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Abstract

Stochastic dominance of a random variable by a convex combination of its independent

copies has recently been shown to hold within the relatively narrow class of distributions

with concave odds function. We show that a key property for this stochastic dominance

result to hold is the subadditivity of the cumulative distribution function of the reciprocal

of the random variable of interest, referred to as the inverted distribution. This enlarges

significantly the family of distributions for which the dominance is verified. Moreover, we

study the relation between the class of distributions with concave odds function and the class

we introduce showing conditions under which the concavity of the odds function implies the

subadditivity of inverted distribution.
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1 Introduction

Stochastic dominance is a widely-used tool in probability, which expresses some notion of one

random variable being larger than another from a distributional point of view (see Shaked and

Shanthikumar (2007)). The applications of this concept are numerous within different fields,

such as statistics, economics, and finance, as is easily seen by the enormous references in the

literature dealing with these concepts. Although the topic has been studied extensively, recent

results, discussed below, have outlined some “surprising” behaviours of stochastic dominance,

especially when we consider sums of random variables. While it may be intuitive, in a non-

random setting, that summing the same quantity on both sides of some expression should

not affect inequalities, and that a convex combination of points belongs to the convex hull,

these basic principles are not generally true when random elements are involved. For example,

Pomatto et al. (2020) have shown that, under some conditions, the ordering between a pair of

random variables can be obtained by summing an independent “noise” to both, while Chen et al.

(2024) proved that, within a given family of probability distributions, a random variable can be
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dominated by convex combinations of independent copies from it. In both cases, the results are

related to the variability, or the tail-heaviness, of the random variables involved.

In this paper, we show that the dominance result recently obtained by Chen et al. (2024)

holds under broader conditions. To be more specific, we search for conditions under which, given

n i.i.d. copies of X, say X1, . . . , Xn, and weights θ1, . . . , θn ≥ 0 such that θ1 + · · ·+ θn = 1, we

have

X ≤st θ1X1 + · · ·+ θnXn. (1)

where ≤st represents the standard stochastic dominance (see Definition 1 below to recall the

formal definition). The implications of this result in terms of decision making under uncertainty,

with meaningful applications in insurance and economic models, are quite remarkable, as it has

been already explained by Chen et al. (2024). Using the same terminology of the referenced

paper, the relation in (1) represents an “unexpected” stochastic dominance result. Indeed, it is

maybe intuitive to think that a convex combination is somewhere in between its components,

which is actually the case for random variables with finite mean. In particular, if EX < ∞,

(1) holds trivially, with equality in distribution, if and only if only one coefficient is strictly

positive. Differently, if EX < ∞ and at least two coefficients are strictly positive, (1) does not

hold, as follows from the fact that the random variables X and θ1X1 + · · · + θnXn have the

same expectation and they are comparable in terms of variability, where X is more variable

that θ1X1 + · · · + θnXn in terms of the convex order (Shaked and Shanthikumar 2007), as

we will discuss later. Chen et al. (2024) proved that (1) holds if X is an increasing convex

transformation of a standard Pareto random variable, that these authors call a super-Pareto

random variable. This property, as described later (see Proposition 12 below), is equivalent to

the concavity of the odds function (the class of distributions defined through shape properties

of the odds functions has recently been studied in Lando et al. (2023)). Moreover, the super-

Pareto assumption implies that the expectation of X is infinite (Proposition 2 in Chen et al.

(2024)), which indeed is necessary for (1) to hold. However, the assumptions in Chen et al.

(2024) rule out many important models for which stochastic dominance is still verified. For

example, we shall prove that the Fréchet distribution (with parameter 1), which is strictly sub-

Pareto, using the terminology of Chen et al. (2024), satisfies (1). Furthermore, the super-Pareto

assumption implies that X is absolutely continuous, while it is reasonable to expect that (1)

may hold even for some discrete models, as it can be seen in some special cases. The above

examples motivate the interest in finding weaker conditions for (1). In our main result we show

that the stochastic domination still holds for a class of distributions characterised by a suitable

subadditivity assumption that, while extending the result obtained in Chen et al. (2024), allows

for discrete distributions as well, as we show by providing one such example. Moreover, we also

address the relationship between the class of distributions we obtained and the super-Pareto

class introduced by Chen et al. (2024) and discuss some relevant characterisation properties of

the family of distributions we found.
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2 Main result

Given a random variable X, we shall represent by FX and FX = 1 − FX its cumulative dis-

tribution and survival functions, possibly using other subscripts if different such objects are

under consideration. In general, we shall not be assuming the existence of densities. We shall

also be referring to the odds function ΛX(x) = FX(x)

FX(x)
, again possibly with different subscripts.

Throughout this paper, “increasing” and “decreasing” are taken as “non-decreasing” and “non-

increasing”, respectively, and the generalised inverse of an increasing function v is denoted

as v−1(u) = sup{x ∈ R : v(x) ≤ u}. Moreover, a function v is said to be subadditive if

v(x+ y) ≤ v(x) + v(y), for every x, y. We recall the definition of stochastic dominance.

Definition 1 Given two random variables X and Y , we say that Y stochastically dominates X,

denoted as X ≤st Y , if FX(x) ≤ F Y (x), for every x ∈ R.

Note that we shall refer to the random variables or to their distribution functions, with the same

notations, as is more convenient. In fact, the stochastic orders and the characterisations we will

be discussing depend only on the distribution functions.

Bearing in mind that 1 − FX( 1x) is generally referred to as the inverted distribution of X,

as this is the cumulative distribution function of 1
X in the continuous case, we introduce a new

class of distributions that will be central to our main result.

Definition 2 We say that a nonnegative random variable X is InvSub (for “inverted subaddi-

tive”) if 1− FX( 1x) is subadditive.

We first present a simple characterisation of this class.

Lemma 3 A random variable X is InvSub if and only if

FX(xθ ) + FX( x
1−θ ) ≤ FX(x) + 1, ∀x ≥ 0, θ ∈ (0, 1). (2)

Proof. The subadditivity of 1− FX( 1x) is obviously equivalent to 1− FX(xθ ) + 1− FX( x
1−θ ) ≥

1− FX(x), for every ≥ 0 and θ ∈ (0, 1), which is clearly a rewriting of (2). □

Example 4 A simple example of a class of distributions that are InvSub is obtained by con-

sidereing random variables Xa with Fréchet distribution, that is, with cumulative distribution

function Ha(x) = a1/x, for x > 0, for some a ∈ (0, 1). In fact, given θ ∈ [0, 1], 1 + Ha(x) −
Ha(

x
θ ) −Ha(

x
1−θ ) = (1 − aθ/x)(1 − a(1−θ)/x) ≥ 0, so Ha satisfies (2). Moreover, note that it is

easily seen that EXa is infinite and the odds function is ΛHa(x) =
a1/x

1−a1/x
, which is convex.

It is well-known that, for nonnegative functions, concavity implies subadditivity. Hence,

when densities exist, a rather simple sufficient condition is available.

Proposition 5 Assume the nonnegative random variable X has density fX such that VF (x) =

x2fX(x) is increasing. Then X is InvSub.
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Proof. Just note that (1− FX( 1x))
′ = VF (

1
x) that is, according to the assumption, decreasing.

Hence, 1− FX( 1x) is concave, vanishes at zero, and is therefore subadditive. □

This very simple characterisation allows to show that a second family of distributions is

InvSub.

Example 6 Consider nonnegative random variables Xb, where b ≥ 0, with survival function

F b(x) =
1

1+xb Log(x+1)
, for x > 0. It is easily seen that these distributions satisfy the monotonicity

assumption of Proposition 5 whenever b < 1. Therefore Xb, for b < 1 are InvSub. Moreover,

note that the odds function is Λb(x) = xb Log(x+ 1), that can be checked to not be concave nor

convex.

The existence of a density is not necessary. Indeed, the InvSub condition is also compatible

with discrete models, as we illustrate in the next example.

Example 7 Let FX(x) = (1 − p)⌈
1

x
⌉, be defined in the completed half line (0,+∞], where p ∈

(0, 1) and ⌈·⌉ denotes the ceiling function. This cumulative distribution function is a right-

continuous step function, with jumps at points 1
k , k = 1, 2, 3, . . . ,+∞, and in particular, it

assigns positive mass p to +∞. This clearly implies that EX = +∞. Now, 1 − FX( 1x) =

1 − (1 − p)⌈x⌉ is the left-continuous version of the geometric cumulative distribution function,

which can be seen to be subadditive.

We present our main result stating a general condition for the stochastic order dominance

between a random variable and a convex linear combination of its independent copies.

Theorem 8 Let X1, . . . , Xn be independent random variables with the same cumulative distribu-

tion function FX as the nonnegative random variable X that is InvSub. Given any θ1, . . . , θn > 0

such that θ1 + · · ·+ θn = 1, the stochastic dominance (1) holds.

Proof. We proceed by induction on the number of random variables. Conditioning and using

the independence of the random variables, it is easily seen that, for every x ≥ 0 and θ ∈ (0, 1),

P (θX1 + (1− θ)X2 > x) = 1−
∫ x/θ

0
FX(x−θt

1−θ )FX(dt).

To find an upper bound for the integral, we consider the decomposition described in Figure 1,

from which follows easily that

∫ x/θ

0
FX(x−θt

1−θ )FX(dt) ≤ FX( x
1−θ )FX(x) + FX(x)

(

FX(xθ )− FX(x)
)

≤ FX(x),

using (2) for the last inequality. So, it follows that P (θX1 + (1− θ)X2 > x) ≥ 1 − FX(x) =

P(X > x), so (1) holds for n = 2.

Assume now that (1) holds whenever considering n−1 random variables. Given θ1, . . . , θn > 0
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Figure 1: Upper bound for the integral in the initial induction step.
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Figure 2: Lower bound for the integral in the induction step.

satisfying θ1 + · · ·+ θn = 1, we have that

P (θ1X1 + · · ·+ θnXn > x)

= P
(

Xn ≥ x
θn

)

+ P
(

θ1X1 + · · ·+ θnXn ≥ x,Xn ≤ x
θn

)

= FX( x
θn
) +

∫ x/θn

0
P
(

θ1X1+···+θn−1Xn−1

1−θn
≥ x−θnt

1−θn

)

FX(dt)

≥ FX( x
θn
) +

∫ x/θn

0
FX(x−θnt

1−θn
)FX(dt),

using the induction hypothesis. We need now to find a lower bound for this integral, which may

achieved using the decomposition depicted in Figure 2, from which follows that

P (θ1X1 + · · ·+ θnXn > x)

≥ FX( x
θn
) +

∫ x/θn

0
FX(x−θnt

1−θn
)FX(dt)

≥ FX( x
θn
) + FX( x

1−θn
)FX(x) + FX(x)

(

FX( x
θn
)− FX(x)

)

≥ FX( x
θn
) + FX( x

1−θn
) + FX(x)

(

FX(x)− FX( x
θn
)− FX( x

1−θn
)
)

.

Finally, noting that the subadditivity assumption implies that the large parenthesis is negative,

it follows that P (θ1X1 + · · ·+ θnXn > x) ≥ FX( x
θn
) + FX( x

1−θn
) ≥ FX(x), using (2) written in

terms of the survival function, thus concluding the proof. □
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It is easy to see that, if X has finite mean, then X is more variable then θ1X1+ · · ·+ θXn in

terms of the convex order, that is, for every convex function φ, Eφ(θ1X1+· · ·+θXn) ≤ EX (this

follows by using repeatedly the definition of convexity), meaning, for instance, that X has larger

variance (when it is finite) than the convex combination. Differently, as already remarked in

Chen et al. (2024), the stochastic dominance stated in (1) is crucially linked to the fact that we

are dealing with random variables with infinite means (see Proposition 2 in Chen et al. (2024)).

We present here another proof, using more elementary arguments.

Proposition 9 Let X1, . . . , Xn be independent random variables such that P(X1 = · · · = Xn) <

1, and θ1, . . . , θn > 0 such that θ1 + · · ·+ θn = 1. If (1) holds, then X has infinite mean.

Proof. It is enough to prove the case n = 2. Denote Y = θX1 + (1 − θ)X2, where X1 and

X2 are independent and have the same distribution as X and are such that P(X1 ̸= X2) > 0.

Moreover, assume E(X) is finite. As then follows that E(Y ) = E(X), both finite, this, together

with (1), implies that X and Y have the same distribution. Therefore, Var
(√

X
)

= Var
(√

Y
)

,

implying that E
(√

X
)

= E
(√

Y
)

. But this is not possible, as Jensen’s inequality implies that

E
(√

Y
)

= E
(

√

θX1 + (1− θ)X2

)

> θE
(√

X
)

+ (1 − θ) E
(√

X
)

= E
(√

X
)

, the inequality

being strict because P(X1 ̸= X2) > 0. □

3 Comparing with earlier results

Our Theorem 8 states the same stochastic domination as proved in the first part of Theorem 1

in Chen et al. (2024), assuming independence instead of the variant of negative dependence

these authors considered. However, the result in Chen et al. (2024) is more specific on the

behaviour of the distribution of the random variables. Let us quote the notions and results

relevant for comparing the assumptions in Theorem 1 in Chen et al. (2024) and the subadditivity

assumption in our Theorem 8. We shall represent the standard Pareto distribution function by

P(x) = 1 − 1
x = x−1

x , for x ≥ 1. Note that it is straightforward to verify that P satisfies the

subadditivity assumption in Theorem 8.

Definition 10 (Chen et al. (2024)) A random variable Y is super-Pareto if Y
d
= h(Z),

where FZ = P and h is an increasing, convex and nonconstant function.

As mentioned in Chen et al. (2024), the super-Pareto family includes the generalised Pareto

distributions, the Burr distributions and the log-logistic distribution. Therefore, it includes

some common models either in economical applications or in extreme value theory. With this

notion, an adapted version of the main result in Chen et al. (2024) is quoted below.

Theorem 11 (adapted version of Theorem 1 in Chen et al. (2024)) Let X1, . . . , Xn be

independent random variables with the same cumulative distribution function FX as the non-

negative super-Pareto random variable X, and θ1, . . . , θn > 0 such that θ1 + · · ·+ θn = 1. Then

(1) is satisfied.
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An equivalent characterisation of the super-Pareto family is given in the following result.

Proposition 12 (Proposition 1 in Chen et al. (2024)) A random variable X, with cumu-

lative distribution function FX , is super-Pareto if and only if 1
FX(x)

is concave.

Note that the concavity of ΛX(x) = FX(x)

FX(x)
= 1

FX(x)
− 1 implies the differentiability of FX at

almost every point of the support, hence the concavity of ΛX is equivalent to the decreasingness

of the odds rate λX(x) = Λ′
X(x) = fX(x)

F
2

X(x)
, considering side derivatives at the points of nondif-

ferentiability. This family of distributions has been addressed in Lando et al. (2023) or, more

recently, in Arab et al. (2024), being referred as the DOR family, that can be characterised using

an appropriate stochastic dominance relation. We need some additional definitions to describe

these relations more precisely.

Definition 13 We say that a random variable X with cumulative distribution function FX is

DOR if its odds function ΛX(x) is concave.

Definition 14 Given two distribution functions F1 and F2, we say that, F1 is smaller than F2

in the convex transform order, represented by F1 ≤c F2, if F
−1
2 ◦ F1 is convex.

As before, we refer indifferently to random variables or distribution functions.

The following result relates the shape of the odds function with the Pareto distribution

through the convex transform order.

Proposition 15 FX is DOR (or, equivalently, X is super-Pareto) if and only if P ≤c FX ,

where P is the standard Pareto distribution. Analogously FX has increasing odds rate if and

only if FX ≤c P.

Proof. Noting that the quantile of the standard Pareto is P−1(u) = 1
1−u , we have P−1 ◦FX =

1
FX

= ΛX + 1, so the result follows immediately. □

The DOR (or, the super-Pareto) class seems a relatively narrow family of distributions, thus

the interest in enlarging the scope of applicability of the standard stochastic dominance (1) to

a wider family of distributions. As mentioned in Example 4, the Fréchet class, with cumulative

distribution functions Ha(x) = a1/x, for some a ∈ (0, 1), satisfies the assumption on Theorem 8.

On other hand, ΛHa is convex, hence Ha ≤c P, so random variables with cumulative distribution

Ha are not super-Pareto. This provides an example where our main result Theorem 8 implies

(1), while Theorem 11 is not applicable, as its assumptions are not satisfied. Further, note

that, as the convex transform order is transitive, it follows that if X is super-Pareto, we have

Ha ≤c P ≤c FX .

We present next two examples showing that shape conditions about the odds function seem

not to be an appropriate way to characterise the stochastic dominance (1).

Example 16 The random variables Xb introduced in Example 6 have odds function Λb(x) =

xb Log(x+ 1) that, as mentioned before, are not concave nor convex for b < 1. Nevertheless, as

referred in Example 6, Xb is InvSub.
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Example 17 Consider cumulative distribution functions of the form H∗
a(x) = Ha(x)

(

1 + 1
e2x−1

)

.

Choosing a ∈ (0, 1) sufficiently small (say, for example, a = 0.5), it can be verified that (2) is

satisfied, while the corresponding odds function is not concave nor convex.

Before explicitly relating the super-Pareto class of distributions with the family of distribu-

tions satisfying the subaddivity assumption in Theorem 8, we present a more general transfor-

mation result.

Theorem 18 Let X be InvSub and h a continuous star-shaped function. Then h(X) is InvSub.

Proof. Note that, as h is continuous, Fh(X)(x) = FX(h−1(x)). Since h is star-shaped, its

inverse, h−1, is anti-star-shaped (see Lemma 4.1 in Arab et al. (2024)), hence, given θ ∈ (0, 1), it

follows that h−1(xθ ) ≤
h−1(x)

θ and h−1( x
1−θ ) ≤

h−1(x)
1−θ . As every function considered is increasing,

we have

Fh(X)(
x
θ ) + Fh(X)(

x
1−θ )

= FX

(

h−1(xθ )
)

+ FX

(

h−1( x
1−θ )

)

≤ FX(h−1(x)) + 1 = Fh(X)(x) + 1

using (2) for the last inequality, thus, taking into account Lemma 3, the proof is concluded. □

Finally, we relate the super-Pareto class of distributions with the family satisfying the sub-

addivity assumption in Theorem 8.

Corollary 19 Let X be super-Pareto (or, X be DOR) such that the increasing convex trans-

formation h in Definition 10 satisfies h(0) ≤ 0. Then X is InvSub.

Proof. According to Definition 10, X
d
= h(Z), where FZ = P. As mentioned above FZ is

subadditive. On the other hand, as h is convex and such that h(0) ≤ 0, it holds that h is

star-shaped. Hence, the conclusion follows applying Theorem 18. □

The assumption, in Corollary 19, that h(0) ≤ 0 means that the super-Pareto variable has

support of the form [sx,∞) where sx ≤ 0, possibly being −∞. In particular, super-Pareto

variables whose support is not strictly contained in [0,+∞) are within the scope of applicability

Theorem 18.

4 Some further classes of distributions

The assumptions considered in Theorem 8 suggest considering some further classes of distribu-

tions, some of which, to the best knowledge of the authors, have not been considered in the

literature. Therefore, a brief discussion about their characterisations is now addressed. We

present some definitions, to start with.

Definition 20 We say that a nonnegative random variable X with cumulative distribution func-

tion FX is

8



1. NBU if FX(x)FX(x) ≥ FX(x+ y), for every x ≥ 0;

2. NWU if FX(x)FX(x) ≤ FX(x+ y), for every x ≥ 0.

Note that the characterisation of X being NBU or NWU, that are well known classes of distri-

butions, may be rewritten as LogFX being subadditve or superadditive, respectively (see the

initial notes in Shaked and Shanthikumar (2007)), together with being nonnegative.

Noting that 1 − FX( 1x) = P( 1
X < x), Theorem 8 sets an assumption about the distribution

of 1
X . We consider next some other well known classes of distributions that we shall relate with

the InvSub family.

Definition 21 The nonnegative random variable X is said to be inverted-NBU or inverted-

NWU, if 1
X is of class NBU or NWU, respectively.

Remark that Theorem 18 sets conditions for X being DOR (the assumption in Theorem 1

in Chen et al. (2024)) implying that X is InvSub.

Proposition 22 Assume X has absolutely continuous distribution. If X is inverted-NWU, then

X is InvSub.

Proof. As noted after Definition 20, 1
X being NWU means that LogF 1

X
(x) = LogFX( 1x) is

superadditive, that is LogFX( 1
x+y ) ≥ LogFX( 1x) + LogFX( 1y ), which implies that FX( 1

x+y ) ≥
exp

(

LogFX( 1x) + LogFX( 1y )
)

≥ FX( 1x)+FX( 1y )−1, as the exponential is superadditive. Finally,

going to the complementary sets, this last inequality is just FX( 1
x+y ) ≤ FX( 1x) + FX( 1y ), that

is, FX( 1x) is subadditive, that is, X is InvSub. □

Note that the distribution function H∗
a given in Example 17 shows that the InvSub class is

strictly larger that the inverted-NWU family.

We now present some general characterisations of the classes just introduced. For this

purpose, some more stochastic order notions are needed.

Definition 23 Given two distribution functions F1 and F2 we say that

1. F1 is smaller than F2 in the superadditive order, represented by F1 ≤su F2 if F−1
2 ◦ F1 is

superadditive;

2. F1 is smaller than F2 in the subadditive order, represented by F1 ≤sb F2 if F−1
2 ◦ F1 is

subadditive.

We first note that, apparently, there is no general description of the NWU class, apart from

its definition, so a similar situation should be expected for the new inverted-NWU family. There

is, however, a simple characterisation of the closely related NBU class.

Theorem 24 (Theorem 4.B.11 in Shaked and Shanthikumar (2007)) A random vari-

able is NBU if and only if X ≤su Z, where Z is exponentially distributed.
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A simple similar characterisation would follow by inversion, but unfortunately, in general, the

inverse of a superaddditive function may not be subadditive. According to Proposition 1 in

Østerdal (2006) the extra assumptions of continuity and strict monotonicity are required, pro-

viding the following simple, but partial, characterisation.

Proposition 25 A random variable X with strictly positive density along its support is NWU

if and only if Z ≤su X, where Z is exponentially distributed.

We note that the NWU includes distributions whose cumulative distribution function does not

even has a density, as it follows easily from the examples mentioned in Cai and Kalashnikov

(2000).

The following results gives a complete description for the inverted-NWU class, avoiding the

strict continuity difficulties.

Theorem 26 A nonnegative random variable X is NWU if and only if X ≤sb H∗, where H∗

has an inverted-Fréchet distribution.

Proof. Recall that, H∗ having inverted-Fréchet distribution means that 1
H∗

has distribution

functionHa, for some a ∈ (0, 1). Therefore, the cumulative distribution function FH∗(x) = 1−ax,

for x ≥ 0, so F−1
H∗ ◦ FX(x) = LogFX(x)

Log a . Taking into account that a ∈ (0, 1), the subadditivity of

F−1
H∗ ◦ FX(x) translates into FX(x)FX(x) ≤ FX(x+ y), so the result is proved. □

The following characterisation is now immediate.

Corollary 27 A nonnegative random variable X is inverted-NWU if and only if 1
X ≤sb H∗,

where H∗ has an inverted-Fréchet distribution.

We may obtain a similar characterisation for the InvSub class using the subadditive order and

choosing the appropriate benchmarking distribution. Remembering that the Pareto distribution

is InvSub, the following is straightforward by computing the quantile function of the Pareto.

Theorem 28 A nonnegative random variable X with absolutely continuous distribution is

InvSub if and only if X ≤sb Z, where Z is an inverted-Pareto random variable.

Finally, we show that InvSub distributions have infinite means.

Proposition 29 Assume X is InvSub. Then EX is infinite.

Proof. As X is InvSub, the stochastic dominance (1) holds. But, then Proposition 9 implies

that EX is infinite. □
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