
Finite elements with neural networks for the

inverse elastography problem

Rafael Henriques1* and Śılvia Barbeiro1

1University of Coimbra, Department of Mathematics, CMUC, 3000-143,
Coimbra, Portugal.

*Corresponding author(s). E-mail(s): rafael.henriques@mat.uc.pt,
https://orcid.org/0000-0003-4173-8469;

Contributing authors: silvia@mat.uc.pt,
https://orcid.org/0000-0002-2651-5083;

Abstract

In this work we investigate a mathematical model to reconstruct the mechanical

properties of an heterogeneous elastic medium for the optical coherence elas-

tography imaging modality. To this end, we propose machine learning tools by

exploring neural networks to solve the inverse problem of elastography. Our algo-

rithm updates the parameters combining the backpropagation technique with

the ADAM optimizer to minimize a cost function which is defined using a fully

discretized scheme of the direct problem. In our framework, we analyze the theo-

retical relative error between the exact solution and the numerical approximation

given by the respective algorithm for the case of noise free data and noisy data.

We report several computational results using fabricated data with and without

noise.

Keywords: Finite element method, inverse problem, linear elasticity, mechanical
properties reconstruction, neural networks, optical coherence elastography

1

D
M

U
C

 P
re

pr
in

t 2
4-

43
, 2

9 
O

ct
 2

02
4

[v1] Tue, 29 Oct 2024

https://www.mat.uc.pt/preprints/eng_2024.html


1 Introduction

Optical coherence elastography (OCE) is a non-invasive emerging imaging technique
that uses low-coherence interferometry to measure the mechanical properties of tis-
sues, such as their elasticity and viscosity. It is based in optical coherence tomography
(OCT) imaging modality to form pictures of biological tissue and map its biome-
chanical properties. OCE combines mechanical excitation with OCT for measuring
the corresponding elastic displacement [6, 15, 19, 29]. An acoustic excitation system
can be used for inducing the mechanical load to the medium where an ultrasound
source is coupled with an OCT device. OCE has potential applications in many
areas of medicine, including cancer diagnosis and treatment monitoring, by providing
important information about the health of the tissue [27, 28].

Classical formulations aim to reconstruct the mechanical properties of the medium
by solving the inverse problem of elastography. These approaches typically involve
minimizing the difference between the measured and simulated displacements (e.g.

[3, 7, 18, 26]), which besides being computational expensive, are not robust when the
measurements contain noise. To overcome this limitations, we use neural networks
based in the information of the direct problem. The neural network is designed to
characterize the spatial mechanical properties of the medium and the idea is to min-
imize the objective function using the ADAM algorithm such that the given data
solves the direct problem [9, 13, 21, 24]. The advantage is that neural networks, by
training on large data sets, can learn to accurately predict the mechanical properties
in a more efficient way, even in cases where the available data do not match exactly
the physics of the system (e.g. the case of noisy data) [30].

Instead to what is usually found in literature [13, 21], our aim was not the creation of
a black-box algorithm but to describe the mathematical foundations of the proposed
method. In fact we present all the steps in detail including the deduction of the deriva-
tives of the objective function with respect to the parameters we want to minimize.
Another step forward not included in the mentioned papers concern the generaliza-
tion of the parameters to space dependent functions which is also our objective in this
work.

In both, the direct and the inverse problems, we consider the medium as a material
with linear isotropic mechanical behavior, purely elastic.

We will explore the displacement field defined on piecewise linear function spaces, a
commonly chosen approach for basis functions in the context of the finite element
method (FEM). In situations involving nearly incompressible materials, i.e. with Pois-
son’s ratio ν close to 0.5, the classical FEM scheme’s performance may degrade due
to locking as ν → 0.5 [1]. Here we are assuming that we are dealing with media for
which the range of values of the Poisson’s ratio leads to locking-free FEM solutions.
A worthy application in this context is the aortic elastography [10]. For materials
where locking is a challenge, various numerical methods have been proposed in the
literature, including some variations of mixed finite element methods [5].

2



The article is organized as follows. In Section 2 we describe the mathematical model
for the direct problem. We consider heterogeneous media and the model is based on
the time-dependent linear elastic equation. We compute the corresponding numerical
solution using a fully explicit in time finite element method in a three-dimensional
space domain. In Section 3 we investigate the inverse problem through which we intend
to infer the mechanical properties of the medium knowing the mechanical deformations
by using neural networks. Here, we start by describing the optimization problem that
we need to solve. Then we present the structure of the neural network and we describe
the algorithm to solve the resulting optimization program. We also study the relative
error between the exact solution and the approximation given by the neural network.
Finally, in Section 4, we present several computational results for the inverse problem
using fabricated data. We include experiments with noise free data and noisy data.

2 Elasticity model

In this chapter we describe the direct problem. For the formulation we use the time-
dependent linear elasticity equation since it provides the connection between the
mechanical properties and displacements induced by a mechanical excitation.

We start by introducing some notation needed. Let p be a scalar function, v =
(vi)1 ≤i ≤3 a vector function and A = (aij)1 ≤i,j ≤3 a matrix of functions of three vari-

ables, all defined in a bounded domain Ω ⊆ R
3. We make use of the following Lebesgue

spaces, for scalar, vector and matrix of functions given respectively by

L2 (Ω) =
{

p : ♣♣p♣♣L2(Ω) < ∞
}

, L2 (Ω) =
{

v : ♣♣v♣♣L2(Ω) < ∞
}

and
L2 (Ω) =

{
A : ♣♣A♣♣L2(Ω) < ∞

}
,

where the corresponding norms are given by

♣♣p♣♣L2(Ω) = (p, p)
1/2

L
2(Ω)

, ∥v∥L
2(Ω) = (v, v)

1/2

L
2(Ω)

and ∥A∥L
2(Ω) = (A : A)

1/2

L
2(Ω)

.

The spaces L2 (Ω) are endowed with the inner products

(p, q)L
2(Ω) =

∫

Ω

p q dx, (u , v)L
2(Ω) =

∫

Ω

u · v dx =
3∑

i=1

∫

Ω

uivi dx

and

(A : B)L
2(Ω) =

∫

Ω

A : B dx =
∑

1≤i,j≤3

∫

Ω

aijbij dx,

which induce the norms defined before. The space

H1 (Ω) =
{

u : u ∈ L2 (Ω) ∧ ∇u ∈ L2 (Ω)
}

3



is equipped with the following inner product

(u, v)H
1(Ω) = (∇u : ∇v)L

2(Ω) + (u, v)L
2(Ω).

2.1 Time-dependent linear elasticity equation

Let us consider a heterogeneous isotropic elastic material which occupies the region
Ω ⊆ R

3, being Ω a polyhedron with boundary ∂Ω. Let u (x, t) be the displacement
field with x = (x1, x2, x3) ∈ Ω and t ∈ R

+
0 . So the time-dependent elastic deformation

u (x, t) when the medium properties are space dependent is given by

ρ
∂2u

∂t2
(x, t) = ∇ · σ(u (x, t) ; x) + f(x, t), (x, t) ∈ Ω × R

+ (1)

where
σ(u (x, t) ; x) = 2µ(x)ε(u (x, t)) + λ(x)tr(ε(u (x, t)))I3,

is the stress tensor defined with space dependent Lamé functions [25], ρ is the material
density and f(x, t) is the force that acts on the volume of the body Ω [8]. Here ε is
the strain tensor

ε(u) =
1

2
(∇u + (∇u)⊺) ,

tr(ε(u)) is the trace of ε(u) and I is the 3×3 identity matrix. In this work, we consider
that functions µ(x) and λ(x) are given, respectively, by

µ(x) =
E(x)

2 (1 + υ(x))
, λ(x) =

υ(x)E(x)

(1 + υ(x)) (1 − 2υ(x))
, (2)

being E(x) and υ(x) the functions representing the Young’s Modulus and the Poisson’s
ratio respectively. We also assume that µ(x) ∈ [µ1, µ2] for all x ∈ Ω, where 0 < µ1 < µ2

and λ(x) ∈ (0, ∞) for all x ∈ Ω.

For the boundary of the set Ω, let us consider the partition ∂Ω = Γ1 ∪ Γ2 where
Γ1 ∩ Γ2 = ∅ and meas(Γ2) > 0. We impose the traction boundary condition on Γ1,

σ(u(x, t))n = g (x, t) on Γ1 × R
+, (3)

being n the unit outer normal and g a vector function which represents the force
applied on Γ1. We also impose the null displacement boundary condition on Γ2, that
is,

u(x, t) = 0 in Γ2 × R
+. (4)

The model (1), (3), (4) is completed with the initial condition

u(x, 0) = 0 in Ω. (5)

4



2.2 Numerical solution

Now we will discuss the numerical approximation of the above problem. Let us consider
a partition of Ω into M tetrahedra Kj , j ∈ ¶1, ..., M♢ such that

Ω =
M⋃

j=1

Kj . (6)

The resulting partition is denoted by Ωh where h represents its diameter. For any pair
of tetrahedra in the partition either they don’t intersect or they have in common only
vertices or edges.

For V =
{

v ∈ H1 (Ω) : v♣Γ2 = 0
}

, let us consider the finite dimensional subspace Vh ⊂
V of continuous piecewise linear functions on each tetrahedron. Assuming that N is
the total number of vertices associated with the tetrahedra in Ωh then dim Vh = 3N .
The semi-discrete finite element formulation of the problem (1), (3), (4) and (5) consist
of finding uh(t) ∈ Vh such that





ρ
d2

dt2
(uh(t), vh)L

2(Ω) + a(uh(t), vh) = l(vh), ∀vh ∈ Vh, t ∈ R
+,

uh(0) = 0 in Ω,
(7)

where

a(uh(t), vh) =

∫

Ω

2µ(x)ε(uh(t)) : ε(vh) + λ(x)(∇ · uh(t))(∇ · vh) dx,

and
l(v) = (g(t), v)L

2(Γ1) + (f(t), v)L
2(Ω). (8)

The inner products in (8) represent the following integrals

(g(t), v)L
2(Γ1) =

∫

Γ1

g(t) · v ds

and

(f(t), v)L
2(Ω) =

∫

Ω

f(t) · v dx,

respectively. Here we are assuming that g ∈ L2 (Γ1) and f ∈ H−1 (Ω). For results
about uniqueness and existence of this discrete problem see for example [22].

Let us associate to each vertex xs of the partition Ωh in tetrahedra three base functions
ϕsr, s ∈ ¶1, ..., N♢, r ∈ ¶1, 2, 3♢. These functions are continuous in Ω and linear in
each tetrahedron, such that ϕsr(xs) = 1, ϕsr(xk) = 0 (k ̸= s) and the support of ϕsr

consists in all tetrahedra that share xs as a vertex. We have

Vh = span ¶ϕ11, ..., ϕN1, ϕ12, ..., ϕN2, ϕ13, ..., ϕN3♢ .

5



In this way, each component of the approximate solution uh = (uh1, uh2, uh3) ∈ Vh

can be written as a linear combination of the basis functions ϕsr with

uhr(x, y, z, t) =
N∑

s=1

Usr(t)ϕsr(x, y, z), r ∈ ¶1, 2, 3♢ .

For the discretization in time, we denote by un
h the value of the variable uh at time

tn = n∆t, n = 0, 1, 2, · · · with ∆t > 0. So each component of the approximate solution
un

h = (un
h1, un

h2, un
h3) will be written as

un
hr(x, y, z, tn) =

N∑

s=1

Un
srϕsr (x, y, z) , r ∈ ¶1, 2, 3♢ ,

being Un
sr, r ∈ ¶1, 2, 3♢, s ∈ ¶1, ..., N♢, the coefficients that we want to compute. Using

an explicit scheme in time for the semi-discrete model (7), we obtain the following
fully discretized scheme on space and time: find un

h ∈ Vh, n = 0, 1, 2, · · · , such that





ρ

∆t2
(un+1

h − 2un
h + un−1

h , vh)L
2(Ω) + a(un

h, vh) = (gn, vh)L
2(Γ1)

+(fn, vh)L
2(Ω),

u0
h = 0 in Ω,

(9)

for all vh ∈ Vh. We can write the problem (9) with respect boundary conditions, in
matrix form, as follows: find Un [2]

Un = [Un
11, ..., Un

N1, Un
12, ..., Un

N2, Un
13, ..., Un

N3]
⊺

such that

ρ

∆t2
B(Un+1 − 2Un + Un−1) + Aµ,λUn = Gn + F n, n = 0, 1, 2, · · · ,

U−1 = U0 = 0, (10)

where B is the 3N × 3N mass matrix and Aµ,λ is the well-known stiffness matrix of
size 3N × 3N [22]. Approximating µ(x) and λ(x) by the corresponding values in the
mid point xp = (x1p, x2p, x3p)

⊺
, p ∈ ¶1, ..., M♢ of each tetrahedron, that is, µ(xp) and

λ(xp) respectively, the matrix Aµ,λ in (10) can be written as (see more details in [2])

Aµ,λ =
M∑

p=1

AKp
µ µ(xp) + A

Kp

λ λ(xp). (11)

Let AK
µ =

[
AK1

µ , AK2
µ , · · · , AKM

µ

]
and AK

λ =
[
AK1

λ , AK2

λ , · · · , AKM

λ

]
be matrices with

size 3N × (3N × M) where A
Kp
µ and A

Kp

λ are the 3N × 3N matrices in (11). Let

6



Un a matrix with size (3N × M) × M , where in the first column Un occupies the
first 3N entries, in the second column Un occupies the entries from 3N + 1 until
3N × 2, and so on. In addition let µ and λ be M × 1 vectors with entries µ(xp) and
λ(xp), p ∈ ¶1, · · · , M♢ respectively. In this way, we can write

Aµ,λUn = AK
µ Unµ + AK

λ Unλ

= An
[
µ λ

]⊺

where
An =

[
AK

µ Un AK
λ Un

]
(12)

is a matrix with size 3N × 2M .

3 Inverse Problem

In this section, we formulate the inverse problem as an optimization problem to deter-
mine neural networks. The objective function uses the information of the scheme (10)
and the goal is to infer the approximations µθ(x), λθ(x) of the exact solution µ(x),
λ(x) so that the objective function is minimized. The subscript θ refers to the set of all
parameters of the neural network involved in our formulation which will be detailed
in what follows.

This section is divided in three subsections where we start by presenting the opti-
mization problem, in Section 3.1. Then, in Section 3.2, we derive the derivatives
of the objective function with respect to the parameters of the neural network and
we describe the algorithm to update these parameters. Several results that establish
bounds on the relative error for both noise free and noisy data are presented in Section
3.3.

3.1 Description of problem

We will consider the approximations µθ(x), λθ(x) being neural networks with param-
eters θ, though our formulation also holds for a more general approximation (also e.g.
chebyshev polynomials [17] or radial basis functions [23]).

For the theoretical result and real application we make use of diversified data. There-
fore, we will consider that we have access to Q(T +2) data sets either from simulation
or experimental data corresponding to deformations, body force densities and applied
traction of the form

un
ih, fn

i , gn
i , i ∈ ¶1, ..., Q♢ , n ∈ ¶0, ..., T + 1♢

where
un

ih = (un
ih1, un

ih2, un
ih3) , i ∈ ¶1, ..., Q♢ , n ∈ ¶0, ..., T + 1♢ .

7



The index i and n enumerate the data in space and time respectively. For each i =
1, · · · , Q and n = 0, · · · , T + 1 we write each function un

ih1, un
ih2, un

ih3 in the form

un
ihr(x, y, z, tn) =

N∑

s=1

Un
isrϕsr (x, y, z) , r ∈ ¶1, 2, 3♢ . (13)

Let µθ and λθ be M × 1 vectors with entries µθ(xp) and λθ(xp), p ∈ ¶1, ..., M♢
respectively,

An
i =

[
AK

µ Un
i AK

λ Un
i

]
(14)

a matrix and T n
i the vector given by

T n
i = Gn

i + F n
i −

ρ

∆t2
B(Un+1

i − 2Un
i + Un−1

i ). (15)

Then the inverse problem can be described by the following minimization problem:

min
θ

T∑

n=1

Q∑

i=1

∥∥An
i

[
µθ λθ

]⊺
− T n

i

∥∥2

L2
h

(Ω)
. (16)

Here we use the discrete L2
h-norm, defined for any 3N × 1 vector y, as

∥y∥2
L2

h
(Ω) =

∑

K∈Ωh

∥y∥2
L2

h
(K),

with

∥y∥2
L2

h
(K) =

♣K♣

4

4∑

i=1

2∑

j=0

y2
t(rK

i
)+jN ,

where ♣K♣ denotes the volume of the tetrahedron K with vertices rK
i , i ∈ ¶1, . . . , 4♢.

The function t is defined by

t : R3 → ¶1, ..., N♢
rK

i 7→ t(rK
i ),

where t(rK
i ) is the index that corresponds to vertex of rK

i in the global numbering.

In what follows, we denote by θ the set of all parameters of the neural networks
that will be constructed and this set incorporates the weights W and bias b, so
θ = ¶W, b♢ [12]. We denote the objective function by Lθ (W,b), that is, Lθ (W,b) =

T∑

n=1

Q∑

i=1

∥∥An
i

[
µθ λθ

]⊺
− T n

i

∥∥2

L2
h

(Ω)
and along the text we will use the notation Lθ or

Lθ (W,b) depending on which one is more convenient.

8



Let I be a 1 × M vector with all entries equal to one, diag(
♣K♣

4
) the diagonal matrix

of size M × M with entries
♣Kj ♣

4
, j ∈ ¶1, · · · , M♢ for some numbering of the tetra-

hedra, diag(An
i

[
µθ λθ

]⊺
− T n

i ) the diagonal matrix of size 3N × 3N with entries

(An
i

[
µθ λθ

]⊺
−T n

i )t(rK
i

)+jN and Λ = [Λ, Λ, Λ] a M ×3N matrix where Λ is a M ×N

matrix with entries δji = 1 if and only if the vertex rK
i ∈ Kj and δji = 0 otherwise.

In this way, the objective function in (16) is given by

Lθ (W,b) =
T∑

n=1

Q∑

i=1

I diag(
♣K♣

4
) Λ diag(An

i

[
µθ λθ

]⊺
− T n

i ) ×

×
(
An

i

[
µθ λθ

]⊺
− T n

i

)
. (17)

Our main goal is determine neural networks with parameters θ such that the objective
function Lθ is minimized. In Section 3.2 we discuss an iterative optimization process
and how to update these parameters to obtain the minimizer of (17).

By the universal approximation theorem [14], µ and λ can be approximated with
arbitrary accuracy, by some neural networks µθ and λθ respectively. In other words,
this theorem is saying that for any tol > 0 there exist a neural network µθ and a
neural network λθ such that

∥∥[µθ − µ λθ − λ
]⊺∥∥

∞ < tol.

3.2 Optimization method

In this section we compute the derivatives of the objective function and present the
algorithm to solve the optimization problem (16).

To compute the values µθ(xp) and λθ(xp) in (17) we use feed-forward networks
through the following transformation:

a0
p = c0

p = xp,

al
p = σl


Wlal−1

p + bl
)

, l ∈ ¶1, ..., L1 − 1♢ ,

cl
p = σl


Wlcl−1

p + bl
)

, l ∈ ¶1, ..., L2 − 1♢ ,

µθ(xp) = σL1


WL1aL1−1

p + bL1

)
,

λθ(xp) = σL2


WL2cL2−1

p + bL2

)
, (18)

where L1 and L2 are the number of layers of the neural network µθ and λθ respectively.
In our problem, the inputs are the points xp and the targets are given by the values
T n

i .

In what follows we denote by L the number of layers which can be L1 or L2 depending
if we are considering the neural network for µθ or λθ respectively. In (18) al

p =

9




al

1p, al
2p, · · · , al

m(l)p

)⊺
, bl =

(
bl

1, bl
2, · · · , bl

m(l)

)⊺
and cl

p =


cl
1p, cl

2p, · · · , cl
m(l)p

)⊺
are

vectors of dimension m(l)×1 for l ∈ ¶1, ..., L − 1♢. Wl =
(
wl

ij

)
is a matrix of dimension

m(l) × m(l−1), l ∈ ¶1, ..., L♢ where m(l), l ∈ ¶2, ..., L − 1♢ can be the size we want.
However, the values m(0), m(L) are three and one, respectively, since xp is a vector
of dimension three and the network output value is a real number. Here a0

p and c0
p

are vectors of dimension 3 × 1 and bL, µθ(xp) and λθ(xp) are real numbers. In this
work we will consider the first L−1 hidden layers with non-linear activation functions
σl, l ∈ ¶1, ..., L − 1♢ while for the output layer we will impose the linear activation
function σL(x) = x.

For each xp, the feed-forward neural network in (18) propagates this information to
the hidden units at each layer and produces the outputs µθ(xp) and λθ(xp) as it is
shown in Figure 1. Therein we display a scheme for the forward propagation where
information flows forward through the network. After this steps, we can evaluate the
value of the objective function in (17). Therefore, our goal is to find a procedure for
evaluating the derivatives of the error function with respect to the weights and biases
in the network. To this end, we will use the so called backpropagation technique
since it allows to propagate the error backwards through the network [11]. A valuable
contribution of this technique is in providing a computationally efficient method for
evaluating such derivatives [4].

To present the derivatives of the loss function we will simplify the notation in (18).
Defining zl

p = Wlal−1
p + bl, l ∈ ¶1, ..., L♢, zl

p = (zl
ip), we can write al

p in (18) in the
form

al
p = σl

(
zl

p

)
, l ∈ ¶1, ..., L − 1♢ (19)

aL
p = zl

p. (20)

Considering P n
θi = An

i

[
µθ λθ

]⊺
observe that the objective function in (16) can be

written by Lθ (W,b) =
T∑

n=1

Q∑

i=1

L̂θ(W, b), where L̂θ(W, b) is the sum

L̂θ(W, b) =
M∑

m=1

♣Km♣

4

4∑

l=1

2∑

j=0

(P n
θi − T n

i )2
t(rKm

l
)+jN

.

We determine the derivatives for µθ since similar expressions can be obtained for λθ.
To derive the derivatives we will start to analyze the terms in L̂θ(W, b) following the
steps in [12]. In this way, we need to compute the terms:

∂L̂θ

∂wl
ij

and
∂L̂θ

∂bl
i

.

10



Fig. 1: Scheme of the L1-layer and L2-layer networks, with inputs xp, to obtain the
values µθ and λθ respectively.

Using chain rule for partial derivatives we obtain

∂L̂θ

∂wl
ij

=
M∑

p=1

∂L̂θ

∂zl
ip

×
∂zl

ip

∂wl
ij

(21)

and
∂L̂θ

∂bl
i

=
M∑

p=1

∂L̂θ

∂zl
ip

×
∂zl

ip

∂bl
i

. (22)

11



Since zl
ip is a linear function of the weights wl

ij and bias bl
i in that layer, we know that

zl
ip =

m(l−1)∑

j=1

wl
ijal−1

jp + bl
i, p ∈ ¶1, · · · , M♢ ,

and then
∂zl

ip

∂wl
ij

= al−1
jp ,

∂zl
ip

∂bl
i

= 1.

If we define sl
ip ≡

∂L̂θ

∂zl
ip

being the sensitivity of L̂θ to changes in the i-th element of

zl
p, then the derivatives in (21) and (22) take the following form:

∂L̂θ

∂wl
ij

=
M∑

p=1

sl
ipal−1

jp and
∂L̂θ

∂bl
i

=
M∑

p=1

sl
ip.

In matrix form this becomes:

∂L̂θ

∂Wl
=

M∑

p=1

sl
p

(
al−1

p

)⊺
and

∂L̂θ

∂bl
=

M∑

p=1

sl
p,

where

sl
p ≡

∂L̂θ

∂zl
p

=




∂L̂θ

∂zl
1p

∂L̂θ

∂zl
2p

...
∂L̂θ

∂zl

m(l)p




.

Now we will derive a recurrence relationship between sl
p at layer l and the sensitivity

sl+1
p at layer l + 1. Using chain rule in matrix form we have

sl
p =


∂zl+1

p

∂zl
p

T
∂L̂θ

∂zl+1
p

=


∂zl+1

p

∂zl
p

T

sl+1
p . (23)

12



The first term in (23) is the following Jacobian matrix:

∂zl+1
p

∂zl
p

=




∂zl+1
1p

∂zl
1p

∂zl+1
1p

∂zl
2p

· · ·
∂zl+1

1p

∂zl

m(l)p

∂zl+1
2p

∂zl
1p

∂zl+1
2p

∂zl
2p

· · ·
∂zl+1

2p

∂zl

m(l)p

...
...

...
∂zl+1

m(l+1)p

∂zl
1p

∂zl+1

m(l+1)p

∂zl
2p

· · ·
∂zl+1

m(l+1)p

∂zl

m(l)p




.

Note that the i, j element of the matrix
∂zl+1

p

∂zl
p

is

∂zl+1
ip

∂zl
jp

=
∂
∑m(l)

q=1 wl+1
iq al

qp + bl+1
i

)

∂zl
jp

= wl+1
ij

al
jp

∂zl
jp

= wl+1
ij

∂σl
(
zl

jp

)

∂zl
jp

.

In this way, the Jacobian matrix can be written as

∂zl+1
p

∂zl
p

= Wl+1diag


∂σl

(
zl

p

)

∂zl
p


,

being diag

(
∂σl(z

l
p)

∂zl
p

)
a diagonal matrix of size m(l) × m(l) with diagonal elements

∂σl(zl
jp)

∂zl
jp

, j ∈
{

1, · · · , m(l)
}

. Therefore (23) takes the form

sl
p = diag


∂σl

(
zl

p

)

∂zl
p


(
Wl+1

)⊺
sl+1

p , for l ∈ ¶L − 1, · · · , 1♢ . (24)

The next step is to compute the sensitivity in last layer, that is, sL
p . First we will

determined the term sL
p with respect to µθ. We have

sL
p =

∂L̂θ

∂ (P n
θi)t(rKm

l
)+jN

∂ (P n
θi)t(rKm

l
)+jN

∂aL
p

∂aL
p

∂zL
p

. (25)

Note that from (20)
∂aL

p

∂zL
p

= 1. Let
(
µn

isp

)
1 ≤s ≤3N,1 ≤p ≤M

and
(
λn

isp

)
1 ≤s ≤3N,1 ≤p ≤M

be the entries of the matrices AK
µ Un

i and AK
λ Un

i respectively. We write

(P n
θi)t(rKm

l
)+jN =

M∑

p=1

µn
i(t(rKm

l
)+jN)p

aL
p + λn

i(t(rKm
l

)+jN)p
cL

p ,

13



and

∂ (P n
θi)t(rKm

l
)+jN

∂aL
p

= µn
i(t(rKm

l
)+jN)p

.

Let ep be a unitary vector with dimension M × 1 where the component p is equal to
one. Then µn

i(t(rKm
l

)+jN)p
=
(
AK

µ Un
i ep

)
t(rKm

l
)+jN

and (25) takes the form

sL
p = I diag(

♣K♣

2
) Λ diag(P n

θi − T n
i )AK

µ Un
i ep.

We also can organize this information in the following vector

sL =




sL
1

sL
2
...

sL
M




where the component p of sL is given by
(
sL
)

p
= sL

p . In this way, we get

sL =
∂L̂θ

∂zL
=

(
∂Pn

θi

∂zL

)⊺
∂L̂θ

∂Pn
θi

.

Then

sL = (Un
i )

⊺
(
AK

µ

)⊺
diag(P n

θi − T n
i ) Λ⊺ diag(

♣K♣

2
) I⊺. (26)

Finally the derivatives can be summarized as follows:

sL = (Un
i )

⊺
(
AK

µ

)⊺
diag(P n

θi − T n
i ) Λ⊺ diag(

♣K♣

2
) I⊺,

sL−1
p = diag


∂σL−1

(
zL−1

p

)

∂zL−1
p


(
WL

)⊺ (
sL
)

p
,

sl
p = diag


∂σl

(
zl

p

)

∂zl
p


(
Wl+1

)⊺
sl+1

p , for l ∈ ¶L − 2, · · · , 1♢ , (27)

with

∂L̂θ

∂WL
=

M∑

p=1

(
sL
)

p

(
aL−1

p

)⊺
,

∂L̂θ

∂bL
=

M∑

p=1

(
sL
)

p
,

14



∂L̂θ

∂Wl
=

M∑

p=1

sl
p

(
al−1

p

)⊺
, for l ∈ ¶L − 1, · · · , 1♢ ,

∂L̂θ

∂bl
=

M∑

p=1

sl
p, for l ∈ ¶L − 1, · · · , 1♢ . (28)

In this way, the gradient vector ∇L̂θ is given by

∇L̂θ =


∂L̂θ

∂W1 ,
∂L̂θ

∂b1 , ...,
∂L̂θ

∂WL
,

∂L̂θ

∂bL

]⊺
. (29)

Note that the expressions for the derivatives in terms of λθ can be derived in the same
way by replacing AK

µ in (26) by AK
λ .

After obtaining the derivatives of the objective function with respect to the parame-
ters in the network we are ready to present the overall algorithm which is an iterative
process. For updating the parameters, there are several optimization methods avail-
able in the literature as the conjugate gradient algorithm, the Newton’s method, the
Levenberg-Marquardt algorithm, the ADAM, the LBFGS amoung others [4, 11]. In
this work we will use the ADAM optimizer since it is frequently used in the liter-
ature as a default optimization algorithm for deep learning and it is recommended
for most of the applications. In addition, the algorithm is straightforward to imple-
ment, has fast computation time, requires few parameters for tuning, has low memory
requirements and can handle noisy sparse gradients [16].

The initialization of the weights and biases of the neural networks will be considered
in the numerical results.

The procedure to stop the algorithm will be the early stopping [11]. We spilt the data
in train and validation set and we run the algorithm until the error on the validation
set has not improved for a number of iterations. This specific number of iterations is
called the patience in the early stopping.

Algorithm 1 sketches the combination of the backpropagation technique with the
ADAM optimizer where the gradient vector in (29) is computed using the information
in (27) and (28). As presented, is usually called ADAM with mini-batch training.

3.3 Analysis of the optimization method

Here we establish some bounds for the relative error between the exact solution and
the approximation given by the neural network. Let us assume that we are able to min-
imize the objective function (16) so that the absolute error for each term is bounded
by ϵn

i , that is,

∥∥An
i

[
µθ λθ

]⊺
− T n

i

∥∥
∞ ≤ ϵn

i , i ∈ ¶1, 2, . . . , Q♢ , n ∈ ¶1, 2, . . . , T♢ . (30)

15



Algorithm 1 Backpropagation with ADAM optimizer

initialization Collect the points xp = (x1p, x2p, x3p)
⊺
, p ∈ ¶1, 2, ..., M♢ and split the

data An
i , T n

i , i ∈ ¶1, ..., Q♢, n ∈ ¶1, 2, . . . , T♢ in the train and in the validation sets.
Consider the L-layer neural networks µθ and λθ defined in (18) and compute the
initial parameters θµ, θλ. Initialize the first and second moments to zero: Mµ = 0,
Vµ = 0, Mλ = 0, Vλ = 0. Define the constants: learning rate αµ, αλ, exponential
decay rates for moment estimation β1 , β2 ∈ [0, 1[, ε used for numerical stabilization
(small number), the exponential decay γ and the sample size q. Note: in the algorithm
⊙ denotes the element-wise product.
while stopping criterion not met do

Sample a mini-batch of q examples from the training set An
i , T n

i , i = 1, ..., i∗, n =
1, ..., n∗ : i∗ + n∗ = q.
Compute the predictions µθ and λθ.

Compute the gradient G =
1

q

∑

i

∑

n

∇L̂θ using the gradient vector ∇L̂θ in (29).

Define k = k + 1.
Update biased first moment estimate:
Mµ = β1Mµ + (1 − β1) G, Mλ = β1Mλ + (1 − β1) G;
Update biased second moment estimate:
Vµ = β2Vµ + (1 − β2) G ⊙ G, Vλ = β2Vλ + (1 − β2) G ⊙ G ;
Correct bias in first moment:
M̂µ = Mµ/

(
1 − βk

1

)
, M̂λ = Mλ/

(
1 − βk

1

)
;

Correct bias in second moment:
V̂µ = Vµ/

(
1 − βk

2

)
, V̂λ = Vλ/

(
1 − βk

2

)
;

Update θµ and θλ with the formulas:

θµ = θµ − αµ
M̂µ√
V̂µ + ε

and θλ = θλ − αλ
M̂λ√
V̂λ + ε

respectively;

Apply the exponential decay γ to αµ and αλ:
αµ = αµγ, αλ = αλγ.
return Parameters θµ and θλ.

Note that we are always able to calculate the value of
∥∥An

i

[
µθ λθ

]⊺
− T n

i

∥∥2

∞ in the
end of the process.

First we are going to find an estimate for the relative error between
[
µ λ

]⊺
and[

µθ λθ

]⊺
assuming that the set of data un−1

ih , un
ih, un+1

ih , fn
i , gn

i satisfies An
i

[
µ λ

]⊺
=

T n
i . Defining (An

i )−1 = ((An
i )⊺An

i )
−1

(An
i )⊺ the pseudoinverse matrix of An

i and
cond∞(An

i ) =
∥∥(An

i )−1
∥∥

∞ ∥An
i ∥∞ the conditioning number of the matrix An

i , we have
the following result [20],

∥∥[µ − µθ λ − λθ

]⊺∥∥
∞∥∥[µ λ

]⊺∥∥
∞

≤
cond∞(An

i )

∥T n
i ∥∞

ϵn
i . (31)

16



The estimate (31) is usually not very sharp. We can write

[
µ − µθ λ − λθ

]⊺
= (An

i )−1T n
i − (An

i )−1An
i

[
µθ λθ

]⊺

= (An
i )−1

(
T n

i − An
i

[
µθ λθ

]⊺)
.

Applying norms and using (30) we obtain

∥∥[µ − µθ λ − λθ

]⊺∥∥
∞∥∥[µθ λθ

]⊺∥∥
∞

≤
∥(An

i )−1∥∞∥∥[µθ λθ

]⊺∥∥
∞

ϵn
i .

Involving ♣Λ♣ Q samples of data set un−1
ih , un

ih, un+1
ih , fn

i , gn
i , i ∈ ¶1, ..., Q♢ , n ∈

¶1, 2, . . . , T♢ we get the average

∥∥[µ − µθ λ − λθ

]⊺∥∥
∞∥∥[µθ λθ

]⊺∥∥
∞

≤
1

♣Λ♣ Q

∑

n∈Λ

Q∑

i=1

∥(An
i )−1∥∞∥∥[µθ λθ

]⊺∥∥
∞

ϵ

where ϵn
i ≤ ϵ, ∀i ∈ ¶1, 2, . . . , Q♢ , ∀n ∈ ¶1, 2, . . . , T♢. In this way we proved the

following result.
Theorem 1. Let us consider QT samples of data sets of the form un−1

ih , un
ih,

un+1
ih , fn

i , gn
i , i ∈ ¶1, ..., Q♢ , n ∈ ¶1, 2, . . . , T♢ which satisfy An

i

[
µ λ

]⊺
= T n

i . Let

us assume that An
i a non singular matrix. Suppose ϵn

i ≤ ϵ, ∀i ∈ ¶1, ..., Q♢ , ∀n ∈
¶1, 2, . . . , T♢ then

∥∥[µ − µθ λ − λθ

]⊺∥∥
∞∥∥[µθ λθ

]⊺∥∥
∞

≤
1

♣Λ♣ Q

∑

n∈Λ

Q∑

i=1

∥(An
i )−1∥∞∥∥[µθ λθ

]⊺∥∥
∞

ϵ.

In real applications, the experimental data contains noise. Therefore our next task
will be to derive a similar result of Theorem 1 for noisy data.

If we consider noise in the displacements then, by (13), the data un
ih, i ∈ ¶1, ..., Q♢,

n ∈ ¶1, 2, . . . , T♢ will contain noise. Therefore the matrix An
i and the vector T n

i will
contain errors as well by (14) and (15). We denote the matrix and the vector affected
by noise as Ān

i and T̄ n
i respectively.

The errors associated are given by ∆An
i = An

i − Ān
i and ∆T n

i = T n
i − T̄ n

i where the
errors ∆An

i and ∆T n
i are a matrix and vector whose entries are the absolute errors

of the entries in An
i and T n

i respectively. Defining Rn
i = T̄ n

i − Ān
i

[
µθ λθ

]⊺
then, as

previously, we can obtain the bound ∥Rn
i ∥2

∞ ≤ ϵn
i . First observe that

(An
i − ∆An

i )
[
µ − µθ λ − λθ

]⊺
= Rn

i + ∆T n
i − ∆An

i

[
µ λ

]⊺
. (32)

By (32) we also can get

[
µ − µθ λ − λθ

]⊺
= (An

i )−1
(
Rn

i + ∆T n
i − ∆An

i

[
µθ λθ

]⊺)
,

17



and then

∥∥[µ − µθ λ − λθ

]⊺∥∥
∞∥∥[µθ λθ

]⊺∥∥
∞

≤
∥(An

i )−1∥∞∥∥[µθ λθ

]⊺∥∥
∞

ϵn
i +

∥(An
i )−1∆T n

i ∥∞∥∥[µθ λθ

]⊺∥∥
∞

+∥(An
i )−1∆An

i ∥∞.

Theorem 2. Let us consider QT samples of data sets of the form un−1
ih , un

ih,
un+1

ih , fn
i , gn

i , i ∈ ¶1, ..., Q♢ , n ∈ ¶1, 2, . . . , T♢. Let us assume that An
i is a non singular

matrix. Assuming ϵn
i ≤ ϵ, ∀i ∈ ¶1, 2, . . . , Q♢ , ∀n ∈ ¶1, 2, . . . , T♢ , then

∥∥[µ − µθ λ − λθ

]⊺∥∥
∞∥∥[µθ λθ

]⊺∥∥
∞

≤
1

♣Λ♣ Q

∑

n∈Λ

Q∑

i=1

∥(An
i )−1∥∞∥∥[µθ λθ

]⊺∥∥
∞

ϵ (33)

+
1

♣Λ♣ Q

∑

n∈Λ

Q∑

i=1

∥(An
i )−1∆T n

i ∥∞∥∥[µθ λθ

]⊺∥∥
∞

+
1

♣Λ♣ Q

∑

n∈Λ

Q∑

i=1

∥(An
i )−1∆An

i ∥∞.

Observe that although the estimate (33) cannot be calculated in practice, it measures
the impact of the noise.

4 Numerical results

In this section we present some computational results to evaluate the applicability of
the proposed method.

In the tests performed we used fabricated data obtained by simulating the direct
problem and for observed displacements Un, we consider the solution of (10). We will
consider two scenarios in simulations, namely the cases of homogeneous and heteroge-
neous media: with λ and µ constants to compare our approach with the methodology
proposed in [2] and with λ space dependent to mimic possible heterogeneity in differ-
ent layers of the medium [19]. For both scenarios we consider the following setting:

Ω = [−2, 2]
3

with ∂Ω = Γ1 ∪ Γ2 where Γ1 is the face of the cube contained in the
plane x3 = −2; the mesh is a partition of Ω into 162 tetrahedrons; ρ = 1g/cm3; the
functions gn

1 and fn
1 are defined respectively by gn

1 = (0, 0, cos(tn)×105) and fn
1 = 0.

In the homogeneous medium, (µ(x), λ(x)) = (1.6069 × 106, 1.4462 × 107) and, in the
heterogeneous medium, µ(x) = 1.6069 × 106 and

λ(x) =


1.5 × 107 , if x3 ≥ 0
1.4 × 107 , if x3 < 0

.

We performed experiments with noise free data as well as noisy data in order to
assess the sensitivity of our method to noise. To check the robustness of the proposed

18



method when considering noisy data we consider Gaussian noise R ∼ N (0, σ) where
R is a random vector of dimension 3N ×1 and σ is the standard deviation. So instead
Un, we consider as data Ūn = (R + 13N×1)Un, where 13N×1 is a 3N × 1 vector with
all components equal to one and the i-th component of the vector Ūn is given by
(R(i) + 1)Un(i), i ∈ ¶1, ..., 3N♢.

In simulations of noise free data we will use a single data set in space, that is Q = 1,
and all information in time, T = 1000. Therefore, in Algorithm 1, the mini-batch of
q examples will have i∗ = 0 so n∗ = q which means all the data of the mini-batch
correspond to q different time steps. In noisy data, fixing the level of noise, we generate
randomly 100 data sets so Q = 100 and T = 1000.

In both scenarios the time step is given by tn = n∆t, n = 0, 1, · · · , 1001, with ∆t =
1.2×10−5. In Algorithm 1 we use β1 = 0.9 , β2 = 0.999 and ε = 10−4 (the parameters
for which we achieved better results in our tests) and the division of data An

i , T n
i , i ∈

¶1, ..., Q♢, n ∈ ¶1, 2, . . . , T♢ is 82% for training and 18% for the validation set.

In this work we consider variations of σ in the set
{

0, 10−7, 10−5, 10−3, 10−1
}

.

4.1 Homogeneous medium

We start to analyze the method when the optimal solution is given by

(µ(x), λ(x)) = (1.6069 × 106, 1.4462 × 107). (34)

Since the optimal solution is constant, the neural networks will be given by:

µθ(xp) = b2and λθ(xp) = d2.

Figure 2 present the scheme of feed-forward neural networks to obtain the outputs
µθ(xp) and λθ(xp) respectively.

Considering this setting, we performed five simulations using different starting points
in the set I = [0.9µ, 1.1µ] × [0.9λ, 1.1λ] for µ = 1.6069 × 106 and λ = 1.4462 × 107.
The biases b2 and d2 follow an uniform distribution, that is, b2 ∼ U ([0.9µ, 1.1µ]) and
d2 ∼ U ([0.9λ, 1.1λ]). We also use the following set of hyperparameters: learning rate
αµ = αλ = 105 with exponential decay γ = 0.936 and mini-batch size q = 32. For the
early stopping we define a patience of 7.

Figure 3 presents the relative error average in parameters and the corresponding
relative error average in displacements ∥U − Uobs∥2

L
2
h

(Ω) / ∥Uobs∥2
L

2
h

(Ω), obtained from

five simulations for each value of σ. As we can see the optimal solution is globally well
recovered where the relative errors in parameters seem to grow along the increase of
the noise level in a linear form. Moreover, analysing the relative error in terms of the
displacements, we obtained on average relative errors in displacements approximately
of the same order comparing to those error in parameters.

In Table 1 we compare the values of the relative error in parameters corresponding to
the results in Figure 3 with the results obtained with the methodology described in

19



x3p

x2p

x1p

x3p

x2p

x1p

a1
21 µθ(xp)

b2

d2 λθ(xp)c1
22

Fig. 2: Scheme of the 1-layer networks to approximate the optimal solution (34).

[2]. For the method in [2], we used the same setting described previously adding the
angular frequency w = 1 and the functions g = (0, 0, 105) and f = 0 and the relative
error average in parameters was obtained from thirty simulations for each value of σ.

Seeing in detail the values in Table 1, we observe, in general, better results when Algo-
rithm 1 is used, with few exceptions (e.g. the case σ = 10−1). Therefore our method
presented based on neural networks seems to be a better option when comparing to
the approach studied in [2].

Parameter µ λ

Formulation [2] Algorithm 1 [2] Algorithm 1

0 9.5 × 10−16 1.3 × 10−15 5.9 × 10−16 4.1 × 10−16

10−7 7.7 × 10−7 2.9 × 10−7 9.8 × 10−7 1.3 × 10−7

σ 10−5 6.7 × 10−5 4.1 × 10−5 8.0 × 10−5 9.3 × 10−6

10−3 5.7 × 10−3 1.1 × 10−3 7.1 × 10−3 5.1 × 10−4

10−1 1.3 × 10−1 6.5 × 10−1 1.9 × 10−1 1.1 × 10−1

Table 1: Relative errors in parameters corresponding to the method
proposed in [2] and to the Algorithm 1.

20



0 10
-7

10
-5

10
-3

10
-1

10
-15

10
-10

10
-5

10
0

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

Fig. 3: Relative error average in parameters µ (continuous line in blue) and λ (dashed
line in blue) obtained from five simulations for each value of σ. The orange dotted line
corresponds to the relative error average in displacements for the same simulations.
The results consider the optimal solution in (34) and the Algorithm 1.

4.2 Heterogeneous medium

In the second example, the optimal solution is given by

µ(x) = 1.6069 × 106 (35)

and

λ(x) =


1.5 × 107 , if x3 ≥ 0
1.4 × 107 , if x3 < 0

(36)

The neural networks take the following form:

µθ(xp) = b2and λθ(xp) = W2σ1
(
W1xp + d1

)
+ d2,

with σ1(x) =
1

1 + e−x
being the sigmoid activation function. In Figure 4 we present

the schemes of feed-forward neural networks.

In terms of initialization of the parameters we consider b2 ∼ U ([0.9µ, 1.1µ]), d1 ∼

U ([−1, 1]), d2 ∼ U ([0.9λ, 1.1λ]), W1 ∼ U
[

− 1√
3
, 1√

3

])
and W2 ∼ U ([0, 0.2λ]), with

µ = 1.6069 × 106 and λ = 1.4462 × 107, since they are suitable with the function we
want to approximate.

In the simulations we noticed that the learning rate αλ must change depending on the
parameter. For that reason we will call αd1 , αd2 , αW1 and αW2 the learning rate for
the parameters d1, d2, W1 and W2, respectively. We defined αµ = 105 , αd1 = 0.25,

21



x3p

x2p

x1p

x3p

x2p

x1p

a1
21 µθ(xp)

b2

d2W2

d1W1

λθ(xp)c1
22

Fig. 4: Scheme of the 1-layer networks to approximate the optimal solution (35)-(36).

αd2 = 8 × 104, αW1 = 1.5 and αW2 = 5 × 104. In Algorithm 1 the exponential decay
is γ = 0.99975, the size of mini-batch is q = 320 and the early stopping is defined
with a patience of 700.

0 10
-7

10
-5

10
-3

10
-1

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 5: Relative error average obtained from five simulations for each value of σ. The
results consider the optimal solution in (35)-(36) and the Algorithm 1.

22



Figure 5 shows the evolution of the relative error average obtained from five
simulations for each value of σ. The relative error is measured in the infinite norm,

∥λ − λθ∥∞
∥λ∥∞

=

max
1≤p≤M

♣λθ(xp) − λ(xp)♣

max
1≤p≤M

♣λ(xp)♣
.

As expected, increasing the complexity of the neural network rises the challenge to
obtain the optimal solution but the results are promising.

Funding

This work was partially supported by the Centre for Mathematics of the Univer-
sity of Coimbra (funded by the Portuguese Government through FCT/MCTES, DOI
10.54499/UIDB/00324/2020); the FEDER Funds through the Operational Program
for Competitiveness Factors - COMPETE and by Portuguese National Funds through
FCT - Foundation for Science and Technology, DOI 10.54499/2021.06672.BD; the
FCT (Portugal) research project PTDC/EMD-EMD/32162/2017, COMPETE and
Portugal 2020.

Declarations

Competing interests: The authors declare no conflict of interest.

Author’s contributions: Conceptualization, R.H. and S.B. ; methodology, R.H. and S.B.;

formal analysis, R.H. and S.B.; software, R.H.; validation, R.H. and S.B.; supervision, S.B.;

writing original draft preparation, R.H.; writing-review and editing, R.H. and S.B.. All

authors have read and agreed to the published version of the manuscript.

Availability of data: The code supporting the conclusions of this manuscript will be made

available by the authors upon formal and reasonable request.

Ethics Approval: The authors declare no approval committee.

References

[1] M. Ainsworth and C. Parker. Unlocking the secrets of locking: Finite element
analysis in planar linear elasticity. Computer Methods in Applied Mechanics and
Engineering, 395, 2022.

[2] S. Barbeiro, R. Henriques and J. Santos. A quadratic optimization program for
the inverse elastography problem. Journal of Mathematics in Industry 14, article
number:18, https://doi.org/10.1186/s13362-024-00156-7, 2024.

[3] S. Barbeiro and R. Henriques, J. Santos. The derivative free trust-region method
for the inverse elastography problem. Accepted for publication in Proceedings of
the 22nd ECMI Conference on Industrial and Applied Mathematics, Springer,
2023.

23



[4] C. M. Bishop. Neural Networks for Pattern Recognition, Department of Com-
puter Science and Applied Mathematics Aston University Birmingham, UK.
Clarendon press, Oxford, 1995.

[5] C. Carstensen, G. Dolzmann, S. A. Funken and D. S. Helm, Locking-free adaptive
mixed finite element methods in linear elasticity. Computer Methods in Applied
Mechanics and Engineering, 190 (13–14), 1701-1718, 2000.

[6] D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S.
Schmauder and W. Osten. Large-field-of-view optical elastography using digi-
tal image correlation for biological soft tissue investigation. Journal of Medical
Imaging, 4 (1): 1–14, 2017.

[7] M. M. Doyley. Model-based elastography: a survey of approaches to the inverse
elasticity problem. Physics in Medicine and Biology, 57 (3):R35-R73, 2012.

[8] R. Fitzpatrick. Theoretical Fluid Mechanics, IOP Publishing, 978-0-7503-1552-4,
2018.

[9] J. Ghaboussi and D. Sidarta. New nested adaptive neural networks (NANN) for
constitutive modeling. Computers and Geotechnics, vol. 22, 29–52, 1998.

[10] G. Giannakoulas , G. Giannoglou, J. Soulis, T. Farmakis, S. Papadopoulou,
G. Parcharidis and G. Louridas. A computational model to predict aortic
wall stresses in patients with systolic arterial hypertension. Elsevier, Medical
Hypotheses, 2005.

[11] I. Goodfellow, Y. Bengio and A. Courville. Deep Learning, pre-pub version, MIT
Press, 2016.

[12] M. T. Hagan, H. B. Demuth, M. H. Beale and O. D. Jesús. Neural Network
Design, 2nd edition, 9780971732117, 2014.

[13] E. Haghighat, M. Raissi, A. Moure, H. Gomez and R. Juanes. A physics-informed
deep learning framework for inversion and surrogate modeling in solid mechanics.
Journal of Computer methods in applied mechanics and enginnering, 379, 113741,
2021. URL: https://doi.org/10.1016/j.cma.2021.113741.

[14] K. Hornik. Approximation capabilities of multilayer feedforward networks, Neural
networks, vol. 4, no. 2, pp. 251–257, 1991.

[15] B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart
and D. D. Sampson. In vivo three-dimensional optical coherence elastography.
Opt. Express, 19 (7):6623–6634, 2011.

[16] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization, arXiv,
2017.

[17] J. C. Mason and David C. Handscomb. Chebyshev Polynomials. Computer
Science, Mathematics and Statistics, 2002.

24



[18] E. Park and A. M. Maniatty. Shear modulus reconstruction in dynamic elastog-
raphy: time Harmonic case. Phys. Med. Biol. 51(15), 3697-3721, 2006.

[19] Y. Qu, Y. He, Y. Zhang, T. Ma, J. Zhu, Y. Miao, C. Dai, M. Humayun, Q. Zhou
and Z. Chen. Quantified elasticity mapping of retinal layers using synchronized
acoustic radiation force optical coherence elastography. Biomed.Opt.Express, 9
(9):4054–4063, 2018.

[20] A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Springer, 2000.

[21] M. Raissi, P. Perdikaris and G. E. Karniadakis. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational
Physics 378, 686–707, 2019. URL: https://doi.org/10.1016/j.jcp.2018.10.045.
doi:10.1016/j.jcp.2018.10.045.

[22] P. A. Raviart and J.M. Thomas. Introduction à l’analyse numerique des équations
aux dérivées partielles, Masson, 1983.

[23] S. Rippa. An algorithm for selecting a good value for the parameter c in
radial basis function interpolation. Advances in Computational Mathematics,
11(2-3):193–210, 1999.

[24] S. Rudy, A. Alla, S. L. Brunton and J. N. Kutz. Data-
driven identification of parametric partial differential equations.
SIAM Journal on Applied Dynamical Systems 18, 643–660,
2019. URL: https://epubs.siam.org/doi/abs/10.1137/18M1191944.
doi:10.1137/18M1191944.

[25] U. Saravanan. Advanced Solid Mechanics. Traction and Stress, 2013.

[26] P. Serranho, S. Barbeiro, R. Henriques, A. Batista, M. Santos, C. Correia, J.
Domingues, C. Loureiro, J. Cardoso, R. Bernardes and M. Morgado. On the
Numerical Solution of the Inverse Elastography Problem for Time-harmonic Exci-
tation. In Proceedings of the 2nd International Conference on Image Processing
and Vision Engineering (Improve 2022), pages 259-264, 2022.

[27] K. S. Sheinerman and S. R. Umansky, Circulating cell-free microRNA as biomark-
ers for screening, diagnosis and monitoring of neurodegenerative diseases and
other neurologic pathologies. Front. Cell. Neurosci, vol. 7, 2013.

[28] J. Wang, Y. Xu and S. A. Boppart. Review of optical coherence tomography in
oncology. J Biomed Opt, 22(12): 121711, 2017.

[29] J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang and Z. Chen. Longitudinal
shear wave imaging for elasticity mapping using optical coherence elastography.
Applied Physics Letters, 110 (20):201101, 2017.

[30] Y. Zhu, N. Zabaras and P. S. Koutsourelakis, P. Perdikaris. Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty quantifi-
cation without labeled data. Journal of Computational Physics 394, 56–81, 2019

25



. URL: https://www.sciencedirect.com/science/article/pii/S0021999119303559.
doi:10.1016/j.jcp.2019.05.024.

26


