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Abstract. We prove that the key map on crystals of any classical type can be reduced

to a key map on simply-laced types by using virtualization of crystals. As a direct

application we obtain new algorithms to compute evacuation, keys, and Demazure atoms

in type Bn in terms of Kashiwara–Nakashima tableaux. In particular, we are able to

use type An and Cn methods. For type Cn, we apply the results obtained by Azenhas–

Tarighat Feller–Torres, Azenhas–Santos and Santos.

1. Introduction

Given an irreducible finite-dimensional representation V (λ) of finite complex Lie al-
gebra g with highest weight λ, a dominant integral weight, the crystal graph B(λ)
of V (λ) is a finite directed graph with vertices given by the crystal basis of V (λ) and
edges corresponding to deformations of the Chevalley operators of the representation [22].
Demazure modules are certain Borel modules that arose in connection to Schubert va-
rieties [15] and generalize the highest weight modules V (λ) of a Lie algebra g. It was
shown by Littelmann and Kashiwara [24, 31] that any Demazure module Vw(λ) has an
associated Demazure crystal Bw(λ) that arises as an induced subgraph of B(λ). Thus,
for fixed w ∈ W in the Weyl group W , it is natural to inquire whether a given vertex
b ∈ B(λ) belongs to the Demazure Bw(λ). The answer to this question is provided by the
right key map, which associates to b ∈ B(λ) an extremal element bwλ in the W -orbit
of the highest weight vector called the right key of b (with the similar notion of left

key analogously defined). Correspondingly, the Demazure atom B̊w(λ) is the subset
of B(λ) consisting of b ∈ B(λ) whose right key is bwλ. The study of various properties of
Demazure crystals and atoms is an extremely active topic of research today, for instance
[2, 1, 5, 6, 3, 12, 13, 17, 19].

Finding algorithms that effectively compute the key maps has captured the interest
of mathematicians over the last few decades. Indeed, although right keys can be com-
puted from Lakshimbai-Seshadri paths [30] or the alcove path model [29, Definition 5.2,
Remark 5.3, Corollary 6.2] in a type independent fashion, such procedures are generally
more difficult than via type-specific tableux models. For instance, in type An there is a
well-known algorithm based on jeu de taquin for semi-standard Young tableaux [27], a
recursive generalization in [19], and other alternative algorithms provided in [3, 12, 26,
32, 39]. For type Cn Kashiwara–Nakashima tableaux, there are two known procedures
due to Santos [36, 37] and a third by Azenhas–Santos [6]. Alternative ortho-symplectic
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constructions are also found in [13]. In particular, all known algorithms for computing
keys that utilize tableaux models are type dependent.

The Lusztig–Schützenberger involution is the unique set map ξ on B(λ) induced by
the automorphism of the Dynkin diagram of g given by left multiplication by the longest
element of W . The process of combinatorially computing the image ξ(b) for a given
b ∈ B(λ) is known as evacuation. In types An and Cn, respectively, algorithms were
developed in [10] and [36]. In particular, in each of these models it was shown that the
Lusztig–Schützenberger involution exchanges left and right keys. This is also known in
the model of Lakshmibai-Seshadri paths and alcove path model.

1.1. Main Results. In this paper, we introduce a new type-crystal model-independent
technique for computing both the key maps and the Schützen-berger–Lusztig involution
via virtualization of crystals. Virtualization is a method introduced by Kashiwara [23]
that embeds a highest weight crystal inside another of (potentially) different Lie type,
provided the associated Dynkin diagrams are related via so-called diagram folding. The
image of such an embedding equipped with an induced crystal structure is termed a
virtual crystal.

For any positive integer m, the natural embedding B(λ) →֒ B(mλ) is a distinguished
virtualization map. This particular map, introduced as dilation by Kashiwara [23], is
the basis for the definition of the key map. Despite providing minimal bounds for m for
this construction in Theorem 3.5, this formulation is not computationally effective.

Inspired by the results in [6, 4] for the Baker embedding Cn →֒ A2n−1 [8], in this paper
we prove that virtualization preserves the left and right key maps (see Theorem 3.8). It
is important to note that while cases of these results were known for specific Lie types,
our results constitute a type-independent and crystal model-independent generalization.
In particular, (provided the virtualization has a well-defined left inverse) our theorem
reduces the computation of keys, atoms, and evacuation for non-simply laced types to
simply laced cases via Table 1.

We then prove the effectiveness of such methods by applying it to type B Kashiwara–
Nakashima tableaux via different virtualization maps, for instance that of Baker [9], Fujita
[16], and Pappe–Pfannerer–Schilling–Simone [34]. This, in turn, provides a new effective
algorithmic description of evacuation and key maps in type B (see Theorem 4.4).

This extended abstract is organized in four sections. We refer the reader to [7] for
details and proofs, containing the results hereby presented.

2. Crystals

Let g be a finite complex semisimple Lie algebra with usual Cartan data given by
the weight lattice P , simple roots αi, fundamental weights ωi, canonical pairing ⟨·, ·⟩ :
P∨×P → ❩, and Weyl groupW (endowed with the strong Bruhat order) [11]. We review
Kashiwara’s theory of g-crystals but refer the reader to [21, 20] for details.

Definition 2.1. A (normal) g-crystal is a nonempty finite set B with a weight map
wt : B → P, string operators εi, φi : B → ❩, and crystal operators ei, fi : B → B ⊔ {0}
where 0 /∈ B is an auxiliary symbol, subject to the following conditions for all i ∈ I and
b, b′ ∈ B:
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• φi(b)− εi(b) = ⟨α∨
i ,wt(b)⟩,

• wt(ei(b)) = wt(b) + αi if ei(b) ∈ B,
• wt(fi(b)) = wt(b)− αi if fi(b) ∈ B,

• b′ = ei(b) if and only if b = fi(b
′),

• εi(b) = max{k ≥ 0|eki (b) ∈ B},
• φi(b) = max{k ≥ 0|fki (b) ∈ B}.

Let E and F be the semigroups generated by {ei}i∈I and {fi}i∈I , respectively and for
any w ∈ W with reduced expression si1 . . . sik define Fw :=

⋃
mi∈❩≥0

{fm1

i1
. . . fmk

ik
} ⊂

F and Ew :=
⋃
mi∈❩≥0

{em1

i1
. . . emk

ik
} ⊂ E .

We say a element b ∈ B is a highest weight vector (resp. lowest weight vector)
if E{b} = 0 (resp. F{b} = 0). So then, for λ a dominant integral weight denote by B(λ)
the crystal graph of the associated highest weight g-module V (λ) with highest weight
vector bλ, so that wt(bλ) = λ, E{bλ} = 0, and F{bλ} = B(λ). We call a vertex b ∈ B(λ)
extremal if it lies in the W -orbit of bλ.

Definition 2.2. Given any λ ∈ P+, the Lusztig–Schützenberger involution ξ =
ξB(λ) : B(λ) → B(λ) is the unique set involution such that for all i ∈ I and b ∈ B(λ):
eiξ(b) = ξfθ(i)(b), fiξ(b) = ξeθ(i)(b), wt(ξ(b)) = w0wt(b), where θ is the automorphism of I
defined by applying the longest element w0 ∈W to the simple roots: w0αi = −αθ(i).More
generally, on a given normal g-crystal B, ξB acts locally on each connected component of
B.

For example, in types Bn and Cn we have θ = Id, whereas in type An θ(i) = n− i (see
[4]).

2.1. Virtual Crystals. For any Dynkin diagram D, denote by PD the corresponding
integral weight lattice and by ωDi the corresponding fundamental weights. Let X and Y
be two Dynkin diagrams and let aut be an automorphism of Y such that distinct nodes
of Y in the same aut-orbit are not connected by an edge. We say there is an embedding
ψ : X →֒ Y if there exists a bijection Ψ : X → Y/aut inducing a map PX → PY given
by the assignment ωXi 7→

∑
j∈Ψ(i) γi(ω

Y )j , with γi given as in the Table 1. Consequently,

we have a natural embedding of the Weyl groups WX into W Y , identifying WX with the

set of elements W̃X in W Y that are fixed under the Dynkin symmetry:

WX ∼= W̃X := ⟨Πj∈ψ(i)s̃j | i ∈ IX⟩ ⊂W Y = ⟨s̃j | j ∈ IY ⟩,

via the group isomorphism si 7→ Πj∈ψ(i)s̃j . We abuse notation and use ψ to also denote

the induced maps on weight lattices, Weyl groups, and indices ψ : IX → IY . In particular,
ψ preserves strong Bruhat order and reduced expressions for elements.

Definition 2.3. Suppose X and Y are Dynkin diagrams with an embedding ψ : X →֒ Y
as above. Let (B̃; ẽj , f̃j , φ̃j , ε̃j)j∈IY be a normal gY -crystal. A virtual gX-crystal is a

subset V ⊂ B̃ such that V has a normal gX -crystal structure where for any i ∈ IX the
crystal operators are given by:

evi :=
∏

j∈ψ(i)

ẽγij , fvi :=
∏

j∈ψ(i)

f̃γij , (1)

and for any choice of j ∈ ψ(i), the string operators defined as: εi := γ−1
i ε̃j φi := γ−1

i φ̃j .

Additionally, if a gX -crystal B is isomorphic to a virtual gX -crystal V ⊂ B̃, we call the
associated isomorphism àψ : B → V the virtualization map.
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X Y γi
Cn A2n−1 γi = 1, 1 ≤ i < n, γn = 2
Bn Dn+1 γi = 2, 1 ≤ i < n, γn = 1
F4 E6 γ1 = γ2 = 2, γ3 = γ4 = 1
G2 D4 γ1 = 1, γ2 = 3
Bn Cn γi = 2, 1 ≤ i < n, γn = 1
Cn Bn γi = 1, 1 ≤ i < n, γn = 2
Bn A2n−1 γi = 1, 1 ≤ i ≤ n
G2 A5 γ1 = 1, γ2 = 2

Table 1. Explicit virtualization maps when X = Bn, Y = Cn, X =
Cn, Y = Bn, and X = Bn, Cn, Y = A2n−1 found in [16, 34, 9, 23, 38, 14].

In particular, virtualizations are closed under tensor products and unique (up to choice
of embedding). A particularly important example of a virtualization map in the case when
X = Y is the following [23, Thm 3.1]:

Example 2.4. For any positive integer m, the m-dilation map ❉m : B(λ) →֒ B(mλ)
is the unique embedding such that ❉m(fib) = fmi ❉m(b), ❉m(eib) = emi ❉m(b) and
φi(❉m(b)) = mφi(b), εi(❉m(b)) = mεi(b), wt(❉m(b)) = mwt(b).

Various explicit virtualizations have been studied in the literature (see Table 1). Baker
described virtualization maps corresponding to the embeddings Bn, Cn →֒ A2n−1 directly
on Kashiwara-Nakashima tableaux [9], which were then extended by Schilling–Scrimshaw
for Bn, Cn →֒ Dn+1 and F4 →֒ E6, G2 →֒ D4 [38]. Virtualizations from Bn →֒ Cn and
Cn →֒ Bn were independently studied by Fujita [16] and Pappe–Pfannerer–Schilling–
Simone [33]. More general constructions appear in [33] and [35].

3. Demazure crystals and keys under virtualization

Denote by b ⊂ g any Borel subalgebra of g. The Demazure module Vw(λ) is a
b-module generated by the one dimensional weight space V (λ)wλ of weight wλ [15].

Definition 3.1. Given λ ∈ P+ and w ∈W , theDemazure crystal Bw(λ) is the induced
subset Bw(λ) := Fw{bλ} ⊂ B(λ).

Now, consider the canonical embedding Θm := Gm ◦❉m where ❉m is the m-dilation
map from Example 2.4 and Gm : B(mλ) −→ F{b⊗mλ } is the unique crystal isomorphism

mapping bmλ → b⊗mλ . It was shown in Proposition 8.3.2 in [20] that when m is large
enough we have a decomposition Θm(b) = bwλ ⊗ b′ ⊗ bw′λ for any b ∈ B(λ) with bwλ, bw′λ

extremal and b′ ∈ B(λ)m−2. In particular, the pair (bwλ, bw′λ) is independent of the choice
of any such m, hence the following is well-defined.

Definition 3.2. For a given b ∈ B(λ) the right key (resp. left key) of b is the extremal
vector K+(b) := bwλ (resp. K−(b) := bw′λ).

Example 3.3. In Figure 1(left) the boxed vertices correspond to the right and left keys
of the so5-crystal B(ω1 + ω2).
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The Demazure atom is then defined as the set B̊w(λ) = {b ∈ B(λ) : K+(b) = bwλ}
of all vertices whose right key is bwλ.

Remark 3.4. The related notions of opposite Demazure crystal and opposite De-

mazure atom can be defined analogously by exchanging F with E and right with left
key. In particular, all theorems below hold analogously for the opposite setting. We refer
the reader to [7] for details.

The following provides a tight bound for the values of m and thus refines [20, Prop.
8.3.2].

Theorem 3.5. Let m ∈ N. For all b ∈ B(λ), there exist b′ ∈ B(λ)⊗(m−2) and fixed
w ≥ w′ ∈W such that

Θm(b) = bwλ⊗b
′⊗bw′λ if and only if m ≥ ℓ = max{length(ρ) | ρ is an i-string for i ∈ I}.

Remark 3.6. In particular, we note that the pair of keys bwλ, bw′λ define the initial (resp.
final) direction of the corresponding LS path in the isomorphic crystal of Lakshmibai-
Seshadri paths.

Example 3.7. Consider the so5-crystal B(ω1 + ω2) in Figure 1(left). Then its i-strings
have lengths 1, 2, and 3 so that ℓ = 3. In Figure 2 we can see the 6-dilation of this
crystal. Notice since 6 ≥ 3 then indeed every vertex has a decomposition of the form
bwλ ⊗ b′ ⊗ bw′λ where bwλ and bw′λ arise as the right left keys of B(ω1 + ω2).

It was shown in [6, 4] that the Lusztig–Schützenberger involution commutes with
Baker’s virtualization from Cn into A2n−1. We prove this holds for any virtualization
between any classical Lie types. As a consequence, any virtualization map preserves
right and left keys and thus embeds type X Demazure crystals and atoms into those of
type Y .

Theorem 3.8. Given a gX-crystal B and Dynkin diagram embedding ψ : X → Y
with virtualization map à : B → V ⊂ B̃, with B̃ a gY -crystal, the following holds:
(1) à(ξB(B)) = ξ

B̃
(à(B)), (2) K+(ξ(b)) = ξK−(b), and (3) à(K±(b)) = K±(à(b)).

Thus, virtualization embeds Demazure crystals and atoms correspondingly, so that for

any w ∈WX we have Bw(λ)
à

→֒ B̃ψ(w)(ψ(λ)) and B̊w(λ)
à

→֒ ˚̃Bψ(w)(ψ(λ)).

As mentioned in the introduction, Theorem 3.8 provides an effective combinatorial
framework for computing both the Lusztig–Schützenberger involution as well as the right
and left key maps for any given vertex b ∈ B(λ) where g is any classical Lie algebra.

Namely, given any virtualization à : B → B̃ with a well defined inverse à−1 : à(B) → B,

then if B̃ is endowed with a combinatorial model in which ξ(b) as well as K+(b) can be
computed then by Theorem 3.8, in order to compute ξ(b) as well as K+(b) and K−(b) for
any b ∈ B(λ), it suffices to compute the virtualization map à, perform the combinatorial

computations in B̃, and apply the inverse map à−1. In particular, this implies that any
such computation in non-simply laced Lie types or Lie-types with complicated combinato-
rial models, can be computed within simply-laced Lie algebras with easier combinatorial
structures (provided such a virtualization exists). In the following section we exemplify
this to derive a new algorithms to compute keys and evacuation in type B.
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1
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1

1
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1
2
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2̄

0

1
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0

1

2̄
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1̄
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2

1
2 2 1
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1 2 2̄
2

1 2 2

2̄
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1̄

2 1̄ 1̄
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2 12
2

12
2 2

12

2
12 2

12 2
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Figure 1. (Left) The so5-crystal B(ω2+ω1) and (Right) the virtual sp4-
crystal à(B(ω2 + ω1)) under the map à = split.

4. Keys and Evacuation in type B

Kashiwara and Nakashima [25] introduced the so-called Kashiwara-Nakashima (KN)
tableaux and proved these provided a combinatorial model for crystal graphs in types
B/C. We recall this construction but refer the reader to [7, 28, 18] for complete details.

The set of type Bn column KN tableau, KNBn (1
k), consists of fillings C of shape

(1k) for some 1 ≤ k ≤ n with entries in {1 ≺ · · · ≺ n ≺ 0 ≺ n̄ · · · ≺ 1̄} such that (1) all
entries in C are strictly increasing and non-repeating (except for 0) and (2) if both z and
z̄ appear in C with z in the pth box from the top and z̄ in the qth box from the bottom,
then p + q ≤ z. Similarly, the set of spin KN tableaux, sKNBn , consists of fillings S
of shape (1n) with entries in {1 ≺ · · · ≺ n ≺ n̄ · · · ≺ 1̄} such that (1) all entries in S are
strictly increasing and (2) S contains no pairs (z, z̄) for any value of z. We denote spin
columns as gray shaded tableaux.

Consider the set of elements {z1, . . . , zs} ⊂ {1, . . . n} consisting of pairs (z, z̄) where
both z, z̄ appear in C, indexed such that zi+1 ≺ zi. For each 1 ≤ i ≤ s recursively
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1
2

1
⊗6

1
2

2
⊗6

1

2̄

1
⊗6

1

2̄
2̄
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⊗ 1

2
2

⊗4
2

1̄
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⊗ 1
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⊗3

1

2̄
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⊗ 1

2
2

⊗2
2

1̄

2
⊗6

2̄
1̄

2̄
⊗2

⊗ 2

1̄

2 ⊗ 1

2̄

1
⊗3

2

1̄
1̄

⊗3
⊗ 1

2̄
2̄ ⊗ 1

2
2

⊗2
1

2̄
2̄

⊗6
2̄
1̄

2̄
⊗2

⊗ 2

1̄

2
⊗4

2

1̄
1̄

⊗3
⊗ 1

2̄
2̄

⊗3
2̄
1̄

2̄
⊗4

⊗ 2

1̄

2
⊗2

2

1̄
1̄

⊗6
2̄
1̄

2̄
⊗6

2̄
1̄

1̄
⊗6

16 26

26 16

26 16
26

16
26 26

16

26
16 26

16 26

26 16

Figure 2. The 6-dilation of the so5-crystal B(ω1 + ω2) seen in Figure 1.

construct the set J(C) := (t1, · · · , ts) by setting t1 := max{t ∈ Bn : t ≺ z1, t ̸∈ C}, and
thereafter ti := max{t ∈ Bn : t ̸∈ C, t̄ ̸∈ C, t ≺ ti−1, t ≺ zi}.

Definition 4.1. Given C ∈ KNBn (1
k) let rC and lC be the columns obtained from C by

replacing z̄i with t̄i and zi with ti, respectively. The splitting split(C) := lCrC of C is
the tableau of shape (2k) with entries lC in the left column and rC in the right column.
If instead C ∈ sKNBn , then split(C) is the tableau in KNBn (1

n) with the same entries as
C.
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Example 4.2. Let n = 9 and C = (2469009̄4̄2̄)t. Then (z1, . . . , z5) = (0, 0, 9, 4, 2),
J(C) = (8, 7, 5, 3, 1), rC = (1356789̄4̄2̄)t and lC = (24698̄7̄5̄3̄1̄)t, with split(C) obtained

by concatenating them. If instead C = 1

2̄
∈ sKNB2 , then split(C) = 1

2̄
∈ KNB2 (1

2).

Definition 4.3. The set of type Bn KN tableaux of shape λ, KNBn (λ), consists
of fillings C|T of partition shape λ = (µ0|µ) with µ0 either empty or (1n) and µt =
(µ1, . . . , µℓ), such that for Ci, the i

th column of T , we have: (1) C ∈ sKNBn , (2) Ci ∈
KNBn |µi|, (3) every row of C|T is weakly increasing with no repeated zeros, and (4)
split(C|T ) := split(C) split(C1) · · · split(Cℓ) is a semistandard tableau. Type Cn KN

tableaux are be defined similarly by restricting all entries to nonzero values.

The key point to our construction is the observation that the splitting map is a virtu-
alization map from type Bn to type Cn crystals.

Theorem 4.4. For any C|T ∈ KNBn (λ) with λ = (µ0|µ), then:

(1) split(C|T ) is a type Cn KN tableau, moreover split(C|T ) = Θ2(C|T ).
(2) C|T is a type Bn key if and only if the columns of C|T are nested and the letters i

and −i , for any i ∈ {1 ≺ · · · ≺ n ≺ 0 ≺ n̄ · · · ≺ 1̄}, do not appear simultaneously
as entries in a given column.

(3) ξ
B̃
(C|T ) = evacB(C|T ) = split−1 ◦ evacC ◦ split(C|T ), where evac is the evacuation

operator of the appropriate type.

Example 4.5. In Figure 1 the so5-crystal B(ω1 + ω2) and its virtualization under the
splitting map can be seen.

In particular, if we apply Baker’s virtualization of Cn →֒ A2n−1 to the set of tableaux
split(C|T ), the resulting image coincides exactly with Baker’s embedding of Bn →֒ A2n−1

[9] on C|T .

Example 4.6. Let g = so5 and suppose λ = ω1 + ω2. We can construct the Demazure
atom for w = s2s1 with vertices in KNB2 (λ) as follows. From Figure 1(left) we have

bwλ = 1

2̄
2̄ . Hence,

B̊w(λ) = {C|T ∈ B(λ) : K+(C|T ) = bwλ} =

{
1
2

0 , 1
2

2̄ , 1

2̄
2̄

}
. (2)

Given any virtualization from Bn into Cn, the right key of C|T can be computed by
performing symplectic jeu de taquin or via Willis’ direct way [36, 37, 6] on split(C|T )
and then “unsplitting” (which is a well-defined operation). Alternatively, we can directly
apply Baker’s virtualization Cn →֒ A2n−1 as executed in [6].

Now, from Figure 2 we can directly read the right or left key of any C|T . For instance,

K−

(
2

1̄

0

)
,K+

(
2

1̄

0

)
= 2̄

1̄
2̄ , 2

1̄
2̄

is the key pair of C|T.
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We now use evacuation to relate right and left keys. Let T = 2

1̄

0 ∈ KNB2 (λ), one has

ξ(T) = evacB(T) = 1
2

2̄ = split−1 ◦ evacC ◦ split(T) :

2

1̄

0 split
−−→ 2 2 2̄

1̄

wC
0−−→ 2̄ 2̄ 2

1

π-rotation
−−−−−−→ 1

2 2̄ 2̄

SJDT
−−−→ 1 2̄ 2̄

2

split−1

−−−−→ 1
2

2̄ . (3)

Hence it follows from (3) and (2) that

K−

(
2

1̄

0

)
= evacBK+

(
evacB 2

1̄

0

)
= evacBK+

(
1
2

2̄

)
= evacB 1

2̄
2̄ = 2

1̄

2 .
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