing three Gelfand-Tsetlin patterns where
two of them constitute the companion pair of an LR tableau and the third is a consequence
of the triangle condition on the edge labels of the hive. On the other hand, superposing
a companion pair of an LR tableau always specifies a unique LR hive (for details see
[AzKiTe16]). Let H(µ, ν, λ) be the set of LR hives whose left, right and lower boundary
edge labels are specified by the parts of the partitions µ, ν and λ fitting a d × n − d
rectangle. Hives are thereby naturally in bijection with LR tableaux: T 7→ (�♠G,G)
where G is the right LR companion of T ∈ LR(µ, ν, λ). We define the action of Z2 ×S3

on H(µ, ν, λ) via its action on LR companion pairs. Henceforth, the following theorem
exhibits the twelve symmetries of LR coefficients in the hive model via LR companion
pairs.

Theorem 6.3. Let (L = �♠G,G) be the LR companion pair of T ∈ LR(µ, ν, λ). Then
we have the following LR companion pairs under the action of Z2 ×S3:

(1) ♠T 7→ ♠G 7→ (�G,♠G)
(2) �T 7→ �G 7→ (♠L = �♠�G,�G)
(3) �♠�T 7→ �♠�G 7→ (♠G,�♠�G = ♠L)
(4) �♠T 7→ �♠G 7→ (�♠L = ♠�G,�♠G = L)
(5) ♠�T 7→ ♠�G 7→ (G,♠�G)
(6) ρ(T ) 7→ ρG 7→ (�♠evacG, evacG)
(7) ρ1(T ) 7→ ρ1G 7→ (evacG,♠�evacG = evacL)
(8) ρ2(T ) 7→ ρ2G 7→ (♠�evacG = evacL,�♠evacG)
(9) ̺(T ) 7→ ̺G 7→ (�evacL,�evacG)
(10) ♠ρ(T ) 7→ ♠ρG 7→ (�evacG,♠evacG)
(11) �♠�ρ(T ) 7→ �♠�ρG 7→ (♠evacG,�♠�evacG) = (♠evacG,�evacL).

Proof. The proof is a direct consequence of Theorem 4.6, Algorithm 5.4, Theorem 5.5 and
Theorem 6.1. We leave the calculations for the interested reader. �

Appendix A. Purbhoo mosaics, a rhombus–square–triangle model, and

migration

In this section, we follow closely [Pu08] (to which we refer the reader for more
details) except that, an LR tableau of boundary (λ, µ, ν) here it is written there (µ, λ, ν∨).
Consider a puzzle of side length n and boundary (µ, ν, λ), and replace the rhombi by
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unitary squares. The puzzle will be distorted and a convex diagram can be recovered
by adding thin rhombi with angles of 5

6
π and π

6
radians to the three distorted edges of

the puzzle. If one ignores the labels on the puzzle pieces, the resulting diagram, called
mosaic, is a tiled hexagon by three shapes: equilateral triangles with side length 1; squares
with side length 1; and rhombi with side length 1 and angles π

6
and 5

6
π radians, in a way

that all rhombi are packed into three nests A, B and C of the hexagon. See the picture
below, where the mosaic was built on a puzzle with boundary µ = 2111, ν = 2110 and
λ = 2100, the colours should be looked at this point as decoration. The mosaic has side
lengths A′A = B′B = C ′C = n−d and AB′ = BC ′ = CA′ = d. The collections of rhombi
in the nests A, B and C, denoted respectively by α, β, and γ, define the boundary data
(α, β, γ) of the mosaic. The collections of extra rhombi α, β and γ, with the standard
orientation, given by the edges of the nests clockwise, can be regarded as the three Young
diagrams µ, ν, and λ, respectively, clockwise encoded by the 01–words on the boundary
of the puzzle.

A
′

B′

C′

A

C

B

This construction exhibits a natural bijection between mosaics and puzzles. Re-
moving the extra rhombi and straightening the resulting shape, we can go from a mosaic
to a puzzle. Walking from A′ to B′, the shape that is left, by removing α, turns into
the string of 0’s and 1’s, 0 for each unit step west, and a 1 for each unit step north; and
straightening the squares they will become π

6
/ π

3
radians rhombi. This will determine

the remain labels of the puzzle pieces. (Similarly, walking anticlockwise from C ′ to B′,
we get the dual puzzle, that is, the one obtained by mirror reflection along the vertical
axis and label swapping.) In the standard orientation, that is, read clockwise, a mosaic
of boundary (α, β, γ) can be identified with the corresponding puzzle of boundary data
(µ, ν, λ), where α is identified with the Young diagram of µ, β with ν, and γ with λ.
The number of mosaics with boundary data (α, β, γ) is equal to the number of puzzles of
boundary (µ, ν, λ).

One of the advantages of mosaics over puzzles is that we can give different orien-
tations to the nests A, B, and C. This allows us to relate the symmetry bijections on
puzzles and LR tableaux. Define unit vectors EA, NA, EB, NB, EC , NC in the directions
of AA′, AB′, BB′, BC ′, CC ′, CA′ respectively, and fix orientations (EA, NA), (EB, NB),
(EC , NC) on the nests at A, B, and C respectively. The letters E, N , −E, −N are
thought as compass directions east, north, west and south, respectively. Thus the ori-
entations (E,N) and (N,E) in a nest means the standard or clockwise orientation, and
the counterclockwise orientation respectively. Flocks are (skew) tableau–like structures,
defined on the thin rhombi in a mosaic, packed into one of the nests A, B or C. Four
orientations can be given to a nest. Each orientation uniquely determines the flock as
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a LR tableau. Fix a nest, say A, the rhombi in α under the orientation (E,N) define
the Yamanouchi tableau Y (µ); under (N,E), Y (µt); under (−E,−N), Y (µ)a; and under
(−N,−E), Y (µt)a. (The second compass direction indicates in which direction the entries
of the LR tableau strictly increase. In the standard orientation (E,N), the entries of an
LR tableau weakly increase eastward and strictly increase northward. This is consistent
with the representation of partitions and their linear transformations as 01 words in (2.1)
and (2.2), Section 2.1.) Migration is an invertible operation on mosaics that takes a
flock from a nest to a new nest whose shape can be interpreted as an LR tableau. In this
case the initial mosaic is identified with that LR tableau. This operation gives a bijection
between mosaics (equivalently puzzles) and LR tableaux. More precisely, with appro-
priate orientation of the flocks in the mosaic, migration coincides with Tao’s bijection
and allows to relate operations on puzzles with jeu de taquin operations (or switching)
on LR tableaux. The rhombi must move in the standard order of a tableau (recall the
definition in Section 2.2). Choose the target nest. Rhombi move in the chosen direction
of migration, inside a smallest hexagon in which the thin rhombus ♦ is contained:

−→ −→

Migration from the nest A to the nest B of the mosaic, of the flock α with stan-
dard orientation (E,N), gives a bijection between mosaics of boundary (α, β, γ) and LR
tableaux of boundary (λ, µ, ν) where ν = β, λ = γ and µ = α. This bijection coincides
with the Tao’s bijection, ”without words” in [Va06] (see also [Pu08, Fig. 9]), between puz-
zles of boundary (µ, ν, λ), or the corresponding mosaics, and LR tableaux of boundary
data (λ, µ, ν). On the other hand, migration from the left nest A to the bottom nest C of
the mosaic, of the flock α with the orientation (−E,−N), gives the same bijection [Pu08,
Proposition 5.1]. This coincidence with respect to the two orientations given to the flock
α is consistent with the definition of LR tableau. An LR tableau of boundary (λ, µ, ν)
rectifies to the Yamanouchi tableau Y (µ), and by reverse jeu de taquin, to its antinormal
form Y (µ)a. An illustration of Tao’s bijection which coincides with the migration of the
flock Y (µ) to the nest B of the mosaic, and with the migration of the flock Y (µ)a to the
nest C:

• 4 • •

• 1 •3 •

• •2 •

• • •1

(λ∨, µ, ν)

1

1

2

3

4

11

4

3

2

Following [Pu08, Table 1], we next see that the involutions ♣,♠,� defined by
the action of the group H on puzzles and on LR tableaux are exactly what we get with
migration on mosaics. In this discussion it is better to consider the presentation H =<
♣,♣� >. Migration from the nest B to the nest A of the mosaic, of the flock β with
orientation (N,E) (read counterclockwise), thus identified with Y (νt) coincides with Tao’s



56 OLGA AZENHAS, ALESSANDRO CONFLITTI, AND RICARDO MAMEDE

bijection on the back side of the mosaic, that is, on the mosaic of boundary (β, α, γ) defined
by the reflection of our current mosaic along the vertical axis (also corresponding to the
puzzle obtained by reflecting along the vertical axis and swapping the colours). This
defines the ♠ involution on puzzles which translates to the ♣ involution on LR tableaux,
as illustrated below.

• 4 • •

• 1 •3 •

• •2 •

• • •1

(λ∨, µ, ν)

• • • •

• •a •b •

• • •a •a

(λ∨t
, νt, µt)

b

b

a

a

a

a

a

a

Migration of the flock α with orientation (N,E) (read counterclockwise), from
the nest A to the nest C of the mosaic, coincides with what Tao’s bijection gives when
applied on the back side of the mosaic after rotating it 2

3
π radians clockwise (reflection

of the corresponding puzzle, after rotating it 2
3
π radians clockwise, along the vertical axis

and swapping the colours). This defines the involution ♣ on puzzles which translates to
the � involution on LR tableaux as illustrated below with the LR tableau on the right.

Migration from the nest C to the nest A of the mosaic, of the flock γ with standard
orientation (E,N), coincides with what Tao’s bijection gives when applied to the mosaic
after a rotation of 2

3
π radians clockwise. This defines the 2

3
π clockwise rotation ♣� on

puzzles which is translated to �♠ on LR tableaux. Illustrated below with the LR tableau
on the left. The bijections are illustrated on the mosaic at the same time.

• x • •

• y• •

• •x •

• • •

(ν, λ∨, µ)

• 1 •2 • •

• •1 •1 •

• • • •1

(νt, µt, λ∨t
)

1

1

2

1

1

x

y

x

y x

x

2

1

1

1

1

Similarly, migration of the flock γ with orientation (N,E) (read counterclockwise),
from the nest C to the nest B of the mosaic, coincides with Tao’s bijection on the back
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side of the mosaic after rotating it 2
3
π radians counterclockwise (or 4

3
π radians clockwise).

It defines the involution � on puzzles which translates to the involution ♠ on LR tableaux.
In [Pu08] it is discussed how the migration of a single rhombus in a mosaic is

related with jeu de taquin slides on tableaux. This explains the correspondence between
the action of Z2 × S3 on puzzles and on LR tableaux. We have seen that ♣ on LR
tableaux can be described as the migration of the flock β with orientation (N,E), thus
identified with Y (νt), from the nest B to the nest A of the mosaic. However ♣ can also
be described on mosaics as the migration of the flock β with orientation (−N,−E), thus
identified with Y (νt)a, from the nest B to the nest C of the mosaic. On the back mosaic,
it is the migration of the flock νt with orientation (−E,−N), thus identified with Y (νt)a,
to the nest C. Combining the Tao’s bijection on the the mosaic of boundary (α, β, γ),
in standard orientation, giving a LR tableau of boundary (λ, µ, ν), with the migration
of the flock β with orientation (−N,−E), identified with Y (νt)a, to the nest C, we get
Proposition 5.2. This is illustrated below. Consider our current mosaic with the LR
tableau of boundary (λ, µ, ν) produced by the migration of the flock Y (µ) to the nest B
or Tao’s bijection.

4 • •

1 3 •

• 2 •

• • 1

1

1

2

3

4

11

4

3

2

Reflecting our mosaic vertically we get the ”back” mosaic with boundary (β, α, γ)
naturally in bijection with the dual puzzle of boundary (νt, µt, λt) of the current mo-

saic. Tao’s bijection on the back mosaic gives the LR tableau

a b
a a of boundary

(λt, νt, µt) which coincides with the migration on the back mosaic of Y νt)a to C.
Transposing the standardized LR tableau produced by Tao’s bijection on the mo-

saic of boundary (α, β, γ) just above and filling the outer partition νt in the antinormal
form to obtain Y (νt)a,

2 a a b
3 4 a

1 5 , (A.1)

we verify that the migration of the flock Y (νt)a (flock β with orientation (−E,−N)) to
the nest C, on the back mosaic, is also explained by the tableau switching on (A.1). Begin
with the minimal rhombus in the standard order of Y (νt)a and proceed in standard order
with the remain rhombi in Y (νt)a. (Migration preserves the standard order of the flock.)
The migrated flock packed in C is identified with an LR tableau of boundary (λt, νt, µt)
which is the same LR tableau of boundary (λt, νt, µt) as Tao’s bijection on the dual puzzle.
(Note that some of the moves in the migration are omitted. For a complete animation,
see [AzCoMa09a].)
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2 a a b

• 3 4 a

• • 1 5

2

3

4

5

1

a

a

b

a 2 3 a b

• a 4 a

• • 1 5

2

3

4

5

1

a

a

b

a

a

3

2 3 a b

• a 4 a

• • 1 5

2

4

5

1

a

b

a

3

a

2 3 4 b

• a a a

• • 1 5

2

4

5

1

b

a

3

a

a

2 3 4 b

• a a a

• • 1 5

2

4

5

1

b

a

3

a

a

2 3 4 b

• a 1 a

• • a 5

2

4

5

1

b

a

3

a

a

2 3 4 b

• a 1 5

• • a a

2

4

1

b

5

3

a

a

a

2 3 4 b

• a 1 5

• • a a

2

4

1

b

5

3

a

a

a

2 3 4 b

• a 1 5

• • a a

2

4

1

b

5

3

a

a

a

2 3 4 5

• a 1 b

• • a a

2

4

1

5

5

3

a

a

a

b

2 3 4 5

• a 1 b

• • a a

2

4

1

5

5

3

a

a

a

b

2 3 4 5

• a b 1

• • a a

2

4

1

5

5

3

a

a

a
1

b

The last mosaic, on the right, has boundary (∅, α, γ′) where, in standard orienta-
tion, α is identified with µt, and γ′ identified with (µt)∨ gives the LR tableau of boundary
(λt, νt, µt) already obtained with Tao’s bijection above.
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[DK05] Vladimir I. Danilov, Gleb A. Koshevŏı.Massifs and the combinatorics of Young tableaux, Uspekhi
Mat. Nauk 60 (2005), 79–142 (Russian); translation in Russian Math. Surveys 60 (2005), 269–334.
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