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Abstract

Building on recent developments in models focused on the shape properties of

odds ratios, this paper introduces two new models that expand the class of avail-

able distributions while preserving specific shape characteristics of an underlying

baseline distribution. The first model offers enhanced control over odds and log-

odds functions, facilitating adjustments to skewness, tail behavior, and hazard

rates. The second model, with even greater flexibility, describes odds ratios as

quantile distortions. This approach leads to an enlarged log-logistic family capable

of capturing these quantile transformations and diverse hazard behaviors, includ-

ing non-monotonic and bathtub-shaped rates. Central to our study are the shape

relations described through stochastic orders; we establish conditions that ensure

stochastic ordering both within each family and across models under various ordering

concepts, such as hazard rate, likelihood ratio, and convex transform orders.
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1 Introduction

The development of flexible distribution models is a key pursuit in statistical research,

particularly in applications that require detailed control over distributional shape prop-

erties, such as survival analysis, reliability engineering, and actuarial science. Traditional

methods for constructing such models often involve adding parameters to established

families or transforming specific functional components, such as survival or hazard func-

tions. Some recent examples of this approach are Alzaatreh et al. (2013), Kharazmi et al.

(2021) or Vasconcelos et al. (2024). However, unlike our main interest that concentrates

on stochastic order relations and shape properties, these authors focus on the basic char-

acterisations of the distributions and practical statistical aspects. Recent advancements

have emphasized extending these frameworks to odds functions, providing a broader and
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potentially more versatile approach for representing complex real-world data. The pro-

portional hazards rate (PHR) model, for example, redefines the survival function by

raising a baseline survival function to a power, resulting in a distribution with hazard

rates proportional to the original, as studied in Marshall and Olkin (1997). While the

PHR model preserves hazard rate monotonicity, it is limited in capturing distributions

with heavy tails or non-standard failure rates. Expanding on this, Lando et al. (2022)

proposed the increasing odds rate (IOR) class, which benchmarks distributions against

the log-logistic distribution rather than the exponential. This shift enables the IOR class

to model distributions with bathtub-shaped hazard rates or heavy tails, crucial for appli-

cations where standard assumptions about hazard monotonicity are too restrictive. The

present work builds on these foundations by introducing a modified proportional odds

model that leverages transformations of the baseline distribution’s odds function, creating

a new family of distributions that inherit specific shape properties. The proportional odds

model has been extensively studied from multiple perspectives and has become a main-

stay in survival analysis and reliability theory in recent years. Bennett (1983) introduced

the model and developed the maximum likelihood estimation for the semi-parametric

version. Collett (2023) applied the proportional odds model to analyze survival data for

women with breast tumors. Additionally, Dinse and Lagakos (1983, 1984) and Rossini

and Tsiatis (1996) used this model for the analysis of interval-censored data. Applications

in reliability analysis are detailed in Crowder et al. (1991), while Kirmani and Gupta

(2001) examined its structural properties, deriving results on stochastic comparisons and

aging properties. Notably, they established connections between the proportional odds

model and the behaviour of geometric minima and maxima (see Theorem 4, Kirmani

and Gupta (2001)). More recently, Sankaran and Jayakumar (2008) proposed new dis-

tribution families inspired by the proportional odds model. The model suggested in this

work is grounded in two main transformations: (1) defining proportionality for both

odds and log-odds functions, thus allowing for flexible skewness and tail control, and (2)

embedding the structure of an enlarged log-logistic distribution, a more generalized form

that subsumes the log-logistic model and includes parameters that govern asymmetry,

spread, and tail behaviour. By transforming the baseline distribution F through a suit-

able quantile function, the new model achieves adaptable odds behaviours, preserving

key properties such as convexity, concavity, or monotonicity of odds rates depending on

parameter settings. In survival and reliability studies, the ability to manipulate odds and

hazard rates simultaneously is crucial for accurate modeling. The enlarged log-logistic

(ELL) distribution, introduced here, offers an innovative quantile-based transformation

that extends beyond the conventional proportional hazards models. This model accom-

modates distributions with varying shapes, including those with increasing, decreasing,

or even non-monotonic hazard rates, which is particularly useful in capturing lifetime

data with complex failure patterns. By parameterizing the model to allow for different

convexity behaviours, we create a flexible toolkit for modeling distributions that meet

practical shape requirements without sacrificing theoretical rigor. In applications where

risk management and reliability assessments are paramount – such as in actuarial sci-

ence, insurance, and public health – these new models offer greater adaptability. Their

use of quantile-based transformations enables tailored fitting to specific data character-

istics, including tail behaviour and asymmetry, which are often critical for accurate risk
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assessment. Moreover, by defining the odds functions as quantile transformations of the

baseline distribution, the model provides a straightforward pathway for comparing relia-

bility characteristics across different parameter choices, making it easier for practitioners

to interpret and apply.

The paper is structured as follows. Section 2 provides preliminary definitions and

background essential for understanding the proposed models, including a review of

stochastic orders and shape properties in distribution families. In Section 3, we introduce

the first modified proportional odds model, with a focus on its properties and stochastic

comparisons with the baseline distribution. Section 4 extends the model by presenting

a distorted odds ratio model, leveraging additional parameters to further control distri-

butional shape. Finally, in Section 5, we explore the enlarged log-logistic distribution,

detailing its implications for odds and hazard rate behaviors.

2 Preliminaries and basic definitions

We shall represent by X, F and f the baseline random variable, its cumulative and

density functions (that we will be assuming to exist), respectively. Analogously, Y , G and

g, possibly with some subscripts to denote parameters, will represent the new models to

be studied. Moreover, survival functions are represented as F (x) = 1 − F (x) or G(x) =

1 − G(x). We shall refer to the random variables or to their distribution functions as

is more convenient. In fact, the characterisations we will be discussing depend only on

the distribution, so the random variables will appear only as a convenience. We recall

the usual notions which were briefly mentioned in the Introduction. Given a distribution

function F , its hazard rate and reversed hazard rate are denoted with hF (x) =
f(x)

F (x)
and

h̃F (x) =
f(x)
F (x) respectively, its odds function with ΛF (x) =

F (x)

F (x)
, and its odds rate with

λF (x) = Λ′

F (x) = f(x)

F
2
(x)

. While the monotonicity of the hazard rate function has been

extensively studied in the literature, for the odds function, which is always increasing, the

interest relies on its growth rate, characterised by monotonicity of λF . These functions

may be used to define some classes of distributions.

Definition 2.1. We say that

1. X or F have increasing (decreasing) hazard rate, represented by F ∈ IHR (F ∈ DHR),

if hF is increasing (decreasing);

2. X or F have increasing (decreasing) odds rate, represented by F ∈ IOR (F ∈ DOR),

if λF is increasing (decreasing);

3. X or F have convex (concave) log-odds if log ΛF (x) is convex (concave).

The IHR and DHR families are well-known in the literature, while the IOR family

has been receiving less attention. Some properties of the IOR class are studied in a

systematic way in Lando et al. (2022). The DOR family is only briefly mentioned in

Arab et al. (2024), and, also recently discussed in Chen et al. (2024), although with a

different terminology. Note that F ∈ IOR (F ∈ DOR) is equivalent to the odds ratio

ΛF being convex (concave), so these odds ratio classes describe a shape property of the

corresponding distributions.

We now recall some common stochastic order notions that will be considered later.
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Definition 2.2. Consider two distribution functions F1 and F2, with densities f1 and

f2, respectively. We say that,

1. F1 is smaller than F2 in the usual stochastic order, denoted as F1 ≤st F2, if F 1(x) ≤

F 2(x), for every x ∈ R;

2. F1 is smaller than F2 in the hazard rate order, denoted as F1 ≤hr F2, if hF1
(x) ≥

hF2
(x), for every x ∈ R;

3. F1 is smaller than F2 in the reversed hazard rate order, denoted as F1 ≤rh F2, if

h̃F1
(x) ≥ h̃F2

(x), for every x ∈ R;

4. F1 is smaller than F2 in the likelihood rate order, denoted as F1 ≤lr F2, if
f2(x)
f1(x)

, is

increasing.

5. F1 is smaller that F2 in the dispersive order, denoted as F1 ≤disp F2, if

F−1
2 ◦ F1(x)− x increases in x.

Some of the classes of distributions mentioned in Definition 2.1 may be characterised

via a different type of stochastic order, namely the convex transform order, defined by

a shape restriction on the transformation that maps one distribution to the one being

compared.

Definition 2.3 (van Zwet (1964)). Given two distribution functions F1 and F2, we say

that F1 is smaller than F2 in the convex transform order, represented by F1 ≤c F2, if

F−1
2 ◦ F1 is convex.

Let us now fix, for the sequel, two reference distributions: the standard exponential,

with distribution function E(x) = 1−e−x, and the log-logistic, with distribution function

L(x) = 1− 1
x+1 = x

x+1 . It is well-known that F ∈ IHR (F ∈ DHR) if and only if F ≤c E

(F ≥c E). Analogously, as referred in Lando et al. (2022), it is easily seen that F ∈ IOR

(F ∈ DOR) if and only if F ≤c L (F ≥c L).

For a systematic study of properties of the stochastic orders defined above, and a

number of other interesting stochastic order relations, and relations among them, we refer

the interested reader to the monographs Shaked and Shanthikumar (2007) or Marshall

and Olkin (2007).

3 A first modified proportional odds model

The study of the growth rate of the odds function is fundamental in the characterization

of distribution families that maintain specific shape properties such as the IOR, which

is crucial for modeling various real-world phenomena, particularly in reliability and sur-

vival analysis. In this context, we introduce a modified proportional odds model that

leverages the properties of the IOR and log-odds convexity to create new distribution

families. This approach aligns with and extends findings from Marshall and Olkin (1997),

who explored models with proportional log-odds ratios but focused more on hazard rate

properties than the broader proportional odds framework. This section will define and

explore the model, demonstrating its applicability and properties that respond to these

shape requirements, and showing how it provides a generalization of the IOR class while

maintaining mathematical tractability.
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Definition 3.1. Let β, θ > 0. Given a baseline distribution function F , we define the

Gβ,θ distribution function by

ΛGβ,θ
(x) = βΛθ

F (x) = β

(
F (x)

F (x)

)θ

. (1)

It is obvious that Gβ,1 has odds ratio ΛGβ,1
proportional to ΛF , while for G1,θ we have

that log ΛG1,θ
(x) = θ log ΛF (x), that is, (1) covers the case of a model with proportional

log-odds ratio. Note that the model corresponding to θ = 1 has been studied in Marshall

and Olkin (1997), although the authors did not refer to it as the proportional odds model,

and were mainly interested in hazard rate properties.

Taking into account that ΛGβ,θ
(x) =

Gβ,θ(x)

Gβ,θ(x)
= 1

Gβ,θ(x)
− 1, it follows easily that, for

each x ∈ R,

Gβ,θ(x) =
βF θ(x)

βF θ(x) + F
θ
(x)

, and Gβ,θ(x) =
F

θ
(x)

βF θ(x) + F
θ
(x)

. (2)

Note that when taking θ = 1, the following shape characterisation is a straightforward

consequence of the convexity properties of the function βx
1+(1−β)x when x ∈ [0, 1].

Proposition 3.2. If F is concave, then Gβ,1 for β ≥ 1 is also concave. If F is convex,

then Gβ,1 for β ≤ 1 is also convex.

Note that the corresponding transformation for θ ̸= 1 and general β > 0 is easily seen

to be neither convex nor concave, so no conclusion about the convexity of Gβ,θ can be

drawn.

From (2), the density and hazard rate functions for Gβ,θ are easily obtained:

gβ,θ(x) = βθf(x)
F θ−1(x)F

θ−1
(x)

(βF (x)θ + F
θ
(x))2

, (3)

and

hGβ,θ
(x) = βθhF (x)

F θ−1(x)

βF (x)θ + F
θ
(x)

= βθhF (x)

(
F (x)

F (x)

)θ−1
Gβ,θ(x)

F (x)
. (4)

Defining Tβ,θ(x) = βθ xθ−1

βxθ+(1−x)θ
, the first equality in (4) may be rewritten as hGβ,θ

(x) =

hF (x)Tβ,θ(F (x)), providing an immediate characterisation for some of the classes of

distributions mentioned in Definition 2.1.

Theorem 3.3.

1. If F ∈ IHR and β ≤ 1, then Gβ,1 ∈ IHR.

2. If F ∈ DHR and β ≥ 1, then Gβ,1 ∈ DHR.

3. If F ∈ IHR or F ∈ IOR, then, for θ ≥ 1, Gβ,θ ∈ IOR.

Proof. The result is immediate once we verify the monotonicity properties of Tβ,θ. It is

easily verified that Tβ,θ is monotone only for θ = 1, that Tβ,1 is increasing for β ≤ 1,

and Tβ,1 is decreasing for β ≥ 1. With regard to the preservation of the IOR property, it

follows directly from (1) taking into account that θ ≥ 1.

Given that Gβ,θ is a transformation of F , it is natural to compare the baseline dis-

tribution F with the transformed distribution Gβ,θ. Specifically, we are interested in
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understanding how the transformation applied to F affects key reliability properties and

relationships.

Theorem 3.4.

1. If β ≤ 1, then F ≤lr Gβ,1.

2. If β ≥ 1, then F ≥lr Gβ,1.

Proof. It is easily verified that
gβ,1(x)
f(x) = β

(1+(β−1)F (x))2 , so the result follows immediately.

Corollary 3.5.

1. If β ≤ 1, then F ≤rh Gβ,1, F ≤hr Gβ,1 and F ≤st Gβ,1.

2. If β ≥ 1, then F ≥rh Gβ,1, F ≥hr Gβ,1 and F ≥st Gβ,1.

3. If θ ̸= 1, F and Gβ,θ are not comparable with respect to the standard order (hence,

also not comparable with respect to ≤hr, ≤rh or ≤lr).

Proof. Parts 1. and 2. are an immediate consequence of Theorem 3.4 and Theorem 1.C.1

in Shaked and Shanthikumar (2007). For part 3., we need to look at

Gβ,θ(x)− F (x)
sgn
=

F (x)θ−1

βF (x)θ + F (x)θ
− 1,

so, the conclusion follows by analysing the sign of

Sβ,θ(x) =
(1− x)θ−1

βxθ + (1− x)θ
− 1, x ∈ [0, 1].

Differentiating, one finds S′

β,θ(x)
sgn
= (1−x)θ−βxθ−1(θ−x). For θ ̸= 1, one has Sβ,θ(0) =

0, S′

β,θ is positive for x near 0 if θ > 1, and is negative if θ < 1. Finally, noting that

Sβ,θ(1) = −1 if θ > 1, and Sβ,θ(1) = +∞ if θ < 1, the result is proved.

Note that when θ = 1 the following explicit bounds for hGβ,1
are immediate:

1. For β ≤ 1, βhF (x) ≤ hGβ,1
(x) ≤ hF (x),

2. For β ≥ 1, hF (x) ≤ hGβ,1
(x) ≤ βhF (x).

The stochastic comparisons outlined in the two latter results, provide valuable insights

into how transformations of a baseline distribution F using Gβ,θ influence its compar-

ative properties under various stochastic orderings. These findings highlight the impact

of parameters like β and θ on the tail behaviour, risk profiles, and reliability characteris-

tics of transformed distributions. This knowledge is crucial for applications in reliability

engineering, risk management, survival analysis, and operations research, where under-

standing the effects of distributional changes on failure rates, risk assessments, and system

longevity is essential. Moreover, recognizing when direct comparisons between distribu-

tions are not feasible underscores the complexity of certain transformation models and

prompts further exploration into customized analytical approaches for these scenarios.

4 A distorted odds ratio model

The previous section studied stochastic ordering relations between distributions defined

by a specific transformation of the odds function, having in mind the possibility of mixing
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the proportionality of the odds ration and of the log odds ratio, each controlled by an

appropriate parameter. Observe that the odds function of the Gβ,θ distribution appears

as a distortion of the odds ratio ΛF of the baseline distribution function F , adding a

powerful layer of flexibility in shaping distributional properties. This approach generalizes

the structure of the popular proportional hazards rate (PHR) model, where the survival

function is expressed as F
θ
(x) for some θ > 0, may also be viewed as a model where the

odds function is distorted in a similar way. In fact, the odds function if the PHR model

is of the form (1 + ΛF (x))
θ − 1. It is worth noting that an odds ratio of this latter form

corresponds to transforming the underlying distribution F by the quantile function of a

Pareto distribution with survival function (x + 1)−
1

θ . This observation will be explored

later in Section 5 in more generality. Such transformations not only introduce new shape

parameters but also allow for targeted control over properties like tail behaviour and

hazard rate. Building on this odds function framework, we can generalize the concept

of distortion models to encompass a unified family of distributions. By setting specific

parameter values, we can transition seamlessly between models that exhibit proportional

odds, proportional hazards, or log-odds proportionality. This unified approach aligns

with recent developments in survival analysis and reliability theory, where the need for

flexible, interpretable models is paramount.

Definition 4.1. Let α ≥ 0, β, θ > 0. Given a baseline distribution function F , we define

the Gα,β,θ distribution function by

ΛGα,β,θ
(x) = β

(
(α+ ΛF (x))

θ − αθ
)
. (5)

It is obvious that the model introduced in Definition 3.1 is a particular case of (5),

taking α = 0, while the PHR model is obtained by choosing (α, β, θ) = (1, 1, θ).

Taking into account that ΛGα,β,θ
(x) = 1

Gα,β,θ(x)
− 1, the following explicit represen-

tations for the distributions Gα,β,θ introduced in Definition 4.1 are immediate:

Gα,β,θ(x) =
1

1 + β((α+ ΛF (x))θ − αθ)
, (6)

and

Gα,β,θ(x) = 1−
1

1 + β((α+ ΛF (x))θ − αθ)
, (7)

while the density function is represented as

gα,β,θ(x) =
βθ(α+ ΛF (x))

θ

F (x)(αF (x) + F (x))
G

2

α,β,θ(x)f(x) = βθ(α+ ΛF (x))
θ−1

G
2

α,β,θ(x)

F (x)
hF (x).

Remark 4.2. The function Gα,β,θ can be equivalently written as

Gα,β,θ(x) =
β
(
(α+ (1− α)F (x))θ − (αF (x))θ

)

F
θ
(x) + β

(
(α+ (1− α)F (x))θ − (αF (x))θ

) . (8)

In the special case where α = 1, G1,β,θ is the recently defined MPHR model introduced in

Balakrishnan et al. (2018). Das and Kayal (2021) later extended this model by incorpo-

rating a scale parameter, calling it MPHRS. Similarly, our models can be generalised by

introducing a scale parameter in the same way.
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Remark 4.3. The family of distributions Gα,β,θ depends on three parameters. Here is

a brief description of the effect of each one of them. The parameter β influences the

spread and tail weight, as large values push representation of Gα,β,θ to the right. Thus,

β acts as a scale parameter. The effect of θ reflects mainly on the tail growth rate, thus

affecting the extremal behaviour, with large values of θ pushing the distribution towards its

upper limit. Finally, the parameter α shifts the distribution along the xx-axis, introducing

asymmetry and potentially skewed, heavy-tailed as α decreases. Both α and θ behave like

shape parameters.

Although it seems that the Gα,β,θ family is not closed under formation of maximums,

that is, in general the distribution of the form Gn
α,β,θ(x), n ≥ 2, no longer belongs to the

Gα,β,θ family, we may still find an extreme geometrical stability property (see Marshall

and Olkin (1997)).

Theorem 4.4. Let X1, X2, . . . be independent and with distribution function Gα,β,θ, for

some fixed values of α ≥ 0, β, θ > 0, and consider N , independent from the Xn, with

geometric distribution, P (N = n) = p(1 − p)n−1, n ≥ 1, for some p ∈ [0, 1]. Define

U = min{X1, . . . , XN} and V = max{X1, . . . , XN}. Then, the distribution function of U

and V are G
α,

β

p
,θ

and Gα,βp,θ, respectively. Or, equivalently, the family of distributions

Gα,β,θ has geometric extreme stability.

Proof. Proceeding by conditioning, the distribution function of U is

FU (x) =

∞∑

n=1

G
n

α,β,θ(x)p(1− p)n−1 =
pGα,β,θ(x)

1− (1− p)Gα,β,θ(x)
.

Using now the representation for Gα,β,θ that follows from (8), the result is immediate.

The case of V is treated analogously.

4.1 Preservation of monotonicity properties

Given the expressions above, we have the following representation for the hazard rate

function:

hGα,β,θ
(x) =

gα,β,θ(x)

Gα,β,θ(x)
=

βθ(α+ ΛF (x))
θ−1

1 + β
(
(α+ ΛF (x))

θ
− αθ

) ·
hF (x)

F (x)
= βθhF (x)Tα,β,θ(ΛF (x)),

where

Tα,β,θ(x) =
(α+ x)

θ−1
(x+ 1)

1 + β
(
(α+ x)

θ
− αθ

) , x ∈ (0, 1). (9)

Hence, we may prove monotonicity properties for hGα,β,θ
looking at the monotonic-

ity of Tα,β,θ, which will be addressed via Uα,β,θ(x) = 1
Tα,β,θ(x)

, for simplicity. After

differentiation and some simple algebraic manipulation, one gets

U ′

α,β,θ(x) =
Dα,β,θ(x)

(x+ 1)2(α+ x)θ
,

where Dα,β,θ(x) = β(1− α)(α+ x)θ + (βαθ − 1)(θx+ α+ θ − 1), and the sign of U ′

α,β,θ

coincides with the sign of Dα,β,θ. We have that D′

α,β,θ(x) = θβ(1−α)(α+x)θ−1+θ(βαθ−

1) and D′′

α,β,θ(x) = (1−α)βθ(θ−1)(α+x)θ−2. Therefore, D′′

α,β,θ(x)
sgn
= sgn((1−α)(θ−1)),
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so D′

α,β,θ is either increasing or decreasing. Now, the sign of Dα,β,θ(0) = αθβθ−α−(θ−1)

will play a significant role.

Theorem 4.5. Let Gα,β,θ be given by (5) and Dα,β,θ be the polynomial defined above.

1. If Dα,β,θ(0) < 0, (1− α)(θ − 1) < 0, and F ∈ IHR, then Gα,β,θ ∈ IHR.

2. If Dα,β,θ(0) > 0, (1− α)(θ − 1) > 0, and F ∈ DHR, then Gα,β,θ ∈ DHR.

3. If α = 1 or θ = 1, β > 1, Dα,β,θ(0) < 0 and F ∈ IHR, then Gα,β,θ ∈ IHR.

4. If α = 1 or θ = 1, β ≤ 1, Dα,β,θ(0) > 0 and F ∈ DHR, then Gα,β,θ ∈ DHR.

Proof. In the first case, D(x) < 0 for every x > 0. Hence U ′

α,β,θ is always negative,

so Uα,β,θ is decreasing and, therefore, Tα,β,θ = 1
Uα,β,θ

is increasing, so the conclusion

is straightforward. The remaining cases are analogous, reversing signs and monotony

directions for cases 2. and 4.

Note that this result extends Theorem 3.3, allowing now for an interplay of the

different parameters.

The preservation of the monotonicity of the odds ratio is easily described in analogous

terms, extending the final part of Theorem 3.3.

Theorem 4.6.

1. If θ ≥ 1 and F ∈ IOR, then Gα,β,θ ∈ IOR.

2. If θ ≤ 1 and F ∈ DOR, then Gα,β,θ ∈ DOR.

Proof. Just note that λ′Gα,β,θ
(x)

sgn
= λ′F (x)(α+ΛF (x))+(θ−1)λ2F (x), and the conclusion

is immediate.

4.2 Stochastic comparisons between Gα,β,θ and F

We now address some stochastic ordering relations between the baseline distribution F

and the family of transformed distributions Gα,β,θ introduced in Definition 4.1.

Theorem 4.7.

1. If θ > 1 and αθ−1βθ > 1, then Gα,β,θ ≤st F .

2. If θ < 1 and αθ−1βθ < 1, then Gα,β,θ ≥st F .

Proof. We need to characterise the sign of

Gα,β,θ(x)− F (x) =
1

1 + β((α+ ΛF (x))θ − αθ)
−

1

ΛF (x) + 1
= H(ΛF (x)),

where H(x) = 1
1+β((α+x)θ−αθ)

− 1
x+1 , which has the same sign variation as P (x) =

x − β(α + x)θ + αθβ. After differentiation, we have P ′(x) = 1 − θβ(α + x)θ−1 and

P ′′(x) = −βθ(θ − 1)(α + x)θ−1. When θ > 1, P ′′(x) < 0, so P ′(x) is decreasing. If

P ′(0) = 1 − βθαθ−1 < 0 it follows that P ′(x) < 0, for every x > 0, hence P (x) is

decreasing. Since that P (0) = 0 we have the negativeness of P (x). The case θ < 1 is

handled analogously.

Sufficient conditions for the hazard rate order follow immediately by remarking that

H∗(x) =
hGα,β,θ

(x)

hF (x)
= βθTα,β,θ(ΛF (x)),
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where Tα,β.θ is defined by (9). Noting that H∗(0) = αθ−1, taking into account the

properties of Tα,β.θ mentioned above, the following statement is obvious.

Theorem 4.8.

1. If αθ−1 > 1 and Tα,β,θ is increasing, then Gα,β,θ ≤hr F .

2. If αθ−1 < 1 and Tα,β,θ is decreasing, then Gα,β,θ ≥hr F .

For a characterisation of the monotony of Tα,β,θ, please see the discussion about

Theorem 4.5.

Now, the likelihood order follows easily.

Theorem 4.9.

1. Assume that θ > 1 and F ≤hr Gα,β,θ. Then Gα,β,θ≤lrF .

2. Assume that θ < 1 and F ≥hr Gα,β,θ. Then Gα,β,θ≥lrF .

Proof. Note that

gα,β,θ(x)

f(x)
=
βθ(α+ ΛF (x))

θG
2
(x)

F (x)(αF (x) + F (x))
= βθ(α+ ΛF (x))

θ−1

(
G(x)

F (x)

)2

.

The monotonicity of the first parenthesis of the final expression on the right is fully

defined by the sign of the exponent, while the monotonicity of the second term depends

on monotonicity the hazard rate order between the distributions F and Gα,β,θ.

5 An enlarged log-logistic family of distributions

We have treated the models introduced in Definitions 3.1 and 4.1 by defining distributions

through their odds functions, taken as distortions of some given underlying odds function

ΛF . Naturally, we may instead consider the new odds function as distortion of the initial

distribution function F . We mentioned, just before Definition 4.1, that the odds function

for the PHR model, if interpreted as a distortion of the baseline distribution, corresponds

to transforming F by a suitable quantile function. This approach may be extended to

the full class of models considered in Definition 4.1, leading to the introduction of a new

family of distributions.

Definition 5.1. The enlarged log-logistic distribution with parameters α ≥ 0, β, θ > 0,

denoted with ELL(α, β, θ) has distribution function

Kα,β,θ(x) = 1−
1

(
x
β
+ αθ

) 1

θ

+ 1− α

, x ≥ 0. (10)

The parameters β and 1
θ
are obviously scale and shape parameters, respectively, and α

is a second shape parameter, having an effect on the asymmetry, skewness, and tail weight

of the distribution. Moreover, it is straightforward to verify that K0,1,1 is the standard

log-logistic, already introduced before and denoted with L, while K0,β,θ represents the

log-logistic with distribution function Lβ, 1
θ
(x) = 1−

(
( x
β
)

1

θ + 1
)
−1

.

10



Explicit expressions for the density kα,β,θ, hazard rate hα,β,θ, and quantile function

K−1
α,β,θ for the distribution function Kα,β,θ are given below:

kα,β,θ(x) =

(
x
β
+ αθ

) 1

θ
−1

βθ

((
x
β
+ αθ

) 1

θ

+ 1− α

)2 , hα,β,θ(x) =

(
x
β
+ αθ

) 1

θ
−1

βθ

((
x
β
+ αθ

) 1

θ

+ 1− α

) , x ≥ 0.

and

K−1
α,β,θ(u) = β

((
1

1− u
+ α− 1

)θ

− αθ

)
, u ∈ [0, 1].

It is now obvious that ΛGα,β,θ
(x) = K−1

α,β,θ ◦ F (x). Therefore, ordering properties within

the Kα,β,θ family translate easily to the Gα,β,θ class of distributions, the convexity of

the odds of Gα,β,θ being the most obvious, corresponding to the convex transform order

between Kα,β,θ and F . In other words, the convexity properties of the baseline distribu-

tion F with respect to Kα,β,θ are inherited by Gα,β,θ. Recall that the convexity of the

odds defines interesting classes, namely the IOR and DOR families of distributions (see

Lando et al. (2022)). This naturally leads to an interest in exploring stochastic ordering

relationships within the family of distributions defined by (10).

The increasingness of the hazard rate or the odds rate is simple to characterise, as

described next.

Theorem 5.2.

1. If α+ θ > 1 then Kα,β,θ ∈ DHR, for every β > 0.

2. If θ ≤ 1 then Kα,β,θ ∈ IOR, while if θ ≥ 1 then Kα,β,θ ∈ DOR.

Proof. For part 1., note that

h′α,β,θ(x) = −

(
θ

(
x

β
+ αθ

) 1

θ

+ (1− α)(θ − 1)

)
.

Since h′α,β,θ(0) = −(α+θ−1), it follows that h′α,β,θ(x) < 0 for every x ≥ 0, given that h′ is

decreasing. For part 2., the odds rate of Kα,β,θ is given by λKα,β,θ
(x) = 1

βθ

(
x
β
+ αθ

) 1

θ
−1

,

so the conclusion is obvious.

The following result characterises the ≤st-order comparability within the ELL family.

Theorem 5.3. Assume the parameters α ≥ 0, β, θ > 0 and α1 ≥ 0, β1, θ1 > 0 of the

enlarged log-logistic distribution functions (10) satisfy one of the following assumptions:

(ST1) θ < θ1, α
θ−1βθ < αθ1−1

1 β1θ1 and α1(1− θ)− α(1− θ1) ≥ 0;

(ST2) θ = θ1, β < β1, α
θ−1β < αθ1−1

1 β1 and (1− θ)
(
αθ
1β1 − αθβ

)
> 0.

Then Kα,β,θ ≤st Kα1,β1,θ1 .

Proof. For the general set of parameters (α, β, θ) denote Kα,β,θ(x) = 1−Kα,β,θ(x), and

define

V (x) =
1

Kα,β,θ(x)
−

1

Kα1,β1,θ1(x)
=

(
x

β
+ αθ

) 1

θ

−

(
x

β1
+ αθ1

1

) 1

θ1

+ α1 − α.

11



Noting that Kα1,β1,θ1(x) − Kα,β,θ(x)
sgn
= V (x), the proof is concluded if we prove that

V (x) ≥ 0, for every x ≥ 0. It is obvious that V (0) = 0. We separate the two cases,

according to which assumption is satisfied.

(ST1): We have V (+∞) = ∞× sgn
(

1
θ
− 1

θ1

)
= +∞. Differentiating, we find

V ′(x) =
1

βθ

(
x

β
+ αθ

) 1

θ
−1

−
1

β1θ1

(
x

β1
+ αθ1

1

) 1

θ1
−1

,

so V ′(0) = α1−θ

βθ
−

α
1−θ1
1

β1θ1
> 0. Now, if we prove that V ′(x) ≥ 0, for every x ≥ 0, it follows

that V is increasing, hence V (x) ≥ 0, and the conclusion follows. Therefore, we need to

prove that

V ′(x) ≥ 0 ⇔ P (x) =

(
x
β
+ αθ

) 1

θ
−1

(
x
β1

+ αθ1
1

) 1

θ1
−1

≥
βθ

β1θ1
.

Noting that P (0) = α1−θ

α
1−θ1
1

> βθ
β1θ1

and P (+∞) = +∞, we now look at the monotony

of P . Differentiating, one observes that P ′(x)
sgn
= L(x), where L(x) = 1

ββ1

(
1
θ
− 1

θ1

)
x +

1−θ
θ

α
θ1
1

β
− 1−θ1

θ1

αθ

β1

. The assumptions imply that both the slope and intercept of L(x)

are positive, hence P is increasing, implying that P (x) ≥ βθ
β1θ1

, thus V ′(x) = 0 has no

solution.

(ST2): This case is treated analogously, so we just highlight the relevant differences.

We now have V (+∞) = ∞× sgn
(

1
β
− 1

β1

)
= +∞, and P ′(x)

sgn
= (1 − θ)

(
αθ
1β1 − αθβ

)
,

assumed to be positive.

The previous result allows for an immediate pointwise comparison of the odds ratio

of the Gα,β,θ family.

Corollary 5.4. Let Gα,β,θ be given by (5). Under either of the assumptions of

Theorem 5.3, it holds that ΛGα,β,θ
(x) ≤ ΛGα1,β1,θ1

(x) for every x ≥ 0.

Proof. Remember that ΛGα,β,θ
(x) = K−1

α,β,θ(F (x)). Under the assumptions of

Theorem 5.3, we have that Kα,β,θ(x) ≥ Kα1,β1,θ1(x), for every x ≥ 0. But this

is equivalent to K−1
α,β,θ(x) ≤ K−1

α1,β1,θ1
(x) for every x ≥ 0, so the result follows

immediately.

Conditions for the particular case of one parameter comparison, corresponding to

the ELL that characterise the PHR, the proportional odds or the proportional log-odds

models, are immediate from Theorem 5.3. We state the result, for sake of completeness.

Corollary 5.5. For the enlarged log-logistic distribution functions (10) we have that:

1. If α ≥ α1 ≥ 0 and θ ≤ 1 then Kα,β,θ ≤st Kα1,β,θ for every β > 0.

2. If β ≤ β1 and θ <≤ 1 then Kα,β,θ ≤st Kα,β1,θ for every α ≥ 0.

3. If θ < θ1 ≤ 1, αθ1−θ > θ
θ1

and 1−θ
αθθ

> 1−θ1
αθ1θ1

then Kα,β,θ ≤st Kα,β,θ1 for every β > 0.

We now prove a general set of conditions providing the ≤hr-comparability within the

ELL family.

12



Theorem 5.6. Assume the parameters α > 0, β > 0, θ > 0 and α1 > 0, β1 > 0, θ1 > 0

satisfy the following assumptions:

(HR1) (i) βθαθ−1 ≤ β1θ1α
θ1−1
1 , and (ii) βθαθ ≤ β1θ1α

θ1
1 ,

(HR2) θ < θ1,

(HR3) (1− α1)(θ1 − 1) ≥ 0,

(HR4)
(
1
α
− 1
)
(θ − 1) ≤

(
1
α1

− 1
)
(θ1 − 1).

Then Kα,β,θ ≤hr Kα1,β1,θ1 .

Proof. We shall prove that

V (x) =
1

hα1,β1,θ1(x)
−

1

hα,β,θ(x)

= β1θ1

(
x

β1
+ αθ1

1

)
+ (1− α1)β1θ1

(
x

β1
+ αθ1

1

)1− 1

θ1

−βθ

(
x

β
+ αθ

)
− (1− α)βθ

(
x

β
+ αθ

)1− 1

θ

≥ 0,

which clearly implies the conclusion. We start by noting that, taking into account (HR1-

i) and (HR2), V (0) = β1θ1α
θ1−1
1 − βθαθ−1 ≥ 0 and V (+∞) = ∞× sgn(θ1 − θ) = +∞,

hence the conclusion follows if we prove that V is increasing. Direct differentiation gives

V ′(x) = θ1 − θ + (1− α1)(θ1 − 1)

(
x

β1
+ αθ1

1

)
−

1

θ1

− (1− α)(θ − 1)

(
x

β
+ αθ

)
−

1

θ

, (11)

so, given (HR2) and (HR3), the nonnegativity of V ′ follows if we prove that

Q(x) =
β

1

θ1

1

β
1

θ

(
x+ βαθ

) 1

θ

(
x+ β1α

θ1
1

) 1

θ1

≥
(1− α)(θ − 1)

(1− α1)(θ1 − 1)
.

It easily seen that (HR3) and (HR1-ii) imply that Q′(x) ≥ 0 for every x ≥ 0, hence Q is

increasing. Finally, (HR4) means that Q(0) ≥ (1−α)(θ−1)
(1−α1)(θ1−1) , so the theorem is proved.

Theorem 5.6 does not allow to choose α = 0, therefore leaving out of the comparisons

the important case of the log-logistic distribution L, as the expression (11) means, when

taking x = 0, that α appears as a denominator. The way out of this can be sorted

adapting the expressions above by continuity when α −→ 0.

Corollary 5.7. Assume the parameters β > 0, 0 < θ ≤ 1 and α1 > 0, β1 > 0, θ1 > 0

satisfy (HR2) and (HR3). Then K0,β,θ ≤hr Kα1,β1,θ1 .

Proof. With respect to the proof of Theorem 5.6 note that, after allowing α −→ 0,

we need that θ ≤ 1 to fulfill the appropriate version of Q(0) = 0 ≥ (1−α)(θ−1)
(1−α1)(θ1−1) =

θ−1
(1−α1)(θ1−1) .

Moreover, note that Theorem 5.6 proof’s argument depends crucially on θ < θ1, and

breaks down if we assume equality of these two parameters.
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Corollary 5.8. Assume the parameters α > 0, β > 0, θ > 0 and α1 > 0, β1 > 0 are

such that α > α1, βα
θ−1 ≤ β1α

θ−1
1 and





if θ ≥ 1, (1− α)β
1

θ ≤ (1− α1)β
1

θ

1 ,

if θ ≤ 1, βαθ < β1α
θ
1.

Then Kα,β,θ ≤hr Kα1,β1,θ.

Proof. Rewrite the function

V (x) =
1

hα1,β1,θ(x)
−

1

hα,β,θ(x)

=
(
β1α

θ
1 − βαθ

)
θ + (1− α1)β1θ

(
x

β1
+ αθ

1

)1− 1

θ

− (1− α)βθ

(
x

β
+ αθ

)1− 1

θ

.

The assumptions imply that V (0) ≥ 0 and V (+∞) ≥ 0, possibly equal to +∞. The

equation V ′(x) = 0 translates into

1 +
βαθ − β1α

θ
1

x+ β1α
θ
1

=
β

β1

(
1− α

1− α1

)θ

,

which may have at most one root for x ≥ 0. Moreover, V ′(0) = α−α1

αα1

> 0, therefore

V starts increasing at x = 0. Hence, V (x) > 0 for every x ≥ 0, and the conclusion

follows.

Again, as for the general result, Corollary 5.8 does not include the case α = 0, but

this can be handled in exactly the same way as in Corollary 5.7. We state, without proof,

the corresponding result.

Corollary 5.9. Assume the parameters β > 0, θ > 0 and α1 > 0, β1 > 0 are such that

β
1

θ ≤ (1− α1)β
1

θ

1 . Assume, further, than one of the following conditions is satisfied:

(HR5) (1− α1)(θ − 1) ≥ 0;

(HR6) (1− α1)(θ − 1) < 0 and α1 + (1− α1)β
1− 1

θ

1
(1−αθ

1
)1−

1

θ −β

(β1(1−αθ
1
)−β)

1−
1

θ

≥ 0.

Then K0,β,θ ≤hr Kα1,β1,θ.

Proof. We need to look now at he sign of

V (x) =
1

hα1,β1,θ(x)
−

1

h0,β,θ(x)
= β1α

θ
1θ + (1− α1)β1θ

(
x

β1
+ αθ

1

)1− 1

θ

− βθ

(
x

β

)1− 1

θ

.

We have V (0) = β1α
θ−1
1 θ > 0. Moreover,

V (+∞) =





∞× sgn
(
(1− α1)β

1

θ

1 − β
1

θ

)
if 1−

1

θ
> 0,

β1α
θ
1 if 1−

1

θ
< 0.
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Therefore, under our assumptions, V (+∞) = +∞ for every θ > 0. Seeking for extreme

points of V , we need to solve V ′(x) = 0, which translates into

P (x) =
x

x+ β1α
θ
1

=
β

β1

1

(1− α1)θ
.

It is easy to verify that P is increasing, P (0) = 0, P (+∞) = 1, and the right hand side

of he equation is less or equal than 1, so this equation has exactly one solution, equal

to x0 =
ββaα

θ
1

β1(1−αθ
1
)−β

. Assuming (HR5), it follows that V ′(x) ≥ 0, for every x ≥ 0, hence

V remains positive. If assuming (HR6), V has a minimum at x0, and our assumptions

mean that V (x0) ≥ 0 so, again, we conclude that V stays positive, thus concluding the

proof.

Finally, a characterisation of convex transform order relationships.

Theorem 5.10. For the enlarged log-logistic distribution functions (10) we have that:

1. If θ ≤ θ1 and α(θ1−1)+α1(1−θ) > 0, then for every β, β1 > 0, Kα,β,θ ≤c Kα1,β1,θ1 .

2. If θ ≥ θ1 and α(θ1−1)+α1(1−θ) < 0, then for every β, β1 > 0, Kα1,β1,θ1 ≤c Kα,β,θ.

Proof. First note that as the β is a scale parameter and the convex transform order is

invariant with respect to scale parameters, we may assume that β = β1 = 1. We need to

look at the convexity/concavity of

ψ(x) = K−1
α1,1,β1

◦Kα,1,θ(x) =
((
x+ αθ

) 1

θ + α1 − α
) 1

θ1

− αθ1
1 .

Simple differentiation and simplification show that ψ′′(x)
sgn
= (θ1 − θ)

(
x+ αθ

) 1

θ + (1 −

θ)(α1 − α). Therefore, ψ is convex if θ1 − θ ≥ 0 and ψ′′(0) = α(θ1 − 1) + α1(1− θ) > 0,

and it is concave if both these two inequalities are reversed.

The following particular cases are now obvious.

Corollary 5.11. For the enlarged log-logistic distribution functions (10) we have that:

1. If θ ≥ 1, then for every α ≥ 0, L = K0,β,1 ≤c Kα,β,θ ≤c K0,β,θ.

2. If θ ≤ 1, then for every α ≥ 0, K0,β,θ ≤c Kα,β,θ ≤c K0,β,1 = L.

Remark 5.12. As mentioned above, the IOR family may be characterised as the class

of distributions that are dominated, with respect to the convex transform order, by the

standard log-logistic K0,1,1 (which is equivalent, for this purpose, to K0,β,1, for every

β > 0). Denote with Dα,β,θ the family of distributions that are dominated, with respect to

the convex transform order, by the Kα,β,θ distribution. We have then that IOR = D0,β,1,

for every β > 0. Moreover, the transitivity of the ≤c-ordering implies that, for θ ≥ 1 and

α ≥ 0, IOR = D0,β,1 ⊂ Dα,β,θ ⊂ D0,β,θ. This inclusion implies that, for this choice of

parameters, the IOR class remains nested within this more general family, hence meaning

that the requirement that G ∈ Dα,β,θ is less stringent that G ∈ IOR. As emphasized

in Lando et al. (2022), the IOR already encompasses several well-known distributions

with interesting shape properties, namely, allows heavy tailed distributions or for bathtub

shaped hazard rates.

In Theorem 4.6 we described conditions implying the monotonicity of the odds rate

λGα,β,θ
. This monotonicity, following the Lando et al. (2022), translates into either
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Gα,β,θ ≤c L = K0,1,1, equivalent to Gα,β,θ ∈ IOR, or L = K0,1,1 ≤c Gα,β,θ, equivalent

to Gα,β,θ ∈ DOR. We may now describe a more general form of the convex transform

relations between the Gα,β,θ and Kα,β,θ families of distributions.

Theorem 5.13. Let Gα,β,θ be described by (5) (or (7) for a more explicit expression)

and Kα1,β1,θ1 as in (10). If F ∈ IOR and θ, θ1 ≥ 1, then Gα,β,θ ≤c Kα1,β1,θ1 . On the

other hand, if F ∈ DOR and θ, θ1 ≤ 1, then Kα1,β1,θ1 ≤c Gα,β,θ.

Proof. Assume that F ∈ IOR and θ, θ1 ≥ 1. Due to the invariance of the convex trans-

form order with respect to scale parameters, we may assume the β1 = 1. Hence, we want

to prove the convexity of

ψ(x) = K−1
α1,1,θ1

◦Gα,β,θ(x) =
(
β
(
(α+ ΛF (x))

θ
− αθ

)
+ α1

)θ1
− αθ1

1 .

Differentiation shows that

ψ′(x) = βθθ1

(
β
(
(α+ ΛF (x))

θ
− αθ

)
+ α1

)θ1−1

λF (x) (α+ ΛF (x))
θ−1

,

which, under our assumptions, is clearly increasing, so ψ is convex. The second statement

is proved analogously.

Theorem 5.14. Let Gα,β,θ be described by (5) (or (7) for a more explicit expres-

sion) and Kα1,β1,θ1 as in (10). If F ∈ IOR, θ, θ1 ≥ 1 and ββ1θθ1f(0)α
θ−1αθ1−1 ≥

1, then Gα,β,θ ≤disp Kα1,β1,θ1 . On the other hand, if F ∈ DOR, θ, θ1 ≤ 1 and

ββ1θθ1f(0)α
θ−1αθ1−1 ≤ 1, then Kα1,β1,θ1 ≤disp Gα,β,θ.

Proof. The result follows by studying the monotonicity of the function φ(x) = K−1
α1,β1,θ1

◦

Gα,β,θ(x)−x. Observe that if F ∈ IOR and θ, θ1 ≥ 1, φ′ is increasing while the additional

assumption ensures that φ′(0) ≥ 0, establishing the nonnegativeness of φ′. The second

part of the theorem follows in a similar manner.

Remark 5.15. Notice that Kα1,β1,θ1(0) = Gα,β,θ(0) = 0. Thus, under the same condi-

tions as in Theorem 5.14 we can easily get the respective results for the usual stochastic

order by applying Theorem 3.B.13(a) of Shaked and Shanthikumar (2007).
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