
On Holland’s inequalities for the coefficients of the power series of
the harmonic mean

ALEXANDER KOVAČEC

Abstract: Finbarr Holland showed in the case that p1 = · · · = pk = 1/k that expanding the har-
monic mean (p1(1− x1t)

−1 + p2(1− x2t)
−1 + · · ·+ pk(1− xkt)

−1)−1 into a power series in t, of the
form

∑

l≥0 ql(x1, ..., xk)t
l, the coefficient polynomials ql = ql(p, x) are nonpositive on the nonnega-

tive orthant R
k
≥0. We show that even under the more general hypothesis that p = (p1, ..., pk) is an

arbitrary probability vector a stronger conclusion can be drawn: writing, say, xi = hi + · · · + hk,
and expanding ql in variables hi results in a polynomial h1, ..., hk with only negative coefficients.
The proof makes use of results in three earlier preprints.

0. Introduction: Statement of Main Result and Thread of Reasoning

Let us begin by citing the following theorem

Theorem 0. ( [Hol, Proposition 2.2]) If x1, ..., xk are positive real numbers then the power series
expansion about t = 0 of

A(t) = 1−
k

1
1−x1t

+ 1
1−x2t

+ · · ·+ 1
1−xkt

has nonnegative coefficients.

Since the power series (1− xt)−1 = 1 + x1t1 + x2t2 + · · · has coefficient of t0 equal to 1 it is easily
seen that every power series (p1(1−x1t)

−1+ p2(1−x2t)
−1+ · · ·+ pk(1−xkt)

−1)−1 with (p1, ..., pk)
nonnegative real numbers of sum 1 must be of form 1 +

∑

n≥1 qn(x1, ..., xk)t
n. Holland’ s theorem

is therefore contained in the following main result that will be proved in the present paper.

Theorem 1.(Main Result) Let (p1, ..., pk) be an arbitrary probability vector and consider the ex-
pansion

(p1(1− x1t)
−1 + p2(1− x2t)

−1 + · · ·+ pk(1− xkt)
−1)−1 = 1 +

∑

l≥1 ql(x1, ..., xk)t
l.

a. Given any permutation π ∈ Sk, writing xπi = hi + hi+1 + · · ·+ hk for i = 1, ..., k, and expanding
ql in terms of the variables hi the corresponding polynomial has only negative coefficients.
b. In particular the ql are polynomials nonpositive on R

k
≥0.

If a polynomial p ∈ R[x1, ..., xk] has the property that after doing the replacement xπi = hi +
hi+1+ · · ·+hk for i = 1, ..., k, and expanding there results a polynomial in the hi with only positive
coefficients we shall say it has the property pos for π; if pos for π holds for −p we shall say that p
is −pos for π. If p is pos for all π ∈ Sk then it is sure that it is nonnegative on R

k
≥0.

Example. The polynomial x62+x41x
2
3+x21x

4
3− 3x21x

2
2x

2
3 (a variant of the so called Motzkin polyno-

mial) can be seen via the arithmetic geometric mean inequality nonnegative for all real x1, x2, x3
but if we do the replacements x1 → h1+h2+h3, x2 → h2+h3, and x3 → h3 we get a polynomial in
h1, h2, h3 which has some negative coefficients, namely h62+6h52h3+h41h

2
3+4h31h2h

2
3+3h21h

2
2h

2
3−

2h1h
3
2h

2
3+13h42h

2
3+4h31h

3
3+6h21h2h

3
3− 6h1h

2
2h

3
3+12h32h

3
3+4h21h

4
3− 4h1h2h

4
3+4h22h

4
3. This shows

that the polynomial is not pos for the identity permutation. So being pos for all permutations
(‘absolutely pos’ ) is strictly stronger than simply nonnegativity.

Because of the symmetries of the harmonic mean, it is not hard to see that it is enough to prove
part a of Theorem 1 for the case that π is the identity permutation. This will imply that the ql are
absolutely −pos.

Example. The reader may verify on his computer that the coefficients of t0, t1, t2, t3 of

(15(1− x1t)
−1 + 3

4(1− x2t)
−1 + 1

20(1− x3t)
−1)−1

are as given in the table below: first in the original variables, then in the variables h defined by
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x1 = h1 + h2 + h3, x2 = h2 + h3, x3 = h3.

t0 : 1
t1 : 1/20(−4x1 − 15x2 − x3)

= −
h1
5

−
19h2
20

− h3

t2 : 1/400(−64x21 + 120x1x2 − 75x22 + 8x1x3 + 30x2x3 − 19x23)

= −
4h21
25

−
h1h2
50

−
19h22
400

t3 : (1/8000)(−1024x31 + 1680x21x2 − 300x1x
2
2 − 375x32 + 112x21x3 − 360x1x2x3 − 75x22x3+

+148x1x
2
3 + 555x2x

2
3 − 361x33)

= −
16h31
125

−
87h21h2
500

−
3h1h

2
2

2000
−

19h32
8000

−
4h21h3
25

−
h1h2h3

50
−

19h22h3
400

The proof of Theorem 1 rests on the results of the preprints [K1],[K2],[K3]. Keeping track of the
reasoning will be easier by presenting here briefly the history of these developments more details
of which are given in sections 1,2,3.

In [K1] we used a simple method to prove the positive semidefiniteness of individual multivariate
polynomials p(x) ∈ R[x] = R[x1, . . . , xk] in subsets of R

k of the form x1 ≥ x2 ≥ · · · ≥ xk ≥ r,
by introducing new variables hi = xi − xi+1, i = 1, ..., k, xk+1 = r, expressing the xi via the hi,
and to show that the polynomial p in the hi has only nonnegative coefficients. We showed how
such representations can be obtained systematically using partial derivatives and then be used for
families of polynomials. In particular we gave an alternative proof to a theorem by Thomas Laffey
[L] saying that for real nonnegative α1, . . . , αk of sum ≤ 1, the coefficients of the tl, l ≥ 1, of
the geometric mean (1− x1t)

α1(1− x2t)
α2 · · · (1− xkt)

αk , when expanded into a power series, are
nonpositive for nonnegative xi. This had an impact on the so-called nonnegative inverse eigenvalue
problem in Linear Algebra; see also [LLS]. At that time we learned about Holland’s theorem for the
harmonic mean. But while the coefficients of the powers of t in Laffey’s and the author’s proof for
the geometric mean are easily seen to be absolutely -pos, one cannot discern a similar property in
the beautiful proof of Holland of his theorem which is based on a 1928 theorem of Theodor Kaluza
[Kal]. So we began in the penultimate section of [K1] with some thoughts trying to strengthen it
in the form explained above. In that investigation the development

ql(p, x) = −sl(p, x) +
∑

l1+l2=l

sl1(p, x)sl2(p, x)−
∑

l1+l2+l3=l

sl1(p, x)sl2(p, x)sl3(p, x) + · · ·+ (−1)ls1(p, x)
l,

via the pseudo-symmetric power sums sj = sj(p, x) =
∑k

i=1 pix
j
i occurs in a natural manner. The

li are integers ≥ 1. One of the subproblems we had was to find a ‘nice formula’ for the result R

of the computation sl1sl2 · · · slk
to i1,∂i1 ,to i2, ∂i2 ,··· ,to il, ∂il→ R, where the ‘to i, ∂i’ are certain linear

operators the details of which are explained in Section 2. The solution to this was a formula found
in [K2] in which the expressions l1l2 · · · lk

∑

σ∈Sk

∏k
i=1(lσ1+· · ·+lσi−νi)

lσi−1 with Sk the symmetric
group on {1, 2, ..., k} played an important role. R is a polynomial and the expression is the coefficient
of a certain monomial determined by the νi. At the other hand computational experiences led,
independently, to the (by us so called) reduced polynomials qredl , through the same sequence of

operations but applied to the ql (so ql
to i1,∂i1 ,to i2, ∂i2 ,··· ,to is, ∂is

→ −a0q
red
l−1 ). The sequence of the

qredl−1 are inhomogeneous affine polynomials in l− 1 variables a1, a2, ..., al−1 of degree l− 1 of which
we established that if we could prove they are ≥ 0 on the region a1 ≤ a2 ≤ · · · ≤ al−1 ≤ 1, then we
could infer Holland’ s inequality in the refined form of Theorem 1a above. Already in [K1] we found
hints and an easy method that apparently worked for each individual polynomial qredl−1 to establish

this. But to establish this for the totality of all polynomials qredl−1 we found it necessary first to

find an efficient way to describe the qredl−1 in the hope to be able to do this inductively. After much

pondering we established in [K3] a conjecture involving a recursion for the qredl−1 and showed that if

the conjectured recursion was correct then indeed the qredl−1 on the region a1 ≤ a2 ≤ · · · ≤ al−1 ≤ 1
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were nonnegative. This left us to prove that indeed the reduction process of the ql always leads
to the qredl−1 as conjectured by the recursion. It is this step that is achieved in the present paper
permitting finally to conclude the investigations on the refinement of Holland’ s inequality.

As to the organization of the paper, we present the preliminaries more or less in the order they
were found so that Sections 1, 2, 3 correspond roughly to the preprints [K1, K2, K3], respectively
and Section 4 presents the last piece of the puzzle. We shall explicitly cite the theorems needed
almost in the forms they are found and proved in the preprints and illustrate them with examples.
References like ‘Lemma n.i’ refer to Section n, provided made outside of that section.

1. The origin of the expansion of the ql in terms of the sl.

Along this paper we use x1, ..., xk as well for indeterminates as for real numbers in such a way
that context will make clear the intended meaning. We sometimes write x = (x1, ..., xk), and for
1 ≤ i ≤ j ≤ k we may write xi:j := (xi, ..., xj). Also the notation Sxi:j = xi + · · · + xj will
help to lighten notation. Similar observations go for letters other than x. We often will rewrite any
polynomial p ∈ R[x1, ..., xk] as a polynomial in the quantities hi = xi−xi+1, i = 1, ..., k−1, hk = xk.
To do so note xi = hi + hi+1 + · · · + hk and expand p. So, defining σ(h) := σ(h1, ..., hk) :=
(Sh1:k, Sh2:k, ..., Shk−1:k, hk), the expansion (p ❛ σ)(h) = p(σ(h)) is the sought presentation.

For nonnegative reals p1, ..., pk of sum equal to 1, denote by sl = sl(p, x) =
∑k

i=1 pix
l
i the p-weighted

l-th powersum of x1, x2, ..., xk. For the harmonic mean as introduced in Section 0 we may write

(p1(1− x1t)
−1 + p2(1− x2t)

−1 + · · ·+ pk(1− xkt)
−1)−1 =

(
k∑

i=1
pi
∑

l≥0

(xit)
l

)−1

=

(

1 +
k∑

i=1
pi
∑

l≥1

xlit
l

)−1

=

(

1 +
∑

l≥1

(
k∑

i=1
pix

l
i)t

l

)−1

=

(

1 +
∑

l≥1

sl(p, x)t
l

)−1

= 1−
∑

l≥1

sl(p, x)t
l + (

∑

l≥1

sl(p, x)t
l)2 − (

∑

l≥1

sl(p, x)t
l)3 + · · · .

From this follows that the coefficient of tl, l ≥ 1 is

ql(p, x) = −sl(p, x) +
∑

l1+l2=l

sl1(p, x)sl2(p, x)−
∑

l1+l2+l3=l

sl1(p, x)sl2(p, x)sl3(p, x) + · · ·+ (−1)ls1(p, x)
l,

with li ∈ Z≥1. It is clear that ql is a homogeneous polynomial of degree l in x1, ..., xk. Our aim
will be accomplished as soon as we can show that ql(p, σ(h)) is a polynomial in the hi with only
negative coefficients.

Example. For l = 3 we have

q3(p, x) = −s3(p, x) + 2s1(p, x)s2(p, x)− s1(p, x)
3.

Assuming x = (x1, x2, ..., x6) and p = 1
61 = 1

6(1, 1, 1, 1, 1, 1) results in the more explicit form

q3(
1

6
1, x1:6) = (−25

∑

i

x3i + 9
∑

i ̸=j

x2ixj − 6
∑

i<j<k

xixjxk)/216.

and finally

q3(
1
61, σ(h)) = 1/216(−25h31 − 66h21h2 − 48h1h

2
2 − 32h32 − 57h21h3 − 84h1h2h3 − 84h22h3 − 27h1h

2
3 −

54h2h
2
3− 27h33− 48h21h4− 72h1h2h4− 72h22h4− 48h1h3h4− 96h2h3h4− 72h23h4− 12h1h

2
4− 24h2h

2
4−

36h3h
2
4−16h34−39h21h5−60h1h2h5−60h22h5−42h1h3h5−84h2h3h5−63h23h5−24h1h4h5−48h2h4h5−

72h3h4h5−48h24h5−3h1h
2
5−6h2h

2
5−9h3h

2
5−12h4h

2
5−5h35−30h21h6−48h1h2h6−48h22h6−36h1h3h6−

72h2h3h6−54h23h6−24h1h4h6−48h2h4h6−72h3h4h6−48h24h6−12h1h5h6−24h2h5h6−36h3h5h6−
48h4h5h6 − 30h25h6).

The following proposition is essentially [K1, Theorem 2.1,Corollary 2.2] (by means of which we
there reproved Laffey’s result) but was recast in a different language in [K2]. There we introduced
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the arrows
to i

→ and
∂i→ . These serve to indicate certain operations on polynomials. Write

‘
to i

→’ for saying that the currently existing variables of index ≤ i should be mapped to xi. For

example −3x1 + x1x
2
2 + x3

to 2
→ −3x2 + x32 + x3. Similarly write

∂i→ to indicate a partial
derivative w.r.t. variable xi. We can concatenate such arrows in the obvious way and have proved
the following.

Proposition 1. ([K2, Corollary 1.1]) a. Let p be homogeneous of degree l in R[x1:k] and assume
l1 + · · · + lk = l. Then the coefficient of hl11 · · ·hlkk in the development of (p ❛ σ)(h) is obtained by

applying l1 operators
to 1,∂1

→, followed by l2 operators
to 2,∂2

→, ... followed by lk operators
to k,∂k→, and

dividing the result by l1! · · · lk!.
b. In particular, if all such operations yield a nonnegative real number then the polynomial p is
nonnegative on the region x1 ≥ x2 ≥ · · · ≥ xk ≥ 0; and if p is symmetric then p is nonnegative on
the nonnegative orthant R

n
≥0.

Example. Consider the (symmetric) polynomial p(x1, x2, x3) = x31 + x32 + x33 − 3x1x2x3. Then

p(x1, x2, x3)
to 1,∂1

→ 3x21 − 3x2x3
to 1,∂1

→ 6x1
to 3,∂3

→ 6.

The coefficient of h21h3 in (p ❛ σ)(h) therefore is 6/(2!0!1!) = 3. Indeed one easily computes that

(p ❛ σ)(h) = h31 + 3h21h2 + 3h1h
2
2 + 2h32 + 3h21h3 + 3h1h2h3 + 3h22h3.

And this turns nonnegativity of p|R3
≥0 evident in a most satisfactory way.

2. Reducing products of pseudo-symmetric power sums

Given that the polynomials ql(p, x) born from the harmonic mean are linear combinations of prod-
ucts of polynomials sl(p, x), we tried in [K2] also to find the result of applying a sequence of
operators of the form mentioned to such products. This somewhat subtle investigation resulted in
the following theorem. In it we use with [GKP] the notation mk = m(m − 1) · · · (m − k + 1) for
falling factorials, where m ∈ Z, k ∈ Z≥0.

Theorem 1. ([K2, Theorem 3.2 and Corollary 3.4]) Let l = l1 + l2 + · · ·+ lk (so it is the degree of
the product of the powersums below) and assume 1 ≤ i1 < i2 < · · · < il ≤ #of variables. Then the
result R of the computation

sl1sl2 · · · slk
to i1,∂i1 ,to i2, ∂i2 ,··· ,to il, ∂il→ R

is a homogeneous polynomial of degree k in the variables Sp1:i1 , ..., Sp1:il . Each monomial is of form
Sp1:i1Sp1:iν2 · · ·Sp1:iνk with 1 = ν1 < ν2 < · · · < νk ≤ l. The coefficient of this particular monomial
equals the positive integer

l1l2 · · · lk
∑

σ∈Sk

k∏

i=1
(lσ1 + · · ·+ lσi − νi)

lσi−1.

It will be useful to note that the coefficient does not depend on i1, i2, ..., il. So all the information
that can be gotten from the theorem can be gotten by selecting i1 = 1, i2 = 2, ..., il = l.

Example. s1s2 is a degree 3 polynomial. Let us compute in above sense s1s2
to i1,∂i1 ,to i2, ∂i2 ,to i3, ∂i3→ R

s1(p, x)s2(p, x)
to i1→ (Sp1:i1xi1 + s1(pi1+1:k, xi1+1:k))(Sp1:i1x

2
i1
+ s2(pi1+1:k, xi1+1:k))

∂i1→ Sp1:i1(Sp1:i1x
2
i1
+ s2(pi1+1:k, xi1+1:k)) + (Sp1:i1xi1 + s1(pi1+1:k, xi1+1:k))2Sp1:i1xi1

to i2→ Sp1:i1(Sp1:i2x
2
i2
+ s2(pi2+1:k, xi2+1:k)) + (Sp1:i2xi2 + s1(pi2+1:k, xi2+1:k))2Sp1:i1xi2

∂i2→ 2Sp1:i1Sp1:i2xi2 + Sp1:i2 · 2Sp1:i1xi2 + (Sp1:i2xi2 + s1(pi2+1:k, xi2+1:k))2Sp1:i1
to i3→ 2Sp1:i1Sp1:i2xi3 + Sp1:i2 · 2Sp1:i1xi3 + (Sp1:i3xi3 + s1(pi3+1:k, xi3+1:k))2Sp1:i1
∂i3→ 4Sp1:i1Sp1:i2 + 2Sp1:i1Sp1:i3 .
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So we showed s1s2
to i1∂i1 ,to i2∂i2 ,to i3∂i3→ 4Sp1:i1Sp1:i2+2Sp1:i1Sp1:i3 . In the notation of the theorem

l1 = 1, l2 = 2, k = 2, ν1 = 1 and the coefficient of Sp1:iν1Sp1:iν2 is l1l2((l1−ν1)
l1−1(l1+l2−ν2)

l2−1+

(l2−ν1)
l2−1(l2+ l1−ν2)

l1−1) = 1 ·2((1−1)0(3−ν2)
1+(2−1)1(3−ν2)

0) = 2((3−ν2)
1+1). From

this formula one obtains according to the cases ν2 = 2 and ν2 = 3 indeed the values 4 and 2 for the
coefficients as our detailed calculation above shows.

A direct consequence of the Theorem 1 and the definition of the polynomials ql(p, x) is the following:

Corollary 2. If we subject ql to the operation
to i1,∂i1 ,to i2, ∂i2 ,··· ,to il, ∂il→ we get an inhomogeneous

polynomial of degree l in the variables Sp1:i1 , ..., Sp1:il . The homogeneous component of degree k has
the sign (−1)k ; and each degree k = 1, 2, ..., l is present.

Example (continued). Applying the same arrow as before we get s3 → 6Sp1:i1 and s31 →
6Sp1:i1Sp1:i2Sp1:i3 . Consequently q3 → −6Sp1:i1+8Sp1:i1Sp1:i2+4Sp1:i1Sp1:i3−6Sp1:i1Sp1:i2Sp1:i3 .

3. The sequence of reductions of polynomials ql and the property pos.

To get rid of heavy notation and trivial transformations we define the reduction of ql(p, x) as the
result of the following operations:

· Determine R from ql(p, x)
to i1,∂i1 ,to i2, ∂i2 ,··· ,to il, ∂il→ R.

· Cancel herein Sp1:i1 and change the sign.
· Replace Sp1:iν by the letter aν−1.

This is an inhomogeneous polynomial of degree l − 1 in l − 1 variables a1, a2, ..., al−1. Call it q
red
l−1.

With this definition we have

ql(p, x)
to i1,∂i1 ,to i2, ∂i2 ,··· ,to il, ∂il→ −a0q

red
l−1.

With the two intentions to confirm at the one hand our conjecture that in general ql(p, σ(h)) has
only negative coefficient coefficients and at the other hand to find a pattern according to which the
qredl develops with l, we computed via Mathematica© a number of further reductions. The first
few are the following ones.

qred0 = 1
qred1 = 2− 2a1
qred2 = 6− 8a1 − 4a2 + 6a1a2
qred3 = 24− 40a1 − 20a2 + 36a1a2 − 12a3 + 24a1a3 + 12a2a3 − 24a1a2a3
qred4 = 120− 240a1 − 120a2 + 252a1a2 − 72a3 + 168a1a3 + 84a2a3 − 192a1a2a3 − 48a4 + 120a1a4

+60a2a4 − 144a1a2a4 + 36a3a4 − 96a1a3a4 − 48a2a3a4 + 120a1a2a3a4.

Since p = (p1, ..., pk) is a probability vector we know furthermore 0 ≤ Sp1:i1 ≤ Sp1:i2 ≤ · · · ≤
Sp1:ik ≤ 1; in other words we wish to prove that the polynomial qredl is for a1 ≤ a2 ≤ · · · ≤ al ≤ 1
nonnegative; it turns out this is even true if some ai are negative. Indeed to show this for some
individual of these polynomials we employed once more the technique above. For example to show
qred3 |∆3 ≥ 0, where ∆l = {(a1, a2, . . . , al) : a1 ≤ a2 ≤ . . . al ≤ 1}, we write a3 = 1 − h1, a2 =
1 − h1 − h2, a1 = 1 − h1 − h2 − h3, assuming the hi ≥ 0 and substitute these expressions in the
hs for the ai in qred3 and expand. The result is 24h31 + 12h1h2 + 48h21h2 + 12h22 + 24h1h

2
2 + 4h3 +

12h1h3 + 24h21h3 + 12h2h3 + 24h1h2h3 proving the pretended inequality. This method worked for
every individual qredl that we tried. However, how to show for all l that qredl |∆l ≥ 0? We thought
the best path forward would be some type of inductive proof; and for this, after a prolonged
search, we conjectured in [K3] the recursion RC below and showed there that the conjectured qredl

are indeed nonnegative on ∆l. Given any polynomial q in various variables written in standard
form as a linear combination of monomials, define T (q) = {terms of polynomial q}. For example
T (qred2 ) = {6,−8a1,−4a2, 6a1a2}. For t ∈ T (q), let deg t := degree of t; for example deg(6a1a2) = 2.
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RC. The qredl can be computed by the following recursion.

qred0 = 1.

qredn+1 =
∑

t∈T (qredn )

(2 + n+ deg t) · t−
∑

t∈T (qredn )

(2 + deg t) · t · an+1 =
∑

t∈T (qredn )

((1− an+1)(2 + deg t) + n)t

The reader is invited to check the recursion RC against the polynomials above. We shall prove in
Section 4 that the reduction process delivers in fact the inductively defined sequence of polynomials.

If q = q(a1, a2, ..., an) is any real polynomial in n variables a1, ..., an which we wish to prove is
nonnegative on ∆n, then as exemplified above, there is a good chance to show this by expressing
it in certain other variables; namely we introduce h1 = 1 − an, h2 = an − an−1, · · · , hn = a2 − a1
from which it follows that aj = 1− h1 − h2 − · · · − hn−j+1. Then any monomial (i.e. any product
of variables) of q is a certain product of some of the factors in

∏n
i=0(1 − h1 − h2 − · · · − hi). By

substituting such products for the monomials and expanding we get q as a polynomial in the hi.
We shall call this polynomial the h-form of q while the original form in which q is written is its
a-form. It is evident that the coefficient of a monomial hj = h(j1,...,jn) := hj11 hj22 · · ·hjnn in the h-form
of q is a linear combination of the coefficients of q in the a-form. Evidently (a1, a2, ..., an) ∈ ∆n

if and only if h1, h2, ..., hn are all nonnegative. It follows that the nonnegativity of the referred
linear combinations of the coefficients of q that occur writing q in h-form is a sufficient condition
for having q|∆n ≥ 0.

Note that the polynomials qredn of the conjecture are all multilinear (or affine). Progress only came
when instead of looking for positivity of our particular polynomials qredn we introduced generic
coefficients cI and looked at how these relate in the h-forms of qredn and qredn+1.

The following lemma and theorem expresses the relation between such coefficients slightly more
generally than we shall need. Let n ∈ Z≥0 and a, b ∈ R, and consider the affine polynomials in
a-forms

q =
∑

I⊆[n]

cI
∏

i∈I

ai and q̃ =
∑

I⊆[n+1]

c̃I
∏

i∈I

ai

with q̃ defined via q by

q̃ =
∑

t∈T (q)

(a+ deg t) · t−
∑

t∈T (q)

(b+ deg t) · t · an+1 =
∑

t∈T (q)

((1− an+1)(b+ deg t) + a− b)t.

Lemma 1. [K3, Lemma 4.1] The coefficients c̃I can be computed from the cI according to the rule

c̃I =

{
(a+ |I|)cI if n+ 1 ̸∈ I

−(b− 1 + |I|)cI\{n+1} if n+ 1 ∈ I.

This was one of the pieces - we will use it later again - which allowed us to prove

Theorem 2. [K3, Theorem 1.1] Provided a − b − n ≥ 0 and b ≥ 0, then the coefficients of the
h-form of q̃ are nonnegative linear combinations of at most two of the coefficients of the h-form of
q. Consequently, if the h-form of q has only nonnegative coefficients, then the h-form of q̃ has only
nonnegative coefficients, and hence q̃|∆n+1

≥ 0.

Example. Assume a = 4, b = 2. If n = 2 then the a-form and the h-form of q are

q = c∅ + c1a1 + c2a2 + c12a1a2

= (c∅ + c1 + c2 + c12) + (−c1 − c2 − 2c12)h1 + c12h
2
1 + (−c1 − c12)h2 + c12h1h2.

(Here and in other examples we often write strings of numbers instead of sets; e.g. c12 instead of
c{1,2}.) The a-form and the h-form of q̃ are

q̃ = 4c∅ + 5c1a1 + 5c2a2 + 6c12a1a2 − 2c∅a3 − 3c1a1a3 − 3c2a2a3 − 4c12a1a2a3
= (2c∅ + 2c1 + 2c12 + 2c2) + (2c∅ + c1 + c2)h1 + (−3c1 − 6c12 − 3c2)h

2
1 + 4c12h

3
1

+(−2c1 − 4c12 − 2c2)h2 + (−3c1 − 4c12 − 3c2)h1h2 + (8c12)h
2
1h2 + (2c12)h

2
2 + (4c12)h1h

2
2

+(−2c1 − 2c12)h3 + (−3c1 − 2c12)h1h3 + 4c12h
2
1h3 + 2c12h2h3 + 4c12h1h2h3.

As an example the coefficient of h(1,1,0) = h1h2 of q̃ in h-form is indeed a nonnegative linear
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combinations of two of the coefficients of the h-form of q:
(coefficient of h1h2 in q̃) = −3c1 − 3c2 − 4c12 = 3·(coefficient of h1 in q) + 2·(coefficient of h21 in q)

To see that the theorem above indeed implies for the above conjectured sequence qredn that qredn |∆n ≥
0, choose b = 2 and make a dependent on n, putting a = 2+n. Then beginning with q = qred0 = 1 =
c∅, the theorem applied with n = 0 yields as q̃ the polynomial qred1 ; now applying it with q = qred1

and n = 1, we get q̃ = qred2 , etc. The claim follows as qred0 ≥ 0.

4. The polynomial sequence qredl , l = 0, 1, 2, ... satisfies the recursion RC

We finally make the last step in the proof of the main result. We establish that the polynomial
sequence qredl−1 obtained by the reduction process applied to each element of the sequence ql, l =
1, 2, ... indeed satisfies the recursion RC defined in the section before.

Again we need some preparation. For two sets I, J of integers let us agree to write I < J if
∀i ∀j (i ∈ I & j ∈ J) ⇒ i < j. It follows in particular that ∅ < J as well as J < ∅. Also
for I ⊆ Z and a ∈ Z we define a + I = {a + i : i ∈ I}. In particular then a + ∅ = ∅. Let now
[a, b] = {a, a+ 1, ..., b} be an interval of integers and let I ⊆ [a, b]. A chain of I in [a, b] is a family
of subsets Ei, Ii of [a, b] such that E0 < I1 < E1 < ... < Ik < Ek, the Is are nonempty sets whose
union is I, and the union of the Es is the complement Ic of I in [a, b]. Clearly the Is and Es
are intervals and some Es may be empty; if nonempty E1, ..., Ek−1 are required then the chain is
unique.

As mentioned at the end of Section 3, the specialization a = 2 + n, b = 2 in Lemma 3.1 gives us
the particular polynomial qredn+1 =

∑

I⊆[n+1] c̃I
∏

i∈I ai from qredn . We obtain

c̃I =

{
(2 + n+ |I|)cI if n+ 1 ̸∈ I

−(1 + |I|)cI\{n+1} if n+ 1 ∈ I.

This gives a recursive possibility to compute coefficient cI of qredn .

Lemma 1. Assume I ⊆ [n] has in [n] the chain E0 < I1 < E1 < · · ·Ek−1 < Ik < Ek. Define the
sets

A =
k+1⋃

l=1

(1 +
l−1∑

ν=1
|Iν |+ El−1) and B = {−2,−3, ...,−(1 + |I|)}.

Then the set A does not depend on the chain selected for I and the coefficient cI of qredn equals the
product of the elements in A ∪B; so

cI = (−1)|I|(1 + |I|)! ·
∏

a∈A
a.

Proof. We first show that the pseudocode below at the left produces the sets A and B.

A = ∅, B = ∅
for j = n step −1 to 1 do
if j ̸∈ I put 1 + j + |I| into A.
if j ∈ I put −(1 + |I|) into B
and redefine I = I \ {j}

end

We have the partition [n] = E0 ⊎ I1 ⊎ · · · ⊎ Ek−1 ⊎ Ik ⊎ Ek. I will
be in the analysis below a dynamic variable. So we write Io to
refer to the original set I. As we enter the code, j will first run
decreasingly and beginning in n, through the elements of Ek and
since j ̸∈ I concomitantly produce the elements 1 + |I| + e for
e ∈ Ek and put them into A. We may write this as 1 + |I| + Ek.
Next j enters Ik while the set I is still unaltered.

j will now assume the values of the elements in Ik and the |Ik| numbers −(1 + |Io|),−(1 + |Io| −
1), ...,−(1 + |Io| − (|Ik| − 1)) = −(2 + |Io| − |Ik|) are put into B. Next j leaves Ik and enters Ek−1.
At that point I has cardinality |Io| − |Ik|. The set 1 + |Io| − |Ik|+ Ek−1 is produced and put into
A while I is not altered. j next enters Ik−1 with the current cardinality of I being |Io| − |Ik| and
hence the |Ik−1| numbers −(1+ |Io|− |Ik|),−(1+ |Io|− |Ik|−1), ...,−(1+ |Io|− |Ik|− (|Ik−1|−1)) =
−(2 + |Io| − |Ik| − |Ik−1|) are put into B. The scheme that leads to the lemma should now be
clear in its essentials. We still have to analyse the final steps of the algorithm. Towards the
end j ranges still through the sets I1 ⊆ I and then E0. As j enters I1 the set I has cardinality

7



|Io| − |Ik| − ... − |I2| and so −(1 + |Io| − |Ik| − ... − |I2|) as well as the negatives of the numbers
produced from the next |I1| − 1 numbers smaller than |Io| − |Ik| − ... − |I2| are put into B. So
the smallest number in (. . .) is 1 + |Io| − |Ik| − ... − |I2| − (|I1| − 1) = 2, because the cardinality
of the original I, i.e. Io is precisely |I1| + · · · + |Ik|. This gives the claim concerning B. Finally
the last time j enters the complement of I is when it enters E0. We see that then the number set
(1 + |Io| − |Ik| − · · · − |I1| + E0) = (1 + E0) is produced and put into A. This last set is the one
referred in the claim of the lemma as pertaining to l = 1 in the union given for A. Summarizing we

see that B is as claimed and A =
k+1⋃

l=1

(1+ |Io|−|Ik|−· · ·−|Il|+El−1). This can evidently be written

as indicated above. The independence of A from the chain chosen follows by noting that empty
sets E contribute with empty sets in the union written for A. Finally, after writing the formula
before the lemma for qredn in place of qredn+1, the remainder of the proof follows by recalling that c∅
in qred0 is 1, seeing that A and B are obviously disjoint, and noting that the numbers occurring in
A ∪ B are precisely the numbers used to recursively produce the cI by successive multiplications.

□

Example. a. We take n = 3 and I = {1, 2}. Then [n] = [3] = E0 ∪ I1 ∪ E1 with E0 = ∅, I1 =

{1, 2}, E1 = {3}. Therefore k = 1 and A =
2⋃

l=1

(1 +
l−1∑

ν=1
|Iν |+El−1) = (1 + 0+ ∅)∪ (1 + |I1|+E1) =

∅ ∪ (1 + 2+ {3}) = {6}, while B = {−2,−3} consequently A∪B = {6,−2,−3} and the product of
these elements is 36 as it should be; see the coefficient of a1a2 of qred3 .
b. Now assume we split {1, 2} and consider the chain E0 < {1} < E1 < {2} < E2 with E0 = E1 = ∅.

In this case k = 2 and the associated A =
3⋃

l=1

(1 +
l−1∑

ν=1
|Iν |+El−1) = (1 + 0 + ∅) ∪ (1 + |I1|+E1) ∪

(1 + |I1|+ |I2|+ E2) = ∅ ∪ ∅ ∪ (3 + {3}) = {6}, as before.

We need still a supplement to the lemma before.

Supplement (to Lemma 1). Assume sets I ⊆ [n] and A as in Lemma 1, but now A given by
its individual elements, I = {i1, i2, ..., i|I|}. Define additionally i0 = 0, i1+|I| = n + 1. Then we
shall have The set 1, n + 1 ∈ −1 + A ⊂ [1, n + |I|] and its complement in [1, n + |I|], that is
(−1 +A)c = [1, n+ |I|] \ (−1 +A) can be written, respectively,

−1 +A =

1+|I|
⋃

l=1

(l − 1+]il−1, il[); and (−1 +A)c =
|I|⋃

ν=1
{iν + ν − 1, iν + ν}.

Proof. The containment claims are clear because 1 ∈ 1 − 1+]i0, i1[ and n + |I| ∈ (1 + |I| −
1+]i|I|, i1+|I|[.

The set I gives rise to the ‘atomic’ chain E0{i1}E1{i2}E2{i3}E3...{i|I|}E|I| from where we see

in earlier notation Iν = {iν} and El =]il, il+1[, l = 1, ..., 1+ |I|; and
∑l−1

ν=1 |{iν}| = l−1. This yields
the formula for −1 + A directly from the lemma. What concerns the complement of −1 + A, we

write −1 + A =
1+|I|⋃

l=1

(l − 1 + El−1). Take two integers l < k such that El, Ek are nonempty but

El+1, ..., Ek−1 are empty. Then l + El and k + Ek are nonempty subsets of −1 + A and we have
a situation {il} < El < {il+1, ..., ik} < Ek, where {il+1, ..., ik} is actually an interval consisting of
k − l consecutive numbers. It can be written {il+1, il+1 + 1, il+1 + 2, ..., il+1 + k − l − 1}. So for
l + 1 ≤ ν ≤ k we have iν = il+1 + ν − l − 1. The interval [max(l + El) + 1,min(k + Ek) − 1] =
[l+(il+1−1)+1, k+(ik+1)−1] = [il+1+ l, k+ ik] comprises the gap between l+El and k+Ek and
is subset of (−1 + A)c. Using the relation between the iν and il+1 we see this gap can be written
{il+1 + l, il+1 + l+ 1, il+2 + l+ 1, il+2 + l+ 2, , ..., ik + k− 1, ik + k}. Using this type of analysis for
any two successive nonempty sets El, Ek, the claim follows. □

Example. View I = {6, 10, 11} as a subset of [1, 13]. So |I| = 3 and the following is an atomic
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chain of I.

{1, 2, 3, 4, 5}
︸ ︷︷ ︸

E0

< {6}
︸︷︷︸

I1

< {7, 8, 9}
︸ ︷︷ ︸

E1

< {10}
︸︷︷︸

I2

< {}
︸︷︷︸

E2

< {11}
︸︷︷︸

I3

< {12, 13}
︸ ︷︷ ︸

E3

.

We have −1+A =
⋃4

l=1(l− 1+El−1) = (0+E0)∪ (1 +E1)∪ (2 +E2)∪ (3 +E3) = {1, 2, 3, 4, 5} ∪
{8, 9, 10} ∪ ∅ ∪ {15, 16} = {1, 2, 3, 4, 5, 8, 9, 10, 15, 16} ⊆ [1, 13 + |I|] = [1, 16]. Hence (−1 + A)c =
{6, 7, 11, 12, 13, 14} = {6, 6 + 1, 10 + 1, 10 + 2, 11 + 2, 11 + 3}. □

From the reduction arrow ql → −a0q
red
l−1 mentioned at the beginning of Section 3 we

get that our Theorem 0.1 will be established provided we can prove that for any positive integers
l and k ≤ l, there holds

∑

l1+l2+···+lk=l

sl1sl1 · · · slk
to i1,∂i1 ,to i2, ∂i2 ,··· ,to il, ∂il →

{
unsigned homogeneous
component of degree k of −a0q

red
l−1.

This is a direct consequence of part a of the Theorem in Section 2 and the linearity of the reduction
operations occurring in ‘

...
→ ’ . By qredl−1 is meant the respective polynomial obtained by the

recursion of Section 3.

We next reduce our conjecture to the proof of a combinatorial identity.

By Theorem 2.1 we know, given 1 = ν1 < ν2 < ... < νk ≤ d, that

(Coefficient of Sp1:iν1Sp1:iν2 · · ·Sp1:iνk of reduction R of
∑

l1+···+lk=l

sl1sl2 · · · slk)

=
∑

l1+···+lk=l

l1 · · · lk
∑

σ∈Sk

k∏

i=1
(lσ1+· · ·+lσi−νi)

lσi−1.

At the other hand by the conjecture for the qredl in Section 3 this coefficient is the coefficient
of a0aν2−1aν3−1 · · · aνk−1 in a0q

red
l−1 and therefore the coefficient of aν2−1aν3−1 · · · aνk−1 of qredl−1 =

qredl−1(a1, ..., al−1). (Recall, see Section 3, that we introduced the letters a0 = Sp1:i1 , a1 = Sp1:i2 , ..., al−1 =
Sp1:il .) To get the mentioned coefficient explicitly we consider the atomic chain given by E0 <
{ν2−1} < E1 < {ν3−1} < E2 < · · · < {νk−1} < Ek−1 = [νk, l−1] so that E0 =]ν1−1, ν2−1[=
[1, ν2 − 1[, El =]νl+1 − 1, νl+2 − 1[, for l = 1, 2, ..., k − 2, Ek−1 =]νk − 1, l − 1]. Clearly |I| = k − 1.
Define νk+1 := l. By Lemma 1 the coefficient of aν2−1aν3−1 · · · aνk−1 in qredl−1 as conjectured in the
recursion equals

(∗0) (1 + |I|)!×the product of the elements of the set
1+|I|⋃

l=1

(1 + (l − 1)+]νl − 1, νl+1 − 1[)

= (1 + |I|)!×the product of the elements of the set 1 +
k⋃

l=1

((l − 1)+]νl − 1, νl+1 − 1[).

The union
⋃k

l=1(...) here is subset of [1, l − 1 + |I|], where it has complement {ν2 − 1, ν2 − 1 +

1, ..., νk − 1 + (k − 1)− 1, νk − 1 + k − 1}. The set 1 +
⋃k

l=1((l − 1)+]νl − 1, νl+1 − 1[) thus has in
[2, l + |I|] the complement {ν2, ν2 + 1, ..., νk − 1 + (k − 1), νk − 1 + k}. It follows that the product
(∗0) has the value of the right hand side of the following theorem which we will prove briefly and
which in view of the the above discussion establishes in particular our main result, Theorem 0.1.

Theorem 2.Let l ≥ 2 be an integer. Then for any k integers 1 = ν1 < ν2 < ... < νk ≤ l, there
holds the identity

∑

l1+···+lk=l

l1 · · · lk
∑

σ∈Sk

k∏

i=1

(lσ1+· · ·+lσi−νi)
lσi−1 =

k!(l + k − 1)!

ν2(ν2 + 1)(ν3 + 1)(ν3 + 2) · · · (νk + k − 2)(νk + k − 1)
.

Proof. Given a function f defined on Z
k
≥1, for any σ ∈ Sk the multiset of k-uples {f(lσ1, . . . , lσk) :

l1+ · · ·+ lk = l} is the same simply because the multiset of underlying k-uples (lσ1, . . . , lσk) remains
the same. Now we can write the expression on the left hand side of the theorem as

∑

σ∈Sk

∑

l1+···+lk=l

f(lσ1, . . . , lσk) where f(l1, ..., lk) = l1 · · · lk
k∏

i=1
(l1 + · · ·+ li − νi)

li−1.
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As the inner sum remains invariant under each σ and since |Sk| = k! the theorem will follow from
the identity

∗2 :
∑

l1+···+lk=l

l1 · · · lk

k∏

i=1

(l1 + · · ·+ li − νi)
li−1 =

(l + k − 1)!

ν2(ν2 + 1)(ν3 + 1)(ν3 + 2) · · · (νk + k − 2)(νk + k − 1)
.

To prove this we first show two claims:

Claim 1. For any nonnegative integer ν there holds the following polynomial identity in R[X]

∗ :
ν+1∑

i=0

iνi−1(X − i)ν+1−i = (X + 1)ν .

⌈> We prove the claim by induction on ν. In the case ν = 0, the left hand side collapses to the
expression 00(X − 1)0 which is 1 by conventions. This is also the value of the empty product at
the right. Recall that the forward difference operator ∆ defined as ∆f(X) = f(X +1)− f(X) has
the property that ∆Xm = mXm−1 and is linear. Let now ν ≥ 1 and assume that above equation
holds for ν − 1 in place of ν. Applying ∆ at the left hand side we get

∆(lhs(∗)) =
ν+1∑

i=0
iνi−1∆((X − i)ν+1−i) =

ν+1∑

i=0
iνi−1(ν + 1− i)(X − i)ν−i

= ν
ν+1∑

i=0
i(ν − 1)i−1 (X − i)ν−i =

ν∑

i=0
i(ν − 1)i−1 (X − i)ν−i

= ν(X + 1)ν−1 = ∆(X + 1)ν = ∆(rhs(∗)).

The fact ∆(lhs(∗) − rhs(∗)) = 0 implies that lhs − rhs is a constant. Now, except in the case
ν +1 = i, in the polynomial (X − i)ν+1−i occurs the factor (X − i)− (ν +1− i) + 1 = X − ν. Thus
lhs(∗)|X=ν = (ν + 1)νν = (ν + 1)! = (ν + 1)ν = rhs(∗)|X=ν . So the mentioned constant is 0 and we
have proved the claimed equality. ⌋<

Claim 2. For integers 1 ≤ ν ≤ l there holds

∗1 :
∑

l1+l2=l

l2l1!(l1 + l2 − ν)l2−1 =
l∑

l2=1

l2(l − ν)l2−1(l − l2)! =
(l+1)!
ν(ν+1)

⌈>. We have

ν · (ν + 1) · lhs(∗1) = ν · (ν + 1)
l−1∑

l1=1

l1!(l − l1)(l − ν)l−l1−1 1
= ν · (ν + 1)

l−1∑

l1=ν−1

l1!(l − l1)(l − ν)l−l1−1.

To show that the right hand side equals (l + 1)! for any ν with 1 ≤ ν ≤ l is equivalent to showing
that after replacing ν by l− ν that right hand side is equal to (l+1)! provided 0 ≤ ν ≤ l− 1. Now
for the replacement we have

(l − ν)(l − ν + 1)
l−1∑

l1=l−ν−1

l1!(l − l1) ν
l−l1−1 =

= (l − ν)(l − ν + 1)(l − ν − 1)!
l−1∑

l1=l−ν−1

(l − l1) l
l1−l+ν+1
1 νl−l1−1

2
= (l + 1− ν)!

ν+1∑

i=0

i(l − i)ν+1−i νi−1 3
= (l + 1)!

In ‘
2
=’ we introduced the summation index i = l − l1, while ‘

3
=’ follows from the lemma by noting

(l + 1)!/(l + 1− ν)! = (l + 1)ν and replacing X by l. ⌋<

Proof of the identity (∗2).
Case k = 1 : This case reduces to the simple statement l(l − 1)l−1 = l! which is obviously true.
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Step k − 1 → k assuming k ≥ 2. By the induction hypothesis we have

lhs(∗2) =
l∑

lk=1

lk(l − νk)
lk−1

∑

l1+···+lk−1=l−lk

l1l2 · · · lk−1

k−1∏

i=1

(
i∑

h=1

lh − νi)
li−1)

=

l∑

lk=1

lk(l − νk)
lk−1 ·

(l − lk + k − 2)!

ν2(ν2 + 1) · · · (νk−1 + k − 3)(νk−1 + k − 2)

This is indeed equal to rhs(∗2) because
l∑

lk=1

lk(l − νk)
lk−1(l − lk + k − 2)! =

(l + k − 1)!

(νk + k − 2)(νk + k − 1)
,

as follows from Claim 2 above by replacing l2 by lk, l by l + k − 2, and ν by νk + k − 2. We find
precisely the claim we wish to prove; except that the upper limit for lk now reads l + k − 2. But
note that if lk > l, then lk − 1 > l− ν and then (l− ν)lk−1 = 0. It follows we are allowed to restrict
the upper limit for lk to l without changing the end result. □

This now together with DMUC preprints [K1-3] finishes our work on strengthening Holland’s in-
equalities for the harmonic mean.
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